201
|
Cheng Z, Zhang D, Gong B, Wang P, Liu F. CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer. Oncotarget 2017; 8:87244-87262. [PMID: 29152078 PMCID: PMC5675630 DOI: 10.18632/oncotarget.20244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
CD163 is a member of the scavenger receptor cysteine-rich superfamily, and has been widely used to identify M2 type macrophage. However, the expression of CD163 in gastric cancer and its regulatory mechanism are still unclear. Here we show that CD163 is elevated in gastric cancer tissues. High expression of CD163 is a potential indicator to evaluate the status of tumor associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and cancer associated fibroblasts (Cafs). Besides, more CD163 positive macrophages and CD163 expressing gastric cancer cells are associated with tumor invasion and poor prognosis. Knocking-down CD163 in cancer cells could inhibit tumor growth in vivo. We also find various immune molecules which are correlated with CD163 in gastric cancer tissues and cell lines have positive staining in the cancer cells of clinical sample. Finally, we confirm CD163 is a novel target gene of STAT3 (signal transducer and activator of transcription 3) in gastric cancer. Our data indicate that CD163 may be a potential poor prognostic marker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zhenguo Cheng
- National Center for The International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Danhua Zhang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baocheng Gong
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Pengliang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Funan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
202
|
The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Exp Mol Med 2017; 49:e366. [PMID: 28798401 PMCID: PMC5579508 DOI: 10.1038/emm.2017.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/21/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains difficult to treat and urgently needs new therapeutic options. Nintedanib, a multikinase inhibitor, has exhibited efficacy in early clinical trials for HER2-negative breast cancer. In this study, we examined a new molecular mechanism of nintedanib in TNBC. The results demonstrated that nintedanib enhanced TNBC cell apoptosis, which was accompanied by a reduction of p-STAT3 and its downstream proteins. STAT3 overexpression suppressed nintedanib-mediated apoptosis and further increased the activity of purified SHP-1 protein. Moreover, treatment with either a specific inhibitor of SHP-1 or SHP-1-targeted siRNA reduced the apoptotic effects of nintedanib, which validates the role of SHP-1 in nintedanib-mediated apoptosis. Furthermore, nintedanib-induced apoptosis was attenuated in TNBC cells expressing SHP-1 mutants with constantly open conformations, suggesting that the autoinhibitory mechanism of SHP-1 attenuated the effects of nintedanib. Importantly, nintedanib significantly inhibited tumor growth via the SHP-1/p-STAT3 pathway. Clinically, SHP-1 levels were downregulated, whereas p-STAT3 was upregulated in tumor tissues, and SHP-1 transcripts were associated with improved disease-free survival in TNBC patients. Our findings revealed that nintedanib induces TNBC apoptosis by acting as a SHP-1 agonist, suggesting that targeting STAT3 by enhancing SHP-1 expression could be a viable therapeutic strategy against TNBC.
Collapse
|
203
|
Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP. Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 2017; 22:1765-1781. [PMID: 28789906 DOI: 10.1016/j.drudis.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
Abstract
Vitamin E family members: tocotrienols and tocopherols are widely known for their health benefits. Decades of research on tocotrienols have shown they have diverse biological activities such as antioxidant, anti-inflammatory, anticancer, neuroprotective and skin protection benefits, as well as improved cognition, bone health, longevity and reduction of cholesterol levels in plasma. Tocotrienols also modulate several intracellular molecular targets and, most importantly, have been shown to improve lipid profiles, reduce total cholesterol and reduce the volume of white matter lesions in human clinical trials. This review provides a comprehensive update on the little-known therapeutic potentials of tocotrienols, which tocopherols lack in a variety of inflammation-driven diseases.
Collapse
Affiliation(s)
- Madhu M Kanchi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University Cancer Institute, National University Health System, 119074, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
204
|
Hwang SR, Murga-Zamalloa C, Brown N, Basappa J, McDonnell SR, Mendoza-Reinoso V, Basrur V, Wilcox R, Elenitoba-Johnson K, Lim MS. Pyrimidine tract-binding protein 1 mediates pyruvate kinase M2-dependent phosphorylation of signal transducer and activator of transcription 3 and oncogenesis in anaplastic large cell lymphoma. J Transl Med 2017; 97:962-970. [PMID: 28414323 DOI: 10.1038/labinvest.2017.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/12/2017] [Accepted: 03/02/2017] [Indexed: 01/23/2023] Open
Abstract
PKM2 (pyruvate kinase M2), a critical regulator of glycolysis, is phosphorylated by numerous growth factor receptors and oncogenic tyrosine kinases including NPM-ALK which is expressed in a subset of aggressive T-cell non-Hodgkin lymphomas known as anaplastic large cell lymphoma, ALK-positive. Our previous work demonstrated that phosphorylation of Y105-PKM2 by NPM-ALK regulates a major metabolic shift to promote lymphomagenesis. In addition to its role in metabolism, recent studies have shown that PKM2 promotes oncogenesis by phosphorylating nuclear STAT3 (signal transducer and activator of transcription 3) and regulating transcription of genes involved in cell survival and proliferation. We hypothesized that identification of novel PKM2 interactors could provide additional insights into its expanding functional role in cancer. To this end, immunocomplexes of FLAG-tagged PKM2 were isolated from NPM-ALK-positive ALCL (anaplastic large cell lymphoma) cells and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) which led to the identification of polypyrimidine tract-binding protein (PTBP1) as a novel interactor of PKM2. The interaction between PTBP1 and PKM2 was restricted to the nucleus and was dependent on NPM-ALK mediated Y105 phosphorylation of PKM2. Stable shRNA-mediated silencing of PTBP1 resulted in a marked decrease in pY105-PKM2 and pY705-STAT3 which led to decreased ALCL cell proliferation and colony formation. Overall, our data demonstrate that PTBP1 interacts with PKM2 and promotes ALCL oncogenesis by facilitating PKM2-dependent activation of STAT3 within the nucleus.
Collapse
Affiliation(s)
- Steven R Hwang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Johnvesly Basappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Ryan Wilcox
- Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
205
|
Lei J, Xiao JH, Zhang SH, Liu ZQ, Huang K, Luo ZP, Xiao XL, Hong ZD. Non-coding RNA 886 promotes renal cell carcinoma growth and metastasis through the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Mol Med Rep 2017; 16:4273-4278. [PMID: 28765891 DOI: 10.3892/mmr.2017.7093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
Non-coding RNA 886 (nc886) has been suggested to serve tumor-suppressing roles in several cancer cells. However, the expression pattern of nc886 and its function in renal cell carcinoma (RCC) has not been reported until now. The present study aimed to examine the expression of nc886 in human RCC tissues and to investigate the role of nc886 in RCC cell proliferation, apoptosis and invasion in vitro. Furthermore, whether nc886 exerts its function on RCC via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling was investigated. It was demonstrated that nc886 is overexpressed in human RCC tissues compared with normal tissues, as determined by reverse transcription-quantitative polymerase chain reaction analysis. The nc886 mimic and inhibitor were transfected into the A‑498 cells to overexpress or knock down nc886 expression. Cell proliferation, cell apoptosis rate and cell invasion ability were determined by MTT, flow cytometry and Transwell‑Matrigel invasion assays. The results demonstrated that nc886 overexpression promotes A‑498 cell proliferation and invasion, and inhibits cell apoptosis, while nc886 knockdown resulted in the opposite effects. Furthermore, nc886 could activate the JAK2/STAT3 signaling pathway in A‑498 cells. AG490, an inhibitor of JAK2, could attenuate the effects of nc886 on cell proliferation, apoptosis and invasion. In conclusion, to the best of our knowledge, the present study for the first time revealed the expression profile and the tumor‑promoting role of nc886 in RCC. nc886 affects RCC cell proliferation, apoptosis and invasion at least partially via the activation of JAK2/STAT3 signaling. This study may provide a useful therapeutic target for RCC.
Collapse
Affiliation(s)
- Jun Lei
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ju-Hua Xiao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shou-Hua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Qiang Liu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Kai Huang
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Zhi-Peng Luo
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xin-Lan Xiao
- Department of MRI, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zheng-Dong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
206
|
Yu PY, Gardner HL, Roberts R, Cam H, Hariharan S, Ren L, LeBlanc AK, Xiao H, Lin J, Guttridge DC, Mo X, Bennett CE, Coss CC, Ling Y, Phelps MA, Houghton P, London CA. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. PLoS One 2017; 12:e0181885. [PMID: 28750090 PMCID: PMC5531494 DOI: 10.1371/journal.pone.0181885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5. Methods and findings An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing’s sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice. Conclusions LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.
Collapse
Affiliation(s)
- Peter Y. Yu
- Medical Student Research Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Heather L. Gardner
- Department of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Roberts
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hakan Cam
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Seethalakshmi Hariharan
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ling Ren
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy K. LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hui Xiao
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jiayuh Lin
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Denis C. Guttridge
- Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Chad E. Bennett
- Medicinal Chemistry Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Christopher C. Coss
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Yonghua Ling
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Mitch A. Phelps
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Peter Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
207
|
Chen K, Qian W, Jiang Z, Cheng L, Li J, Sun L, Zhou C, Gao L, Lei M, Yan B, Cao J, Duan W, Ma Q. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Mol Cancer 2017; 16:131. [PMID: 28738823 PMCID: PMC5525317 DOI: 10.1186/s12943-017-0701-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated mortality worldwide with an overall five-year survival rate less than 7%. Accumulating evidence has revealed the cancer preventive and therapeutic effects of metformin, one of the most widely prescribed medications for type 2 diabetes mellitus. However, its role in pancreatic cancer is not fully elucidated. Herein, we aimed to further study the preventive and therapeutic effects of metformin in genetically engineered mouse models of pancreatic cancer. Methods LSL-KrasG12D/+; Pdx1-Cre (KC) mouse model was established to investigate the effect of metformin in pancreatic tumorigenesis suppression; LSL-KrasG12D/+; Trp53fl/+; Pdx1-Cre (KPC) mouse model was used to evaluate the therapeutic efficiency of metformin in PDAC. Chronic pancreatitis was induced in KC mice by peritoneal injection of cerulein. Results Following metformin treatment, pancreatic acinar-to-ductal metaplasia (ADM) and mouse pancreatic intraepithelial neoplasia (mPanIN) were decreased in KC mice. Chronic pancreatitis induced a stroma-rich and duct-like structure and increased the formation of ADM and mPanIN lesions, in line with an increased cytokeratin 19 (CK19)-stained area. Metformin treatment diminished chronic pancreatitis-mediated ADM and mPanIN formation. In addition, it alleviated the percent area of Masson’s trichrome staining, and decreased the number of Ki67-positive cells. In KPC mice, metformin inhibited tumor growth and the incidence of abdominal invasion. More importantly, it prolonged the overall survival. Conclusions Metformin inhibited pancreatic cancer initiation, suppressed chronic pancreatitis-induced tumorigenesis, and showed promising therapeutic effect in PDAC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Luping Gao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Meng Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
208
|
Wong AL, Hirpara JL, Pervaiz S, Eu JQ, Sethi G, Goh BC. Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs 2017; 26:883-887. [DOI: 10.1080/13543784.2017.1351941] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea L.A. Wong
- Department of Haematology-Oncology, National University Health System, Singapore
- Haematology-Oncology Research Group, National University Cancer Institute of Singapore, National University Health System, Singapore
- Cancer Science Institute, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Department of Haematology-Oncology, National University Health System, Singapore
- Haematology-Oncology Research Group, National University Cancer Institute of Singapore, National University Health System, Singapore
- Cancer Science Institute, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
209
|
Cho HJ, Park JH, Nam JH, Chang YC, Park B, Hoe HS. Ascochlorin Suppresses MMP-2-Mediated Migration and Invasion by Targeting FAK and JAK-STAT Signaling Cascades. J Cell Biochem 2017; 119:300-313. [PMID: 28569433 DOI: 10.1002/jcb.26179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Human glioblastomas express higher levels of matrix metalloprotease-2 (MMP-2) than low-grade brain tumors and normal brain tissues. Ascochlorin (ASC) has anti-metastatic, anti-angiogenic, and synergistic effect in various types of cancer cells. However, it remains unknown whether ASC can affect cell migration and invasion in malignant human glioma cells. In this study, we found that ASC indeed inhibits cell migration and invasion in U373MG and A172. ASC significantly suppresses the MMP-2 gelatinolytic activity and expression in U373MG and A172. To determine the molecular mechanism by which ASC suppressed cell migration and invasion, we investigated whether ASC could modulate metastasis via focal adhesion kinase (FAK) and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, a potential drug target. ASC strongly inhibits the phosphorylation of FAK, and treatment with a FAK inhibitor significantly suppresses cancer cell migration in the presence of ASC. In addition, ASC significantly decreased phosphorylation of JAK2/STAT3, cancer cell migration and nuclear translocation of STAT3. Taken together, these results suggest that ASC inhibits cell migration and invasion by blocking FAK and JAK/STAT signaling, resulting in reduced MMP-2 activity. J. Cell. Biochem. 119: 300-313, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Duryugongwon-ro, Nam-gu, Daegu 42472, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| |
Collapse
|
210
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
211
|
Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis. Mol Cell Biol 2017; 37:MCB.00565-16. [PMID: 28320873 DOI: 10.1128/mcb.00565-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF) is recognized as a final phenotypic manifestation in the transition from chronic kidney disease (CKD) to end-stage renal disease (ESRD). Here we show that conditional inactivation of Sav1 in the mouse renal epithelium resulted in upregulated expression of profibrotic genes and TIF. Loss of Sav1 induced Stat3 activation and a senescence-associated secretory phenotype (SASP) that coincided with the development of tubulointerstitial fibrosis. Treatment of mice with the YAP inhibitor verteporfin (VP) inhibited activation of genes associated with senescence, SASPs, and activation of Stat3 as well as impeded the development of fibrosis. Collectively, our studies offer novel insights into molecular events that are linked to fibrosis development from Sav1 loss and implicate VP as a potential pharmacological inhibitor to treat patients at risk for developing CKD and TIF.
Collapse
|
212
|
Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades. Int J Mol Sci 2017; 18:ijms18051095. [PMID: 28534824 PMCID: PMC5455004 DOI: 10.3390/ijms18051095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/15/2023] Open
Abstract
Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.
Collapse
|
213
|
Gao J, Chen J, Cai M, Xu H, Jiang J, Tong T, Wang H. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy. Methods Appl Fluoresc 2017; 5:024004. [DOI: 10.1088/2050-6120/aa6ab5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
214
|
Ren Z, Zou W, Cui J, Liu L, Qing Y, Li Y. Geraniin suppresses tumor cell growth and triggers apoptosis in human glioma via inhibition of STAT3 signaling. Cytotechnology 2017; 69:765-773. [PMID: 28374108 DOI: 10.1007/s10616-017-0085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/17/2017] [Indexed: 01/28/2023] Open
Abstract
Natural phytochemicals are attracting increasing interest as anticancer agents. The aim of this study is to evaluate the therapeutic potential of geraniin, a major ellagitannin extracted from Geranium sibiricum L., in human glioma. Human U87 and LN229 glioma cells were treated with different concentrations of geraniin, and cell viability, apoptosis, and gene expression were assessed. The involvement of STAT3 signaling in the action of geraniin was examined. We found that geraniin treatment for 48 h significantly (P < 0.05) impaired the phosphorylation of STAT3 and reduced the expression of downstream target genes Bcl-xL, Mcl-1, Bcl-2, and cyclin D1. Exposure to geraniin led to a concentration-dependent decline in cell viability and increase in apoptosis in glioma cells, but had no significant impact on the viability of normal human astrocytes. Measurement of caspase-3 activity showed that geraniin-treated U87 and LN229 cells showed a 1.8-2.5-fold higher caspase-3 activity than control cells. Overexpression of constitutively active STAT3 significantly (P < 0.05) reversed geraniin-mediated growth suppression and apoptosis, which was accompanied by restoration of Bcl-xL, Mcl-1, Bcl-2, and cyclin D1 expression. In an xenograft tumor mouse model, geraniin treatment significantly retarded tumor growth and induced apoptosis. Western blot analysis confirmed the suppression of STAT3 phosphorylation in glioma xenograft tumors by geraniin. Taken together, these data suggest that geraniin exerts growth-suppressive and pro-apoptotic effects on glioma cells via inhibition of STAT3 signaling and may have therapeutic benefits in malignant gliomas.
Collapse
Affiliation(s)
- Zhong Ren
- Encephalopathy Division, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Wenshuang Zou
- Liver Disease Division, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Junfeng Cui
- Clinical Training Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Luping Liu
- Department of Orthopaedic Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Qing
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongmei Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
215
|
Liu C, Su J, Huang T, Chu P, Huang C, Wang W, Lee C, Lau K, Tsai W, Yang H, Shiau C, Tseng L, Chen K. Sorafenib analogue SC-60 induces apoptosis through the SHP-1/STAT3 pathway and enhances docetaxel cytotoxicity in triple-negative breast cancer cells. Mol Oncol 2017; 11:266-279. [PMID: 28084011 PMCID: PMC5527447 DOI: 10.1002/1878-0261.12033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
Recurrent triple-negative breast cancer (TNBC) needs new therapeutic targets. Src homology region 2 domain-containing phosphatase-1 (SHP-1) can act as a tumor suppressor by dephosphorylating oncogenic kinases. One major target of SHP-1 is STAT3, which is highly activated in TNBC. In this study, we tested a sorafenib analogue SC-60, which lacks angiokinase inhibition activity, but acts as a SHP-1 agonist, in TNBC cells. SC-60 inhibited proliferation and induced apoptosis by dephosphorylating STAT3 in both a dose- and time-dependent manner in TNBC cells (MDA-MB-231, MDA-MB-468, and HCC1937). By contrast, ectopic expression of STAT3 rescued the anticancer effect induced by SC-60. SC-60 also increased the SHP-1 activity, but this effect was inhibited when the N-SH2 domain (DN1) was deleted or with SHP-1 point mutation (D61A), implying that SHP-1 is the major target of SC-60 in TNBC. The use of SC-60 in combination with docetaxel synergized the anticancer effect induced by SC-60 through the SHP-1/STAT3 pathway in TNBC cells. Importantly, SC-60 also displayed a significant antitumor effect in an MDA-MB-468 xenograft model by modulating the SHP-1/STAT3 axis, indicating the anticancer potential of SC-60 in TNBC treatment. Targeting SHP-1/p-STAT3 and the potential combination of SHP-1 agonist with chemotherapeutic docetaxel is a feasible therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Chun‐Yu Liu
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jung‐Chen Su
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Ting Huang
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan
- School of MedicineCollege of MedicineFu‐Jen Catholic UniversityXinzhuangNew Taipei CityTaiwan
| | - Chun‐Teng Huang
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Division of Hematology & OncologyDepartment of MedicineYang‐Ming Branch of Taipei City HospitalTaiwan
| | - Wan‐Lun Wang
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Chia‐Han Lee
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Ka‐Yi Lau
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Wen‐Chun Tsai
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Hsiu‐Ping Yang
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Chung‐Wai Shiau
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ling‐Ming Tseng
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Kuen‐Feng Chen
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
- National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
216
|
Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119:327-346. [PMID: 28242334 DOI: 10.1016/j.phrs.2017.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.
Collapse
|
217
|
Poon CC, Kelly JJ. Development of crizotinib, a rationally designed tyrosine kinase inhibitor for non-small cell lung cancer. Int J Cancer 2017; 140:1945-1954. [PMID: 27874172 DOI: 10.1002/ijc.30533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/29/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the number one cause of global mortality. Despite aggressive treatment, the prognosis is dismal. Patients with advanced NSCLC have a median survival of 4 months from the time of diagnosis. Fortunately, molecularly based approaches to drug discovery have yielded a tyrosine kinase inhibitor, crizotinib, which significantly prolongs median progression-free survival in a subset of patients. Although initial clinical trial results demonstrate crizotinib has a promising role to play in NSCLC treatment, development of resistance leaves much to be elucidated about how to effectively combat this deadly disease. In this review, we follow the discovery and development of crizotinib from bench to bedside and provide an example of successful bottom-up drug design. Then, we explore the clinical trial results that fast-tracked its eventual use as a frontline therapy for sensitive NSCLC patients and the development of resistance. Lastly, we discuss the potential for future uses of crizotinib both within and beyond NSCLC.
Collapse
Affiliation(s)
- Candice C Poon
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - John J Kelly
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
218
|
Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int J Mol Sci 2017; 18:ijms18010134. [PMID: 28085101 PMCID: PMC5297767 DOI: 10.3390/ijms18010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Shp2 (Src-homology 2 domain-containing phosphatase 2) was originally reported as an oncogene in kinds of solid tumors and hematologic malignancies. However, recent studies indicated that Shp2 may act as tumor suppressors in several tumor types. We investigated the function of Shp2 in esophageal squamous cell cancer (ESCC). The expression level of Shp2 was analyzed in tumor tissues in comparison with adjacent normal tissues of ESCC patients by immunohistochemistry and Western blot. Shp2 was knocked down by Short hairpin RNA to evaluate its function in ESCC cell lines. The relationship between Shp2 and p-Stat3 (signal transducer and activator of transcription 3) in human ESCC tissues was statistically examined. A significant low expression of Shp2 was found in ESCC tissues. Low expression of Shp2 was related to poorer overall survival in patients from The Cancer Genome Atlas (TCGA) dataset. Knockdown of Shp2 increased the growth of ESCC cell lines both in vivo and vitro. Activation of Stat3 (p-Stat3) was induced by Shp2 depletion. Expression of p-Stat3 was negatively correlated with Shp2 expression in ESCC tissues. Furthermore, knockdown of Shp2 attenuated cisplatin-sensitivity of ESCC cells. Shp2 might suppress the proliferation of ESCC by dephosphorylation of p-Stat3 and represents a novel research field for targeted therapy.
Collapse
|
219
|
Xue X, Shah YM. Iron, Cancer, and Hypoxia-Inducible Factor Signaling. MOLECULAR, GENETIC, AND NUTRITIONAL ASPECTS OF MAJOR AND TRACE MINERALS 2017:203-213. [DOI: 10.1016/b978-0-12-802168-2.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
220
|
Min-Wen JC, Yan-Jiang BC, Mishra S, Dai X, Magae J, Shyh-Chang N, Kumar AP, Sethi G. Molecular Targets of Ascochlorin and Its Derivatives for Cancer Therapy. STRESS AND INFLAMMATION IN DISORDERS 2017; 108:199-225. [DOI: 10.1016/bs.apcsb.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
221
|
Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis 2016; 22:158-168. [DOI: 10.1007/s10495-016-1313-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
222
|
Liu S, Hu C, Wang Y, Shi G, Li Y, Wu H. miR-124 inhibits proliferation and invasion of human retinoblastoma cells by targeting STAT3. Oncol Rep 2016; 36:2398-404. [PMID: 27498908 DOI: 10.3892/or.2016.4999] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence suggests that microRNA-124 (miR-124) functions as tumor-suppressor, and involves in tumor initiation, development and metastasis in major classes of human cancers; however, the biological role and underlying molecular mechanism of miR-124 in retinoblastoma (RB) remain unknown. Therefore, we investigated the biological activity and underlying molecular mechanism of miR-124 in human retinoblastoma. In the present study, our results demonstrated the downregulation of miR-124 in RB tissues and RB cell lines compared with normal retinal tissues. The ectopic expression of miR-124 in the RB cell lines (Y79 and SO-RB50) suppresses cell proliferation, migration and invasion, induced cell apoptosis in vitro. Furthermore, signal transducer and activator of transcription 3 (STAT3) was identified as a new target of miR-124, and overexpression of miR-124 decreased STAT3 expression on mRNA level and protein level in human RB cells. We also found that STAT3 mRNA expression was upregulated and inversely correlated with miR-124 expression in the RB tissues (r=-0.683; P<0.001). Restoration of the expression of STAT3 rescues the effects induced by miR-124 in RB cells. The findings of the present study suggested that miR-124 functioned as tumor suppressor in RB, at least in part, by targeting STAT3, and that it could serve as a potential candidate for RB therapeutics.
Collapse
Affiliation(s)
- Shu Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Tumor and Hematology, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| | - Yingxue Wang
- Department of Electrical Diagnosis, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| | - Guang Shi
- Department of Tumor and Hematology, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Tumor and Hematology, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| | - Huang Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
223
|
Liang M, Zhan F, Zhao J, Li Q, Wuyang J, Mu G, Li D, Zhang Y, Huang X. CPA-7 influences immune profile and elicits anti-prostate cancer effects by inhibiting activated STAT3. BMC Cancer 2016; 16:504. [PMID: 27435207 PMCID: PMC4952363 DOI: 10.1186/s12885-016-2488-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Platinum-based chemotherapy is emerging as the first line of treatment for castration resistant prostate cancer. Among the family of platinum (IV)-based compounds, a member known as CPA-7 inhibits the growth of multiple cancer cell lines. However, how and to what extent CPA-7 elicits its anti-prostate cancer effects in vivo is largely unknown. METHODS In this study, we firstly assessed the potential toxicity of the synthesized CPA-7 in a prostate cancer model as well as in normal mice. Next, we evaluated the in vitro effects of CPA-7 on the growth of prostate cancer cells using cell counting assay, and calculated the tumor sizes and cumulative survival rate of the tumor bearing mice by Kaplan-Meier method during CPA-7 treatment. Then we measured the expression level of the activated form of STAT3 (one targets of CPA-7) and its transcriptive activity post CPA-7 treatment by synergistically using western blot, IHC, and firefly luciferase reporter assays. Finally, effects of CPA-7 on immune cell trafficking in the tumor draining lymph nodes and in the spleens are evaluated with flow cytometry. RESULTS Treatment with CPA-7 significantly inhibited growth of prostate cancer cells in vitro, and also in mice resulting in a prolonged survival and a decreased recurrence rate. These therapeutic effects are due, at least in part, to functional depletion of STAT3 in prostate tumor tissue as well as in the surrounding areas of tumor cell invasion. CPA-7 treatment also resulted in a reduced level of regulatory T cells and increased levels of cytotoxic T and T helper cells in the spleen and in tumor infiltrating lymph nodes. This favorable effect on immune cell trafficking may account for the amnestic immune response against recurrent prostate cancer. CONCLUSIONS CPA-7 is a promising new therapeutic agent for prostate cancer that both inhibits tumor cell proliferation and stimulates anti-tumor immunity. It has potential as first line treatment and/or as an adjuvant for refractory prostate cancer.
Collapse
Affiliation(s)
- Meihua Liang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Fei Zhan
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Juan Zhao
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jiazi Wuyang
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Guannan Mu
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dianjun Li
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Xiaoyi Huang
- Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, 150081, China. .,Center of Translational Medicine, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
224
|
Shao J, Meng Q, Li Y. Theaflavins suppress tumor growth and metastasis via the blockage of the STAT3 pathway in hepatocellular carcinoma. Onco Targets Ther 2016; 9:4265-75. [PMID: 27478384 PMCID: PMC4951064 DOI: 10.2147/ott.s102858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Theaflavins, the major black tea polyphenols, have been reported to exhibit promising antitumor activities in several human cancers. However, the role of theaflavins in hepatocellular carcinoma (HCC) is still unknown. In this study, we found that theaflavins could significantly inhibit proliferation, migration, and invasion, and induce apoptosis in HCC cells in vitro. Furthermore, we found that theaflavins inhibited the growth and metastasis of HCC in an orthotopic model and a lung metastasis model. Immunohistochemical analyses and terminal deoxynucleotidyl transferase dUTP nick end-labeling assays showed that theaflavins could suppress proliferation and induce apoptosis in vivo. Theaflavins also suppressed constitutive and inducible signal transducer and activator of transcription 3 (STAT3) phosphorylation. The downstream proteins regulated by STAT3, including the antiapoptotic proteins (Bcl-2 and Survivin) and the invasion-related proteins (MMP-2, MMP-9), were also downregulated after theaflavins treatment. Theaflavins induced apoptosis by activating the caspase pathway. Together, our results suggest that theaflavins suppress the growth and metastasis of human HCC through the blockage of the STAT3 pathway, and thus may act as potential therapeutic agents for HCC.
Collapse
Affiliation(s)
| | - Qingyan Meng
- Outpatient Department, The Fifth Central Hospital of Tianjin, Tianjin, People's Republic of China
| | | |
Collapse
|
225
|
Sadhukhan P, Saha S, Sinha K, Brahmachari G, Sil PC. Selective Pro-Apoptotic Activity of Novel 3,3'-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species. PLoS One 2016; 11:e0158694. [PMID: 27380262 PMCID: PMC4933382 DOI: 10.1371/journal.pone.0158694] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Selective induction of apoptosis in cancer cells barring the normal cells is considered as an effective strategy to combat cancer. In the present study, a series of twenty-two (22) synthetic 3,3'-(aryl/alkyl-methylene)bis(2-hydroxynaphthalene-1,4-dione) bis-lawsone derivatives were assayed for their pro-apoptotic activity in six different cell lines (five cancerous and one normal) using MTT assay. Out of these 22 test compounds, 1j was found to be the most effective in inducing apoptosis in human glioma cells (CCF-4) among the different cell lines used in the study. The activity of this compound, 1j, was then compared to a popular anticancer drug, cisplatin, having limited usage because of its nephrotoxic nature. In this study, 1j derivative showed much less toxicity to the normal kidney cells compared to cisplatin, thus indicating the superiority of 1j as a possible anticancer agent. This compound was observed to induce apoptosis in the glioma cells by inducing the caspase dependent apoptotic pathways via ROS and downregulating the PI3K/AKT/mTOR pathway. Estimation of different oxidative stress markers also confirms the induction of oxidative stress in 1j exposed cancer cells. The toxicity of 1j compound toward cancer cells was confirmed further by different flow cytometrical analyses to estimate the mitochondrial membrane potential and cell cycle. The sensitivity of malignant cells to apoptosis, provoked by this synthetic derivative in vitro, deserves further studies in suitable in vivo models. These studies not only identified a novel anticancer drug candidate but also help to understand the metabolism of ROS and its application in cancer treatment.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731235, West Bengal, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|