201
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|
202
|
Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J Neurosci 2013; 33:2048-59. [PMID: 23365242 DOI: 10.1523/jneurosci.3177-12.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4β2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.
Collapse
|
203
|
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions.
Collapse
Affiliation(s)
- Frances M Leslie
- Department of Pharmacology, University of California, Irvine, California 92617, USA.
| | | | | |
Collapse
|
204
|
Ting JT, Feng G. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 2013; 255:3-18. [PMID: 23473879 DOI: 10.1016/j.bbr.2013.02.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/14/2013] [Accepted: 02/23/2013] [Indexed: 12/21/2022]
Abstract
Here we review the rapidly growing toolbox of transgenic mice and rats that exhibit functional expression of engineered opsins for neuronal activation and silencing with light. Collectively, these transgenic animals are enabling neuroscientists to access and manipulate the many diverse cell types in the mammalian nervous system in order to probe synaptic and circuitry connectivity, function, and dysfunction. The availability of transgenic lines affords important advantages such as stable and heritable transgene expression patterns across experimental cohorts. As such, the use of transgenic lines precludes the need for other costly and labor-intensive procedures to achieve functional transgene expression in each individual experimental animal. This represents an important consideration when large cohorts of experimental animals are desirable as in many common behavioral assays. We describe the diverse strategies that have been implemented for developing transgenic mouse and rat lines and highlight recent advances that have led to dramatic improvements in achieving functional transgene expression of engineered opsins. Furthermore, we discuss considerations and caveats associated with implementing recently developed transgenic lines for optogenetics-based experimentation. Lastly, we propose strategies that can be implemented to develop and refine the next generation of genetically modified animals for behaviorally-focused optogenetics-based applications.
Collapse
Affiliation(s)
- Jonathan T Ting
- McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| | | |
Collapse
|
205
|
Zhu YG, Cao HQ, Dong ED. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China. Neurosci Bull 2013; 29:121-4. [PMID: 23361522 DOI: 10.1007/s12264-013-1307-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022] Open
Abstract
During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.
Collapse
Affiliation(s)
- Yuan-Gui Zhu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | | | | |
Collapse
|
206
|
Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013; 234:53-68. [PMID: 23305761 DOI: 10.1016/j.neuroscience.2012.12.054] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
The cholinergic system plays important roles in neurotransmission in both the peripheral and central nervous systems. The cholinergic neurotransmitter acetylcholine is synthesized by choline acetyltransferase (ChAT) and its action terminated by acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The predominance of AChE has focused much attention on understanding the relationship of this enzyme to ChAT-positive cholinergic neurons. However, there is ample evidence that BuChE also plays an important role in cholinergic regulation. To elucidate the relationship of BuChE to neural elements that are producing acetylcholine, the distribution of this enzyme was compared to that of ChAT in the mouse CNS. Brain tissues from 129S1/SvImJ mice were stained for BuChE and ChAT using histochemical, immunohistochemical and immunofluorescent techniques. Both BuChE and ChAT were found in neural elements throughout the CNS. BuChE staining with histochemistry and immunohistochemistry produced the same distribution of labeling throughout the brain and spinal cord. Immunofluorescent double labeling demonstrated that many nuclei in the medulla oblongata, as well as regions of the spinal cord, had neurons that contained both BuChE and ChAT. BuChE-positive neurons without ChAT were found in close proximity with ChAT-positive neuropil in areas such as the thalamus and amygdala. BuChE-positive neuropil was also found closely associated with ChAT-positive neurons, particularly in tegmental nuclei of the pons. These observations provide further neuroanatomical evidence of a role for BuChE in the regulation of acetylcholine levels in the CNS.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
207
|
Picciotto MR, Kenny PJ. Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 2013; 3:a012112. [PMID: 23143843 PMCID: PMC3530035 DOI: 10.1101/cshperspect.a012112] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tobacco smoking results in more than 5 million deaths each year and accounts for almost 90% of all deaths from lung cancer. Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice in which expression of α5 or β4 subunits has been genetically modified have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here we review recent insights into the behavioral actions of nicotine and the nAChRs subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| | | |
Collapse
|
208
|
Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76:116-29. [PMID: 23040810 DOI: 10.1016/j.neuron.2012.08.036] [Citation(s) in RCA: 899] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
Abstract
Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors.
Collapse
|
209
|
Using optogenetics to translate the "inflammatory dialogue" between heart and brain in the context of stress. Neurosci Bull 2012; 28:435-48. [PMID: 22833041 DOI: 10.1007/s12264-012-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inflammatory processes are an integral part of the stress response and are likely to result from a programmed adaptation that is vital to the organism's survival and well-being. The whole inflammatory response is mediated by largely overlapping circuits in the limbic forebrain, hypothalamus and brainstem, but is also under the control of the neuroendocrine and autonomic nervous systems. Genetically predisposed individuals who fail to tune the respective contributions of the two systems in accordance with stressor modality and intensity after adverse experiences can be at risk for stress-related psychiatric disorders and cardiovascular diseases. Altered glucocorticoid (GC) homeostasis due to GC resistance leads to the failure of neural and negative feedback regulation of the hypothalamic-pituitary-adrenal axis during chronic inflammation, and this might be the mechanism underlying the ensuing brain and heart diseases and the high prevalence of co-morbidity between the two systems. By the combined use of light and genetically-encoded light-sensitive proteins, optogenetics allows cell-type-specific, fast (millisecond-scale) control of precisely defined events in biological systems. This method is an important breakthrough to explore the causality between neural activity patterns and behavioral profiles relevant to anxiety, depression, autism and schizophrenia. Optogenetics also helps to understand the "inflammatory dialogue", the inflammatory processes in psychiatric disorders and cardiovascular diseases, shared by heart and brain in the context of stress.
Collapse
|
210
|
Michalski D, Härtig W, Krügel K, Edwards RH, Böddener M, Böhme L, Pannicke T, Reichenbach A, Grosche A. Region-specific expression of vesicular glutamate and GABA transporters under various ischaemic conditions in mouse forebrain and retina. Neuroscience 2012; 231:328-44. [PMID: 23219666 DOI: 10.1016/j.neuroscience.2012.11.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/19/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
There is accumulating evidence that glutamate and GABA release are key mechanisms of ischaemic events in the CNS. However, data on the expression of involved transporters for these mediators are inconsistent, potentially impeding further neuroprotective approaches. Here, we applied immunofluorescence labelling to characterise the expression pattern of vesicular glutamate (VGLUT) and GABA transporters (VGAT) after acute focal cerebral ischaemia and in two models of retinal ischaemia. Mice were subjected to filament-based focal cerebral ischaemia predominantly involving the middle cerebral artery territory, also leading to retinal ischaemia due to central retinal artery occlusion (CRAO). Alternatively, retinal ischaemia was induced by a transient increase of the intraocular pressure (HIOP). One day after ischaemia onset, diminished immunolabelling of neuronal nuclei and microtubule-associated protein 2-positive structures were found in the ipsilateral neocortex, subcortex and the retina, indicating neuronal degeneration. VGLUT1 expression did not change significantly in ischaemic tissues whereas VGLUT2 was down-regulated in specific areas of the brain. VGLUT3 expression was only slightly down-regulated in the ischaemia-affected neocortex, and was found to form clusters on fibrils of unknown origin in the ischaemic lateral hypothalamus. In contrast, retinae subjected to CRAO or HIOP displayed a rapid loss of VGLUT3-immunoreactivity. The expression of VGAT appears resistant to ischaemia as there was no significant alteration in all the regions analysed. In summary, these data indicate a region- and subtype-specific change of VGLUT expression in the ischaemia-affected CNS, whose consideration might help to generate specific neuroprotective strategies.
Collapse
Affiliation(s)
- D Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Bennett C, Arroyo S, Berns D, Hestrin S. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci 2012; 32:17287-96. [PMID: 23197720 PMCID: PMC3525105 DOI: 10.1523/jneurosci.3565-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/26/2023] Open
Abstract
Activation of cortical nicotinic receptors by cholinergic axons from the basal forebrain (BF) significantly impacts cortical function, and the loss of nicotinic receptors is a hallmark of aging and neurodegenerative disease. We have previously shown that stimulation of BF axons generates a fast α7 and a slow non-α7 receptor-dependent response in cortical interneurons. However, the synaptic mechanisms that underlie this dual-component nicotinic response remain unclear. Here, we report that fast α7 receptor-mediated EPSCs in the mouse cortex are highly variable and insensitive to perturbations of acetylcholinesterase (AChE), while slow non-α7 receptor-mediated EPSCs are reliable and highly sensitive to AChE activity. Based on these data, we propose that the fast and slow nicotinic responses reflect differences in synaptic structure between cholinergic varicosities activating α7 and non-α7 classes of nicotinic receptors.
Collapse
Affiliation(s)
- Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Dominic Berns
- Department of Biology, Stanford University, Stanford, California 94305
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine, and
| |
Collapse
|
212
|
Abstract
Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx), are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally defined, widely projecting “peptidergic” neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently characterized vital peptidergic neurons [e.g., hcrt/orx, proopiomelanocortin (POMC), and agouti-related peptide (AgRP) cells], as well as classical modulatory neurons (e.g., dopamine and acetylcholine cells), all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale) GABAergic and glutamatergic signaling from neurons previously considered to be primarily “modulatory” raises new questions about the roles of slower co-transmitters they co-express.
Collapse
|
213
|
Stamatakis AM, Stuber GD. Optogenetic strategies to dissect the neural circuits that underlie reward and addiction. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011924. [PMID: 23043156 DOI: 10.1101/cshperspect.a011924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optogenetic strategies for perturbation of neural circuit function have begun to revolutionize systems neuroscience. Whereas optogenetics has proven to be a powerful approach for studying neural systems, the tools to conduct these experiments are still continuously evolving. Here we briefly summarize available hardware and reagents that can be used for studying behaviors related to reward and addiction. In addition, we discuss recent studies in which these strategies have been applied to study neural circuit function in brain slices as well as awake and behaving animals. Collectively, this work serves as a brief introduction to optogenetic techniques and highlights how these tools can be applied to elucidate the neural circuits that underlie reward processing and addiction.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
214
|
Harmey D, Griffin PR, Kenny PJ. Development of novel pharmacotherapeutics for tobacco dependence: progress and future directions. Nicotine Tob Res 2012; 14:1300-18. [PMID: 23024249 PMCID: PMC3611986 DOI: 10.1093/ntr/nts201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/25/2012] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The vast majority of tobacco smokers seeking to quit will relapse within the first month of abstinence. Currently available smoking cessation agents have limited utility in increasing rates of smoking cessation and in some cases there are notable safety concerns related to their use. Hence, there is a pressing need to develop safer and more efficacious smoking cessation medications. METHODS Here, we provide an overview of current efforts to develop new pharmacotherapeutic agents to facilitate smoking cessation, identified from ongoing clinical trials and published reports. RESULTS Nicotine is considered the major addictive agent in tobacco smoke, and the vast majority of currently available smoking cessation agents act by modulating nicotinic acetylcholine receptor (nAChR) signaling. Accordingly, there is much effort directed toward developing novel small molecule therapeutics and biological agents such as nicotine vaccines for smoking cessation that act by modulating nAChR activity. Our increasing knowledge of the neurobiology of nicotine addiction has revealed new targets for novel smoking cessation therapeutics. Indeed, we highlight many examples of novel small molecule drug development around non-nAChR targets. Finally, there is a growing appreciation that medications already approved for other disease indications could show promise as smoking cessation agents, and we consider examples of such repurposing efforts. CONCLUSION Ongoing clinical assessment of potential smoking cessation agents offers the promise of new effective medications. Nevertheless, much of our current knowledge of molecular mechanisms of nicotine addiction derived from preclinical studies has not yet been leveraged for medications development.
Collapse
Affiliation(s)
- Dympna Harmey
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| |
Collapse
|
215
|
Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. J Neurosci 2012; 32:10105-16. [PMID: 22836246 DOI: 10.1523/jneurosci.0058-12.2012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main olfactory bulb (MOB) in mammals receives massive centrifugal input from cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, the activity of which is thought to be correlated with animal behaving states, such as attention. Cholinergic signals in the bulb facilitate olfactory discrimination and learning, but it has remained controversial how the activity of HDB cholinergic neurons modulates neuronal excitability and olfactory responses in the MOB. In this study, we used an optogenetic approach to selectively activate HDB cholinergic neurons and recorded the effect of this activation on the spontaneous firing activity and odor-evoked responses of mouse MOB neurons. Cells were juxtacellularly labeled and their specific types were morphologically determined. We find that light stimulation of HDB cholinergic neurons inhibits the spontaneous firing activity of all major cell types, including mitral/tufted (M/T) cells, periglomerular (PG) cells, and GABAergic granule cells. Inhibitions are significantly produced by stimulation at 10 Hz and further enhanced at higher frequencies. In addition, cholinergic activation sharpens the olfactory tuning curves of a majority of M/T cells but broadly potentiates odor-evoked responses of PG cells and granule cells. These results demonstrate strong effects of the basal forebrain cholinergic system on modulating neuronal excitability in the MOB and support the hypothesis that cholinergic activity increases olfactory discrimination capability.
Collapse
|
216
|
Natriuretic peptides block synaptic transmission by activating phosphodiesterase 2A and reducing presynaptic PKA activity. Proc Natl Acad Sci U S A 2012; 109:17681-6. [PMID: 23045693 DOI: 10.1073/pnas.1209185109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart peptide hormone atrial natriuretic peptide (ANP) regulates blood pressure by stimulating guanylyl cyclase-A to produce cyclic guanosine monophosphate (cGMP). ANP and guanylyl cyclase-A are also expressed in many brain areas, but their physiological functions and downstream signaling pathways remain enigmatic. Here we investigated the physiological functions of ANP signaling in the neural pathway from the medial habenula (MHb) to the interpeduncular nucleus (IPN). Biochemical assays indicate that ANP increases cGMP accumulation in the IPN of mouse brain slices. Using optogenetic stimulation and electrophysiological recordings, we show that both ANP and brain natriuretic peptide profoundly block glutamate release from MHb neurons. Pharmacological applications reveal that this blockade is mediated by phosphodiesterase 2A (PDE2A) but not by cGMP-stimulated protein kinase-G or cGMP-sensitive cyclic nucleotide-gated channels. In addition, focal infusion of ANP into the IPN enhances stress-induced analgesia, and the enhancement is prevented by PDE2A inhibitors. PDE2A is richly expressed in the axonal terminals of MHb neurons, and its activation by cGMP depletes cyclic adenosine monophosphates. The inhibitory effect of ANP on glutamate release is reversed by selectively activating protein kinase A. These results demonstrate strong presynaptic inhibition by natriuretic peptides in the brain and suggest important physiological and behavioral roles of PDE2A in modulating neurotransmitter release by negative crosstalk between cGMP-signaling and cyclic adenosine monophosphate-signaling pathways.
Collapse
|
217
|
Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc Natl Acad Sci U S A 2012; 109:17651-6. [PMID: 23045697 DOI: 10.1073/pnas.1215381109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Basal forebrain cholinergic neurons, which innervate the hippocampus and cortex, have been implicated in many forms of cognitive function. Immunolesion-based methods in animal models have been widely used to study the role of acetylcholine (ACh) neurotransmission in these processes, with variable results. Cholinergic neurons have been shown to release both glutamate and ACh, making it difficult to deduce the specific contribution of each neurotransmitter on cognition when neurons are eliminated. Understanding the precise roles of ACh in learning and memory is critical because drugs that preserve ACh are used as treatment for cognitive deficits. It is therefore important to define which cholinergic-dependent behaviors could be improved pharmacologically. Here we investigate the contributions of forebrain ACh on hippocampal synaptic plasticity and cognitive behavior by selective elimination of the vesicular ACh transporter, which interferes with synaptic storage and release of ACh. We show that elimination of vesicular ACh transporter in the hippocampus results in deficits in long-term potentiation and causes selective deficits in spatial memory. Moreover, decreased cholinergic tone in the forebrain is linked to hyperactivity, without changes in anxiety or depression-related behavior. These data uncover the specific contribution of forebrain cholinergic tone for synaptic plasticity and behavior. Moreover, these experiments define specific cognitive functions that could be targeted by cholinergic replacement therapy.
Collapse
|
218
|
Jo YH, Boué-Grabot E. Interplay between ionotropic receptors modulates inhibitory synaptic strength. Commun Integr Biol 2012; 4:706-9. [PMID: 22446533 DOI: 10.4161/cib.17291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at a synapse determines neuronal outputs in the CNS. In a recent study, we describe that excitatory and inhibitory transmitter-gated channels physically crosstalk each other at the cellular and molecular level. Increased membrane expression of ATP P2X4 receptors by using an interference peptide competing with the intracellular endocytosis motif enhances neuronal excitability, which is further enhanced by reciprocal interaction between post-synaptic ATP- and GABA-gated channels. Molecular interaction is supported by experiments of co-immunoprecipitation and mutagenesis of P2X4 subunit. Two amino acids in the intracellular carboxyl tail of P2X4 subunit appears to be responsible for this crosstalk. Our recent study provides molecular and electrophysiological evidence for physical interaction between excitatory and inhibitory receptors that appears to be crucial in determining synaptic strength at central synapses.
Collapse
|
219
|
Drenan RM, Lester HA. Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations. Pharmacol Rev 2012; 64:869-79. [PMID: 22885704 PMCID: PMC3462994 DOI: 10.1124/pr.111.004671] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated, cation-selective ion channels expressed throughout the brain. Although these channels have been investigated for several decades, it is still challenging 1) to identify the important nAChR subunits in cholinergic transmission and nicotine dependence and 2) to develop nAChR subtype-specific ligands. To overcome these challenges, we and others have studied mice expressing mutant, gain-of-function nAChR subunits. In this review, we discuss this research approach and the results it has yielded to date. Gain-of-function mutations, including those in nAChR subunits, provide an approach that is complementary to loss-of-function studies such as gene knockouts; the former allows one to answer questions of sufficiency and the latter addresses questions of necessity. Mutant mice expressing gain-of-function nAChR subunits are commonly produced using traditional gene targeting in embryonic stem cells, but novel approaches such as bacterial artificial chromosome transgenesis have yielded important insights as well. α7 nAChRs were the first nAChRs to be targeted with a gain-of-function mutation, followed by a pair of α4 nAChR gain-of-function mutant mice. These α4 nAChR gain-of-function mice (α4 L9'S mice, followed by α4 L9'A mice) provided an important system to probe α4 nAChR function in vivo, particularly in the dopamine reward system. α6 nAChR gain-of-function mice provided the first robust system allowing specific manipulation of this receptor subtype. Other targeted mutations in various nAChR subunits have also been produced and have yielded important insights into nicotinic cholinergic biology. As nAChR research advances and more details associated with nAChR expression and function emerge, we expect that existing and new mouse lines expressing gain-of-function nAChR subunits will continue to provide new insights.
Collapse
Affiliation(s)
- Ryan M Drenan
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
220
|
Kohlmeier KA, Ishibashi M, Wess J, Bickford ME, Leonard CS. Knockouts reveal overlapping functions of M(2) and M(4) muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus. J Neurophysiol 2012; 108:2751-66. [PMID: 22956788 DOI: 10.1152/jn.01120.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurons in the laterodorsal tegmental (LDT) and peduncolopontine tegmental (PPT) nuclei regulate reward, arousal, and sensory gating via major projections to midbrain dopamine regions, the thalamus, and pontine targets. Muscarinic acetylcholine receptors (mAChRs) on LDT neurons produce a membrane hyperpolarization and inhibit spike-evoked Ca(2+) transients. Pharmacological studies suggest M(2) mAChRs are involved, but the role of these and other localized mAChRs (M(1-)-M(4)) has not been definitively tested. To identify the underlying receptors and to circumvent the limited receptor selectivity of available mAChR ligands, we used light- and electron-immunomicroscopy and whole cell recording with Ca(2+) imaging in brain slices from knockout mice constitutively lacking either M(2), M(4), or both mAChRs. Immunomicroscopy findings support a role for M(2) mAChRs, since cholinergic and noncholinergic LDT and pedunculopontine tegmental neurons contain M(2)-specific immunoreactivity. However, whole cell recording revealed that the presence of either M(2) or M(4) mAChRs was sufficient, and that the presence of at least one of these receptors was required for these carbachol actions. Moreover, in the absence of M(2) and M(4) mAChRs, carbachol elicited both direct excitation and barrages of spontaneous excitatory postsynaptic potentials (sEPSPs) in cholinergic LDT neurons mediated by M(1) and/or M(3) mAChRs. Focal carbachol application to surgically reduced slices suggest that local glutamatergic neurons are a source of these sEPSPs. Finally, neither direct nor indirect excitation were knockout artifacts, since each was detected in wild-type slices, although sEPSP barrages were delayed, suggesting M(2) and M(4) receptors normally delay excitation of glutamatergic inputs. Collectively, our findings indicate that multiple mAChRs coordinate cholinergic outflow from the LDT in an unexpectedly complex manner. An intriguing possibility is that a local circuit transforms LDT muscarinic inputs from a negative feedback signal for transient inputs into positive feedback for persistent inputs to facilitate different firing patterns across behavioral states.
Collapse
Affiliation(s)
- Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
221
|
Trueta C, De-Miguel FF. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol 2012; 3:319. [PMID: 22969726 PMCID: PMC3432928 DOI: 10.3389/fphys.2012.00319] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/21/2012] [Indexed: 11/14/2022] Open
Abstract
We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in the nervous system.
Collapse
Affiliation(s)
- Citlali Trueta
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz México, D.F., México
| | | |
Collapse
|
222
|
Piñol RA, Bateman R, Mendelowitz D. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei. J Neurosci Methods 2012; 210:238-46. [PMID: 22890236 DOI: 10.1016/j.jneumeth.2012.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 01/23/2023]
Abstract
Recent advances in optogenetic methods demonstrate the feasibility of selective photoactivation at the soma of neurons that express channelrhodopsin-2 (ChR2), but a comprehensive evaluation of different methods to selectively evoke transmitter release from distant synapses using optogenetic approaches is needed. Here we compared different lentiviral vectors, with sub-population-specific and strong promoters, and transgenic methods to express and photostimulate ChR2 in the long-range projections of paraventricular nucleus of the hypothalamus (PVN) neurons to brain stem cardiac vagal neurons (CVNs). Using PVN subpopulation-specific promoters for vasopressin and oxytocin, we were able to depolarize the soma of these neurons upon photostimulation, but these promoters were not strong enough to drive sufficient expression for optogenetic stimulation and synaptic release from the distal axons. However, utilizing the synapsin promoter photostimulation of distal PVN axons successfully evoked glutamatergic excitatory post-synaptic currents in CVNs. Employing the Cre/loxP system, using the Sim-1 Cre-driver mouse line, we found that the Rosa-CAG-LSL-ChR2-EYFP Cre-responder mice expressed higher levels of ChR2 than the Rosa-CAG-LSL-ChR2-tdTomato line in the PVN, judged by photo-evoked currents at the soma. However, neither was able to drive sufficient expression to observe and photostimulate the long-range projections to brainstem autonomic regions. We conclude that a viral vector approach with a strong promoter is required for successful optogenetic stimulation of distal axons to evoke transmitter release in pre-autonomic PVN neurons. This approach can be very useful to study important hypothalamus-brainstem connections, and can be easily modified to selectively activate other long-range projections within the brain.
Collapse
Affiliation(s)
- Ramón A Piñol
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
223
|
Frog retinal ganglion cells projecting to the tectum layer F release acetylcholine as co-mediator. Neurosci Lett 2012; 522:145-50. [DOI: 10.1016/j.neulet.2012.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/14/2012] [Accepted: 06/08/2012] [Indexed: 11/19/2022]
|
224
|
Abbott SB, Kanbar R, Bochorishvili G, Coates MB, Stornetta RL, Guyenet PG. C1 neurons excite locus coeruleus and A5 noradrenergic neurons along with sympathetic outflow in rats. J Physiol 2012; 590:2897-915. [PMID: 22526887 PMCID: PMC3448155 DOI: 10.1113/jphysiol.2012.232157] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
C1 neurons activate sympathetic tone and stimulate the hypothalamic–pituitary–adrenal axis in circumstances such as pain, hypoxia or hypotension. They also innervate pontine noradrenergic cell groups, including the locus coeruleus (LC) and A5. Activation of C1 neurons reportedly inhibits LC neurons; however, because these neurons are glutamatergic and have excitatory effects elsewhere, we re-examined the effect of C1 activation on pontine noradrenergic neurons (LC and A5) using a more selective method. Using a lentivirus that expresses channelrhodopsin2 (ChR2) under the control of the artificial promoter PRSx8, we restricted ChR2 expression to C1 neurons (67%), retrotrapezoid nucleus neurons (20%) and cholinergic neurons (13%). The LC contained ChR2-positive terminals that formed asymmetric synapses and were immunoreactive for vesicular glutamate transporter type 2. Low-frequency photostimulation of ChR2-expressing neurons activated LC (38 of 65; 58%) and A5 neurons (11 of 16; 69%) and sympathetic nerve discharge. Locus coeruleus and A5 inhibition was not seen unless preceded by excitation. Locus coeruleus activation was eliminated by intracerebroventricular kynurenic acid. Stimulation of ChR2-expressing neurons at 20 Hz produced modest increases in LC and A5 neuronal discharge. In additional rats, the retrotrapezoid nucleus region was destroyed with substance P–saporin prior to lentivirus injection into the rostral ventrolateral medulla, increasing the proportion of C1 ChR2-expressing neurons (83%). Photostimulation in these rats activated the same proportion of LC and A5 neurons as in control rats but produced no effect on sympathetic nerve discharge owing to the destruction of bulbospinal C1 neurons. In conclusion, low-frequency stimulation of C1 neurons activates pontine noradrenergic neurons and sympathetic nerve discharge, possibly via the release of glutamate from monosynaptic C1 inputs.
Collapse
Affiliation(s)
- S B Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
225
|
Affiliation(s)
- John I Broussard
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
226
|
Johansen JP, Wolff SB, Lüthi A, LeDoux JE. Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 2012; 71:1053-60. [PMID: 22169096 PMCID: PMC3319499 DOI: 10.1016/j.biopsych.2011.10.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 10/14/2022]
Abstract
Neural circuits underlie our ability to interact in the world and to learn adaptively from experience. Understanding neural circuits and how circuit structure gives rise to neural firing patterns or computations is fundamental to our understanding of human experience and behavior. Fear conditioning is a powerful model system in which to study neural circuits and information processing and relate them to learning and behavior. Until recently, technological limitations have made it difficult to study the causal role of specific circuit elements during fear conditioning. However, newly developed optogenetic tools allow researchers to manipulate individual circuit components such as anatomically or molecularly defined cell populations, with high temporal precision. Applying these tools to the study of fear conditioning to control specific neural subpopulations in the fear circuit will facilitate a causal analysis of the role of these circuit elements in fear learning and memory. By combining this approach with in vivo electrophysiological recordings in awake, behaving animals, it will also be possible to determine the functional contribution of specific cell populations to neural processing in the fear circuit. As a result, the application of optogenetics to fear conditioning could shed light on how specific circuit elements contribute to neural coding and to fear learning and memory. Furthermore, this approach may reveal general rules for how circuit structure and neural coding within circuits gives rise to sensory experience and behavior.
Collapse
Affiliation(s)
- Joshua P. Johansen
- Center for Neural Science, New York University, New York, NY,Laboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Steffen B.E. Wolff
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Switzerland
| | - Joseph E. LeDoux
- Center for Neural Science, New York University, New York, NY,The Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
| |
Collapse
|
227
|
Fowler CD, Kenny PJ. Utility of genetically modified mice for understanding the neurobiology of substance use disorders. Hum Genet 2012; 131:941-57. [PMID: 22190154 PMCID: PMC3977433 DOI: 10.1007/s00439-011-1129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/11/2011] [Indexed: 01/09/2023]
Abstract
Advances in our ability to modify the mouse genome have enhanced our understanding of the genetic and neurobiological mechanisms contributing to addiction-related behaviors underlying substance use and abuse. These experimentally induced manipulations permit greater spatial and temporal specificity for modification of gene expression within specific cellular populations and during select developmental time periods. In this review, we consider the current mouse genetic model systems that have been employed to understand aspects of addiction and highlight significant conceptual advances achieved related to substance use and abuse. The mouse models reviewed herein include conventional knock-out and knock-in, conditional knockout, transgenic, inducible transgenic, mice suitable for optogenetic control of discrete neuronal populations, and phenotype-selected mice. By establishing a reciprocal investigatory relationship between genetic findings in humans and genomic manipulations in mice, a far better understanding of the discrete neuromechanisms underlying addiction can be achieved, which is likely to provide a strong foundation for developing and validating novel therapeutics for the treatment of substance abuse disorders.
Collapse
Affiliation(s)
- Christie D. Fowler
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| | - Paul J. Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| |
Collapse
|
228
|
Ormel L, Stensrud MJ, Chaudhry FA, Gundersen V. A distinct set of synaptic-like microvesicles in atroglial cells contain VGLUT3. Glia 2012; 60:1289-300. [DOI: 10.1002/glia.22348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/13/2012] [Indexed: 11/09/2022]
|
229
|
A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012; 15:793-802. [PMID: 22446880 PMCID: PMC3337962 DOI: 10.1038/nn.3078] [Citation(s) in RCA: 983] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 12/14/2022]
Abstract
Cell-type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of 4 knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0, and archaerhodopsin Arch-ER2. All 4 transgenes mediate Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent, and inducible nature of our ChR2 mice represents a significant advancement over previous lines, whereas the Arch-ER2 and eNpHR3.0 mice are the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre-driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.
Collapse
|
230
|
Scholze P, Koth G, Orr-Urtreger A, Huck S. Subunit composition of α5-containing nicotinic receptors in the rodent habenula. J Neurochem 2012; 121:551-60. [PMID: 22380605 PMCID: PMC3350326 DOI: 10.1111/j.1471-4159.2012.07714.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gene association studies in humans have linked the α5 subunit gene CHRNA5 to an increased risk for nicotine dependence. In the CNS, nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit are expressed at relatively high levels in the habenulo-interpeduncular system. Recent experimental evidence furthermore suggests that α5-containing receptors in the habenula play a key role in controlling the intake of nicotine in rodents. We have now analysed the subunit composition of hetero-oligomeric nAChRs in the habenula of postnatal day 18 (P18) C57Bl/6J control mice and of mice with deletions of the α5, the β2, or the β4 subunit genes. Receptors consisting of α3β4* clearly outnumbered α4β2*-containing receptors not only in P18 but also in adult mice. We found low levels of α5-containing receptors in both mice (6%) and rats (2.5% of overall nAChRs). Observations in β2 and β4 null mice indicate that although α5 requires the presence of the β4 subunit for assembling (but not of β2), α5 in wild-type mice assembles into receptors that also contain the subunits α3, β2, and β4.
Collapse
Affiliation(s)
- Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
231
|
Griguoli M, Cherubini E. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors. J Physiol 2012; 590:655-66. [PMID: 22124144 PMCID: PMC3381299 DOI: 10.1113/jphysiol.2011.220095] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/24/2011] [Indexed: 11/08/2022] Open
Abstract
The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions.
Collapse
Affiliation(s)
- Marilena Griguoli
- Neuroscience Programme, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | | |
Collapse
|
232
|
Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 2012; 4:a005595. [PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.
Collapse
Affiliation(s)
- Randy D Blakely
- Department of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | |
Collapse
|
233
|
Abstract
A major challenge in neuroscience is to understand how universal behaviors, such as sensation, movement, cognition, and emotion, arise from the interactions of specific cells that are present within intricate neural networks in the brain. Dissection of such complex networks has typically relied on disturbing the activity of individual gene products, perturbing neuronal activities pharmacologically, or lesioning specific brain regions, to investigate the network's response in a behavioral output. Though informative for many kinds of studies, these approaches are not sufficiently fine-tuned for examining the functionality of specific cells or cell classes in a spatially or temporally restricted context. Recent advances in the field of optogenetics now enable researchers to monitor and manipulate the activity of genetically defined cell populations with the speed and precision uniquely afforded by light. Transgenic mice engineered to express optogenetic tools in a cell type-specific manner offer a powerful approach for examining the role of particular cells in discrete circuits in a defined and reproducible way. Not surprisingly then, recent years have seen substantial efforts directed toward generating transgenic mouse lines that express functionally relevant levels of optogenetic tools. In this chapter, we review the state of these efforts and consider aspects of the current technology that would benefit from additional improvement.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | |
Collapse
|
234
|
Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 2011; 9:159-72. [PMID: 22179551 PMCID: PMC4165888 DOI: 10.1038/nmeth.1808] [Citation(s) in RCA: 546] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023]
Abstract
Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.
Collapse
|
235
|
α7-Containing and non-α7-containing nicotinic receptors respond differently to spillover of acetylcholine. J Neurosci 2011; 31:14920-30. [PMID: 22016525 DOI: 10.1523/jneurosci.3400-11.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We explored whether nicotinic acetylcholine receptors (nAChRs) might participate in paracrine transmission by asking if they respond to spillover of ACh at a model synapse in the chick ciliary ganglion, where ACh activates diffusely distributed α7- and α3-containing nAChRs (α7-nAChRs and α3*-nAChRs). Elevating quantal content lengthened EPSC decay time and prolonged both the fast (α7-nAChR-mediated) and slow (α3*-nAChR-mediated) components of decay, even in the presence of acetylcholinesterase. Increasing quantal content also prolonged decay times of pharmacologically isolated α7-nAChR- and α3*-nAChR-EPSCs. The effect upon EPSC decay time of changing quantal content was 5-10 times more pronounced for α3*-nAChR- than α7-nAChR-mediated currents and operated over a considerably longer time window: ≈ 20 vs ≈ 2 ms. Control experiments rule out a presynaptic source for the effect. We suggest that α3*-nAChR currents are prolonged at higher quantal content because of ACh spillover and postsynaptic potentiation (Hartzell et al., 1975), while α7-nAChR currents are prolonged probably for other reasons, e.g., increased occupancy of long channel open states. α3*-nAChRs report more spillover when α7-nAChRs are competitively blocked than under native conditions; this could be explained if α7-nAChRs buffer ACh and regulate its availability to activate α3*-nAChRs. Our results suggest that non-α7-nAChRs such as α3*-nAChRs may be suitable for paracrine nicotinic signaling but that α7-nAChRs may not be suitable. Our results further suggest that α7-nAChRs may buffer ACh and regulate its bioavailability.
Collapse
|
236
|
Zhang J, Ackman JB, Dhande OS, Crair MC. Visualization and manipulation of neural activity in the developing vertebrate nervous system. Front Mol Neurosci 2011; 4:43. [PMID: 22121343 PMCID: PMC3219918 DOI: 10.3389/fnmol.2011.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular-genetic tools for the visualization and manipulation of neural activity patterns specifically during development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - James B. Ackman
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - Onkar S. Dhande
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | | |
Collapse
|
237
|
Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. PLoS Biol 2011; 9:e1001194. [PMID: 22087075 PMCID: PMC3210783 DOI: 10.1371/journal.pbio.1001194] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/29/2011] [Indexed: 11/30/2022] Open
Abstract
A novel mouse model that eliminates cholinergic neurotransmission in the striatum while leaving glutamate release intact reveals differential effects on cocaine-induced behavior and dopaminergic responses. Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. The neurotransmitters dopamine and acetylcholine play opposite roles in the striatum (a brain region involved in motor control and reward-related behaviour), and their balance is thought to be critical for striatal function. Acetylcholine in the striatum has been linked to a number of functions, including control of locomotor activity and response to drugs of abuse. However, striatal cholinergic interneurons can also release glutamate (in addition to acetylcholine) and it is presently unclear how these two neurotransmitters regulate striatal-dependent behaviour. Previous work has attempted to resolve this issue by ablating cholinergic neurons in the striatum, but this causes loss of both cholinergic and glutamatergic neurotransmission. In this study, we created a novel genetic mouse model which allowed us to selectively interfere with secretion of acetylcholine in the striatum, while leaving total striatal glutamate release intact. In these mice, we observed minimally altered behavioural responses to cocaine, suggesting that striatal glutamate, rather than acetylcholine, is critical for cocaine-induced behavioural manifestations. Furthermore, elimination of striatal acetylcholine release affects how striatal output neurons respond to dopamine, by up-regulating dopaminergic receptors and changing behavioural responses to dopaminergic agonists. Our experiments highlight a previously unappreciated physiological role of cholinergic-glutamatergic co-transmission and demonstrate how a population of neurons can use two distinct neurotransmitters to differentially regulate behaviour.
Collapse
|
238
|
Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011; 8:745-52. [PMID: 21985008 PMCID: PMC3191888 DOI: 10.1038/nmeth.1668] [Citation(s) in RCA: 520] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but many neurons release multiple transmitters. Although the physiological role for corelease has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H(+) electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Corelease thus serves multiple roles in synaptic transmission.
Collapse
Affiliation(s)
- Thomas S Hnasko
- Departments of Physiology & Neurology, University of California, San Francisco, California 94158-2517, USA.
| | | |
Collapse
|
240
|
Abstract
Both observational and perturbational technologies are essential for advancing the understanding of brain function and dysfunction. But while observational techniques have greatly advanced in the last century, techniques for perturbation that are matched to the speed and heterogeneity of neural systems have lagged behind. The technology of optogenetics represents a step toward addressing this disparity. Reliable and targetable single-component tools (which encompass both light sensation and effector function within a single protein) have enabled versatile new classes of investigation in the study of neural systems. Here we provide a primer on the application of optogenetics in neuroscience, focusing on the single-component tools and highlighting important problems, challenges, and technical considerations.
Collapse
Affiliation(s)
- Ofer Yizhar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
241
|
Verhoog MB, Mansvelder HD. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity. Neural Plast 2011; 2011:870763. [PMID: 21941664 PMCID: PMC3173883 DOI: 10.1155/2011/870763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create "timing" windows during which particular timing rules lead to synaptic changes.
Collapse
Affiliation(s)
- Matthijs B. Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Room C-440, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Room C-440, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
242
|
Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits. Neuropharmacology 2011; 61:1379-88. [PMID: 21878344 DOI: 10.1016/j.neuropharm.2011.08.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
In the hippocampus, activation of nicotinic receptors that include α4 and β2 subunits (α4β2*) facilitates memory formation. α4β2* receptors may also play a role in nicotine withdrawal, and their loss may contribute to cognitive decline in aging and Alzheimer's disease (AD). However, little is known about their cellular function in the hippocampus. Therefore, using optogenetics, whole cell patch clamping and voltage-sensitive dye (VSD) imaging, we measured nicotinic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1. In a subpopulation of inhibitory interneurons, release of ACh resulted in slow depolarizations (rise time constant 33.2 ± 6.5 ms, decay time constant 138.6 ± 27.2 ms) mediated by the activation of α4β2* nicotinic receptors. These interneurons had somata and dendrites located in the stratum oriens (SO) and stratum lacunosum-moleculare (SLM). Furthermore, α4β2* nicotinic EPSPs were largest in the SLM. Thus, our data suggest that nicotinic EPSPs in hippocampal CA1 interneurons are predominantly mediated by α4β2* nicotinic receptors and their activation may preferentially affect extrahippocampal inputs in SLM of hippocampal CA1.
Collapse
|
243
|
Abstract
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
Collapse
Affiliation(s)
- Gero Miesenböck
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
244
|
Dani JA, Balfour DJK. Historical and current perspective on tobacco use and nicotine addiction. Trends Neurosci 2011; 34:383-92. [PMID: 21696833 PMCID: PMC3193858 DOI: 10.1016/j.tins.2011.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 01/18/2023]
Abstract
Although the addictive influence of tobacco was recognized very early, the modern concepts of nicotine addiction have relied on knowledge of cholinergic neurotransmission and nicotinic acetylcholine receptors (nAChRs). The discovery of the 'receptive substance' by Langley, that would turn out to be nAChRs, and 'Vagusstoff' (acetylcholine) by Loewi, coincided with an exciting time when the concept of chemical synaptic transmission was being formulated. More recently, the application of more powerful techniques and the study of animal models that replicate key features of nicotine dependence have led to important advancements in our understanding of molecular, cellular and systems mechanisms of nicotine addiction. In this review, we present a historical perspective and overview of the research that has led to our present understanding of nicotine addiction.
Collapse
Affiliation(s)
- John A Dani
- Center on Addiction, Learning, Memory, Department of Neuroscience, Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
245
|
Oldenburg IA, Ding JB. Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol 2011; 21:425-32. [PMID: 21550798 PMCID: PMC3138897 DOI: 10.1016/j.conb.2011.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/02/2011] [Accepted: 04/07/2011] [Indexed: 02/01/2023]
Abstract
Modulatory interneurons such as, the cholinergic interneuron, are always a perplexing subject to study. Far from clear-cut distinctions such as excitatory or inhibitory, modulating interneurons can have many, often contradictory effects. The striatum is one of the most densely expressing brain areas for cholinergic markers, and actylcholine (ACh) plays an important role in regulating synaptic transmission and cellular excitability. Every cell type in the striatum has receptors for ACh. Yet even for a given cell type, ACh affecting different receptors can have seemingly opposing roles. This review highlights relevant effects of ACh on medium spiny neurons (MSNs) of the striatum and suggests how its many effects may work in concert to modulate MSN firing properties.
Collapse
Affiliation(s)
| | - Jun B. Ding
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
246
|
Huang Y, Zhang L, Song NN, Hu ZL, Chen JY, Ding YQ. Distribution of Satb1 in the central nervous system of adult mice. Neurosci Res 2011; 71:12-21. [PMID: 21658419 DOI: 10.1016/j.neures.2011.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
Abstract
This study consists of a thorough immunohistochemical examination of the expression profile of the transcription factor Satb1 (special AT-rich sequence binding protein 1) in the adult mouse central nervous system (CNS). Satb1-positive neurons were abundant in the deep layers of the neocortex, subiculum, anterior olfactory nucleus, nucleus of diagonal band, anterior part of the basolateral amygdaloid nucleus, compact part of substantia nigra, ventral tegmental area, ventral and dorsal tegmental nuclei, laterodorsal tegmental nucleus, and medullary and spinal dorsal horns. Relatively smaller populations of Satb1-positive neurons were observed in the piriform cortex, hippocampus, other subnuclei of the amygdala, centrolateral thalamic nucleus, parafascicular thalamic nucleus, posterior hypothalamic area, ventral part of the premammillary nucleus, supramammillary nucleus, deep layers of the superior colliculus, dorsal raphe nucleus, nucleus of trapezoid body, superior periolivary nucleus and nucleus of lateral lemniscus, and parabrachial region. Double immunostaining showed that Satb1 was expressed in midbrain dopaminergic neurons, but not in cholinergic or serotonergic neurons. Satb1 expression was never observed in glial cells. This study presents a comprehensive overview of Satb1 expression in the CNS, and provides insights for investigating the role of Satb1 in the mature CNS.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
247
|
El Mestikawy S, Wallén-Mackenzie A, Fortin GM, Descarries L, Trudeau LE. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 2011; 12:204-16. [PMID: 21415847 DOI: 10.1038/nrn2969] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent data indicate that 'classical' neurotransmitters can also act as co-transmitters. This notion has been strengthened by the demonstration that three vesicular glutamate transporters (vesicular glutamate transporter 1 (VGLUT1), VGLUT2 and VGLUT3) are present in central monoamine, acetylcholine and GABA neurons, as well as in primarily glutamatergic neurons. Thus, intriguing questions are raised about the morphological and functional organization of neuronal systems endowed with such a dual signalling capacity. In addition to glutamate co-release, vesicular synergy - a process leading to enhanced packaging of the 'primary' transmitter - is increasingly recognized as a major property of the glutamatergic co-phenotype. The behavioural relevance of this co-phenotype is presently the focus of considerable interest.
Collapse
Affiliation(s)
- Salah El Mestikawy
- Institut National de Santé et de Recherche Médicale (INSERM), U952, Centre National de Recherche Scientifique (CNRS) UMR 7224, Université Pierre et Marie Curie, Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
248
|
Miwa JM, Freedman R, Lester HA. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 2011; 70:20-33. [PMID: 21482353 PMCID: PMC4418790 DOI: 10.1016/j.neuron.2011.03.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2011] [Indexed: 11/21/2022]
Abstract
Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson's disease, cognitive decline, epilepsy, and schizophrenia.
Collapse
Affiliation(s)
- Julie M. Miwa
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Robert Freedman
- Department of Psychiatry and Pharmacology, University of Colorado Denver VA, 13001 F-546, Aurora, CO 80045, USA
| | - Henry A. Lester
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
249
|
Di Angelantonio S, Piccioni A, Moriconi C, Trettel F, Cristalli G, Grassi F, Limatola C. Adenosine A2A receptor induces protein kinase A-dependent functional modulation of human (alpha)3(beta)4 nicotinic receptor. J Physiol 2011; 589:2755-66. [PMID: 21486776 DOI: 10.1113/jphysiol.2011.207282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenosine modulates the function of nicotinic ACh receptors (nAChRs) in a variety of preparations, possibly through pathways involving protein kinase A (PKA), but these phenomena have not yet been investigated in detail. In this work we studied, using the patch clamp technique, the functional modulation of recombinant human α3β4 nAChR by the A2A adenosine receptor, co-expressed in HEK cells. Tonic activation of A2A receptor slowed current decay during prolonged applications of nicotine and accelerated receptor recovery from desensitization. Together, these changes resulted into a more sustained current response upon multiple nicotine or ACh applications. These findings were confirmed in cultured mouse superior cervical ganglion neurones, which express nAChR containing the α3 subunit together with β2 and/or β4 and A2A receptor. Expression of the A2A receptor in HEK cells also increased the apparent potency of nAChR for nicotine, further supporting a general A2A-induced gain of function for nAChR. These effects were dependent on PKA since the direct activation of PKA mimicked, and its inhibition prevented almost completely, the effects of the A2A receptor. Mutations of R385 and S388 in the cytoplasmic loop of the α3 subunit abolished the functional modulation of nAChR induced by activation of A2A receptor, PKA and other Ser/Thr kinases, suggesting that this region constitutes a putative consensus site for these kinases. These data provide conclusive evidence that activation of the A2A receptor determines functional changes
Collapse
Affiliation(s)
- Silvia Di Angelantonio
- Dipartimento di Fisiologia e Farmacologia, Università Sapienza, P.le A. Moro 5; I-00185 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|