201
|
Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, Ausk BJ, Srinivasan S, Moon RT, Gardiner EM, Kaminsky W, Bain SD, Allan CH, Gross TS, Kwon RY. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Miner Res 2014; 29:2346-56. [PMID: 24806738 PMCID: PMC5108653 DOI: 10.1002/jbmr.2274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.
Collapse
Affiliation(s)
- Anthony M Recidoro
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
203
|
Pagella P, Neto E, Jiménez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014; 5:326. [PMID: 25202282 PMCID: PMC4142415 DOI: 10.3389/fphys.2014.00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Estrela Neto
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Faculdade de Medicina da Universidade do Porto Porto, Portugal
| | - Lucia Jiménez-Rojo
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Meriem Lamghari
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
204
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
205
|
Tossas K, Qi-Huang S, Cuyar E, García-Arrarás JE. Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima. ACTA ACUST UNITED AC 2014; 1:10-26. [PMID: 27499861 PMCID: PMC4895299 DOI: 10.1002/reg2.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/18/2023]
Abstract
There is limited information on the regeneration of the enteric nervous system (ENS) following major reconstruction of the digestive tract. We have studied ENS regeneration in the sea cucumber Holothuria glaberrima which undergoes an organogenic process forming a new digestive tract at the tip of the mesentery. Our results show that (1) a degeneration of nerve fibers occurs early in the regeneration process, prior to eventual regeneration; (2) nerve fibers that innervate the regenerating intestine are of extrinsic and intrinsic origin; (3) innervation by extrinsic fibers occurs in a gradient that begins in the proximal area of the regenerate; (4) late events include the appearance of nerve fibers that project from the serosa into the connective tissue and of nerve bundles in the mesothelial layer; (5) neurons and neuroendocrine cells appear early following the formation of the epithelial layers. Our results provide not only a comparative biological approach to study ENS regeneration but also an alternative point of view for the study of enteric neuropathologies and for the innervation of organs made in vitro.
Collapse
Affiliation(s)
- Karen Tossas
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Sunny Qi-Huang
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Eugenia Cuyar
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | | |
Collapse
|
206
|
Rampon C, Gauron C, Meda F, Volovitch M, Vriz S. Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signal 2014; 10:595-602. [PMID: 25084769 DOI: 10.1007/s11302-014-9420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.
Collapse
Affiliation(s)
- Christine Rampon
- Centre Interdisciplinaire de Recherche en biologie (CIRB), CNRS UMR 7241//INSERM U1050, Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
207
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
208
|
Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 2014; 36:861-71. [DOI: 10.1002/bies.201300144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Godwin
- The Australian Regenerative Medicine Institute (ARMI); Monash University; Clayton Victoria Australia
| |
Collapse
|
209
|
Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc Natl Acad Sci U S A 2014; 111:9846-51. [PMID: 24958860 DOI: 10.1073/pnas.1410097111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The requirement and influence of the peripheral nervous system on tissue replacement in mammalian appendages remain largely undefined. To explore this question, we have performed genetic lineage tracing and clonal analysis of individual cells of mouse hind limb tissues devoid of nerve supply during regeneration of the digit tip, normal maintenance, and cutaneous wound healing. We show that cellular turnover, replacement, and cellular differentiation from presumed tissue stem/progenitor cells within hind limb tissues remain largely intact independent of nerve and nerve-derived factors. However, regenerated digit tips in the absence of nerves displayed patterning defects in bone and nail matrix. These nerve-dependent phenotypes mimic clinical observations of patients with nerve damage resulting from spinal cord injury and are of significant interest for translational medicine aimed at understanding the effects of nerves on etiologies of human injury.
Collapse
|
210
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
211
|
Szabó R, Ferrier DEK. Cell proliferation dynamics in regeneration of the operculum head appendage in the annelid Pomatoceros lamarckii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:257-68. [PMID: 24799350 DOI: 10.1002/jez.b.22572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Regeneration of lost or damaged appendages is a widespread and ecologically important ability in the animal kingdom, and also of great significance to developing regenerative medicine. The operculum of serpulid polychaetes is one among the many diverse appendages found in the lophotrochozoan superphylum, a clade hitherto understudied with respect to the mechanisms of appendage regeneration. In this study, we establish the normal time course of opercular regeneration in the serpulid Pomatoceros lamarckii and describe cell proliferation patterns in the regenerating opercular filament. The P. lamarckii operculum regenerates through a rapid and consistent series of morphogenetic events. Based on 5-bromo-2'-deoxyuridine (BrdU) labeling and anti-phosphohistone H3 immunohistochemistry, opercular regeneration appears to be a mixture of an early morphallactic stage, and a later phase characterized by widespread proliferative activity within the opercular filament. Tracking residual pigmentation suggests that the distal part of the stump gives rise to the most distal structures of the operculum via morphallactic remodeling, whereas more proximal structures are derived from the proximal stump. Our work underscores the diversity of regenerative strategies employed by animals and introduces P. lamarckii as an emerging model of appendage regeneration.
Collapse
Affiliation(s)
- Réka Szabó
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Scotland, United Kingdom
| | | |
Collapse
|
212
|
Abstract
There is worldwide demand for therapies to promote the robust repair and regeneration with maximum regain of function of particular tissues and organs damaged by disease or injury. The potential role of adult stem cells has been highlighted by an increasing number of in vitro and in vivo studies. Nowhere is this more evident than in adult stem cell-based therapies being explored to promote cardiac regeneration. In spite of encouraging advances, significant challenges remain.
Collapse
Affiliation(s)
- Kursad Turksen
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada,
| |
Collapse
|
213
|
Abstract
Regeneration of a lost appendage in adult amphibians and fish is a remarkable feat of developmental patterning. Although the limb or fin may be years removed from its initial creation by an embryonic primordium, the blastema that emerges at the injury site fashions a close mimic of adult form. Central to understanding these events are revealing the cellular origins of new structures, how positional identity is maintained, and the determinants for completion. Each of these topics has been advanced recently, strengthening models for how complex tissue pattern is recalled in the adult context.
Collapse
Affiliation(s)
- Valerie A Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
214
|
Gray TA, Alsamman K, Murray E, Sims AH, Hupp TR. Engineering a synthetic cell panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2. MOLECULAR BIOSYSTEMS 2014; 10:1409-25. [PMID: 24710632 DOI: 10.1039/c4mb00113c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AGR2 forms an ER-resident signalling axis in cell development, limb regeneration, and in human diseases like asthma and cancer, yet molecular mechanisms underlying its effects remain largely undefined. A single integrated Flippase recombination target (FRT) site was engineered within the AGR2-non expressing A375 cell line to allow integration of a constitutively expressed AGR2 alleles. This allows an analysis of how AGR2 protein expression reprogrammes intracellular signalling. The engineered expression of AGR2 had marginal impact on global transcription signalling, compared to its paralogue AGR3. However, expression of AGR2 had a significant impact on remodelling the cellular proteome using a triple-labelled SILAC protocol. 29 045 peptides were detected for the identification and relative quantitation of 3003 proteins across the experimental conditions. Ingenuity Pathway annotation highlighted the dominant pathway suppressed by wt-AGR2 was the p53-signalling axis. DNA damage induced p53 stabilization and p21 induction by cisplatin treatment confirmed that wt-AGR2 expression suppressed the p53 pathway. The furthest outlying SILAC protein expression change induced by AGR2 was the anti-viral and cell cycle regulator tumour susceptibility gene 101 (TSG101), confirmed by immunoblotting. Transfection of TSG101 into MCF7 (AGR2+, oestrogen dependent), A549 (AGR2+, oestrogen independent) or A375 (AGR2-) cells confirmed that TSG101 attenuates p53 signalling. These systems wide screens suggest that the most dominant landscape reprogrammed by low levels of AGR2 protein is the cellular proteome, rather than the transcriptome, and provide focus for evaluating its role in proteostasis.
Collapse
Affiliation(s)
- Terry A Gray
- Cell Signalling Unit, p53 Signal Transduction Laboratories, Edinburgh Cancer Research Centre, Western General Hospital, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UKEH4 2XR.
| | | | | | | | | |
Collapse
|
215
|
Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 2014; 141:1835-47. [PMID: 24700819 DOI: 10.1242/dev.101345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.
Collapse
Affiliation(s)
- Susanna Fraguas
- Departament de Genètica de la Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avenida Diagonal 643, Edifici Prevosti planta 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
216
|
Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Dev Biol 2014; 388:57-67. [DOI: 10.1016/j.ydbio.2014.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022]
|
217
|
Lobo D, Solano M, Bubenik GA, Levin M. A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 2014; 11:20130918. [PMID: 24402915 PMCID: PMC3899861 DOI: 10.1098/rsif.2013.0918] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This 'inverse problem' is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Daniel Lobo
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Mauricio Solano
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - George A. Bubenik
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
218
|
|
219
|
Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation 2014; 87:66-75. [PMID: 24565918 DOI: 10.1016/j.diff.2014.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
Salamanders and frogs are distinct orders of Amphibians with very different immune systems during adult life, exhibiting varying potential for scar free repair and regeneration. While salamanders can regenerate a range of body parts throughout all stages of life, regeneration is restricted to early stages of frog development. Comparison of these two closely related amphibian orders provides insights into the immunological influences on wound repair, and the different strategies that have evolved either to limit infection or to facilitate efficient regeneration. After injury, cells of the immune system are responsible for the removal of damaged cells and providing a cohort of important growth factors and signaling molecules. Immune cells not only regulate new vessel growth important for supplying essential nutrients to damaged tissue but, modulate the extracellular matrix environment by regulating fibroblasts and the scarring response. The profile of immune cell infiltration and their interaction with local tissue immune cells directly influences many aspects of the wound healing outcomes and can facilitate or prevent regeneration. Evidence is emerging that the transition from wound healing to regeneration is reliant on immune cell engagement and that the success of regeneration in amphibians may depend on complex interactions between stem cell progenitors and immune cell subsets. The potential immunological barriers to mammalian regeneration are discussed with implications for the successful delivery of stem cell therapeutic strategies in patients.
Collapse
Affiliation(s)
- James W Godwin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nadia Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|
220
|
Tooth, hair and claw: comparing epithelial stem cell niches of ectodermal appendages. Exp Cell Res 2014; 325:96-103. [PMID: 24530577 DOI: 10.1016/j.yexcr.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
Abstract
The vertebrate ectoderm gives rise to organs that produce mineralized or keratinized substances, including teeth, hair, and claws. Most of these ectodermal derivatives grow continuously throughout the animal׳s life and have active pools of adult stem cells that generate all the necessary cell types. These organs provide powerful systems for understanding the mechanisms that enable stem cells to regenerate or renew ectodermally derived tissues, and remarkable progress in our understanding of these systems has been made in recent years using mouse models. We briefly compare what is known about stem cells and their niches in incisors, hair follicles, and claws, and we examine expression of Gli1 as a potential example of a shared stem cell marker. We summarize some of the features, structures, and functions of the stem cell niches in these ectodermal derivatives; definition of the basic elements of the stem cell niches in these organs will provide guiding principles for identification and characterization of the niche in similar systems.
Collapse
|
221
|
Kaucká M, Adameyko I. Non-canonical functions of the peripheral nerve. Exp Cell Res 2014; 321:17-24. [DOI: 10.1016/j.yexcr.2013.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 12/24/2022]
|
222
|
Abstract
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Collapse
|
223
|
Johnston APW, Naska S, Jones K, Jinno H, Kaplan DR, Miller FD. Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Reports 2013; 1:38-45. [PMID: 24052940 PMCID: PMC3757738 DOI: 10.1016/j.stemcr.2013.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/06/2023] Open
Abstract
Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors. At later times postinjury, Sox2-positive cells were scattered throughout the regenerating dermis, and lineage tracing showed that these were all neural-crest-derived NCPCs. These Sox2-positive NCPCs were functionally important, since acute deletion of Sox2 prior to injury caused a decrease of NCPCs in the wound and aberrant skin repair. These data demonstrate that Sox2 regulates skin repair, likely by controlling NCPCs, and raise the possibility that nerve-derived NCPCs may play a general role in mammalian tissue repair. Sox2 regulates murine skin repair Sox2 regulates the neural crest precursor response to tissue injury Sox2 identifies a nerve terminal-associated neural crest precursor in hair follicles
Collapse
Affiliation(s)
- Adam P W Johnston
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
224
|
Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzmán T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 2013; 1:90-103. [PMID: 24052945 PMCID: PMC3757742 DOI: 10.1016/j.stemcr.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16 (INK4a) , which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany ; Technische Universität Dresden, DFG Center for Regenerative Therapies, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Renault MA, Chapouly C, Yao Q, Larrieu-Lahargue F, Vandierdonck S, Reynaud A, Petit M, Jaspard-Vinassa B, Belloc I, Traiffort E, Ruat M, Duplàa C, Couffinhal T, Desgranges C, Gadeau AP. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival. Circ Res 2013; 112:762-70. [PMID: 23343527 DOI: 10.1161/circresaha.113.300871] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RATIONALE Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. OBJECTIVE The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. METHODS AND RESULTS We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. CONCLUSIONS This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Marie-Ange Renault
- Institut National de la Santé et de la Recherche Médicale, 1 Avenue de Magellan, Pessac, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|