201
|
Horng YT, Chang KC, Chien CC, Wei YH, Sun YM, Soo PC. Enhanced polyhydroxybutyrate (PHB) productionviathe coexpressedphaCABandvgbgenes controlled by arabinose PBADpromoter inEscherichia coli. Lett Appl Microbiol 2010; 50:158-67. [DOI: 10.1111/j.1472-765x.2009.02772.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
202
|
Liao G, Li J, Li L, Yang H, Tian Y, Tan H. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 2010; 9:6. [PMID: 20096125 PMCID: PMC2817672 DOI: 10.1186/1475-2859-9-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 01/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. RESULTS To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb) was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIK)was introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L(-1), 4 -fold nikkomycin X and 210 mg L(-1), 1.8-fold nikkomycin Z) in the resulting exconjugants comparing with the parent strain (220 mg L(-1) nikkomycin X and 120 mg L(-1) nikkomycin Z). The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. CONCLUSION A high nikkomycins producing strain (1100 mg L(-1) nikkomycins) was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.
Collapse
Affiliation(s)
- Guojian Liao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Lei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Haihua Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
203
|
Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 2010; 86:19-25. [PMID: 20091304 DOI: 10.1007/s00253-009-2428-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 12/21/2022]
Abstract
Titer improvement is a constant requirement in the fermentation industry. The traditional method of "random mutation and screening" has been very effective despite the considerable amount of time and resources it demands. Rational metabolic engineering, with the use of recombinant DNA technology, provides a novel, alternative strategy for titer improvement that complements the empirical method used in industry. Manipulation of the specific regulatory systems that govern secondary metabolite production is an important aspect of metabolic engineering that can efficiently improve fermentation titers. In this review, we use examples from Streptomyces secondary metabolism, the most prolific source of clinically used drugs, to demonstrate the power and utility of exploiting natural regulatory networks, in particular pathway-specific regulators, for titer improvement. Efforts to improve the titers of fredericamycin, C-1027, platensimycin, and platencin in our lab are highlighted.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
204
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
205
|
Combinatorial and Synthetic Biosynthesis in Actinomycetes. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE / PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS, VOL. 93 2010; 93:211-37. [DOI: 10.1007/978-3-7091-0140-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
206
|
Zhao X, Wang Y, Wang S, Chen Z, Wen Y, Song Y. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis. Can J Microbiol 2009; 55:1355-63. [DOI: 10.1139/w09-098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The avermectin analogue doramectin (CHC-B1), which is produced in mutants that have an altered biosynthesis pathway of avermectin, is one of the most effective agricultural pesticides and antiparasitics. We report here the construction of a bkdF olmA double-deletion mutant lacking one of the branched-chain α-keto acid dehydrogenase encoding genes (bkdF) and the oligomycin PKS encoding gene cluster (olmA) in Streptomyces avermitilis 76-05. We then characterized the production of various antibiotics in cultures of the deletion mutant. In a fermentation medium supplemented with cyclohexanecarboxylic acid, this double mutant produced doramectin and its analogues but no oligomycin. The mutant proved to be genetically stable, without any antibiotic resistance markers inserted into its chromosome, and could potentially become an industrial doramectin-producing strain after further improvement.
Collapse
Affiliation(s)
- Xuejin Zhao
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanxin Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiwei Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi Chen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Song
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
207
|
|
208
|
Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 2009; 85:1227-39. [PMID: 19902203 DOI: 10.1007/s00253-009-2326-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.
Collapse
|
209
|
Maharjan S, Park JW, Yoon YJ, Lee HC, Sohng JK. Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol Lett 2009; 32:277-82. [PMID: 19838628 DOI: 10.1007/s10529-009-0152-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Using metabolic engineering, we developed Streptomyces venezuelae YJ028 as an efficient heterologous host to increase the malonyl-CoA pool to be directed towards enhanced production of various polyketides. To probe the applicability of newly developed hosts in the heterologous production of polyketides, we expressed type III polyketide synthase, 1,3,6,8-tetrahydroxynaphthalene synthase, in these hosts. Flaviolin production was doubled by expression of acetyl-CoA carboxylase (ACCase) and 4-fold by combined expression of ACCase, metK1-sp and afsR-sp. Thus, the newly developed Streptomyces venezuelae YJ028 hosts produce heterologous polyketides more efficiently than the parent strain.
Collapse
Affiliation(s)
- Sushila Maharjan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea
| | | | | | | | | |
Collapse
|
210
|
Wohlgemuth R. Tools and ingredients for the biocatalytic synthesis of metabolites. Biotechnol J 2009; 4:1253-65. [DOI: 10.1002/biot.200900002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
211
|
Li JWH, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009; 325:161-5. [PMID: 19589993 DOI: 10.1126/science.1168243] [Citation(s) in RCA: 1309] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the majority of new drugs have been generated from natural products (secondary metabolites) and from compounds derived from natural products. During the past 15 years, pharmaceutical industry research into natural products has declined, in part because of an emphasis on high-throughput screening of synthetic libraries. Currently there is substantial decline in new drug approvals and impending loss of patent protection for important medicines. However, untapped biological resources, "smart screening" methods, robotic separation with structural analysis, metabolic engineering, and synthetic biology offer exciting technologies for new natural product drug discovery. Advances in rapid genetic sequencing, coupled with manipulation of biosynthetic pathways, may provide a vast resource for the future discovery of pharmaceutical agents.
Collapse
Affiliation(s)
- Jesse W-H Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|
212
|
The kirromycin gene cluster of Streptomyces collinus Tü 365 codes for an aspartate-α-decarboxylase, KirD, which is involved in the biosynthesis of the precursor β-alanine. J Antibiot (Tokyo) 2009; 62:465-8. [DOI: 10.1038/ja.2009.67] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
213
|
Application of a double-reporter-guided mutant selection method to improve clavulanic acid production in Streptomyces clavuligerus. Metab Eng 2009; 11:310-8. [DOI: 10.1016/j.ymben.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/14/2009] [Accepted: 06/29/2009] [Indexed: 11/23/2022]
|
214
|
Baba S, Abe Y, Suzuki T, Ono C, Iwamoto K, Nihira T, Hosobuchi M. Improvement of compactin (ML-236B) production by genetic engineering in compactin high-producing Penicillium citrinum. Appl Microbiol Biotechnol 2009; 83:697-704. [DOI: 10.1007/s00253-009-1933-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/05/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
|
215
|
Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 2009; 26:628-60. [PMID: 19387499 DOI: 10.1039/b822528a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to October 2008. Antitumor compounds produced by actinomycetes and novel derivatives generated by combinatorial biosynthesis are reviewed (with 318 references cited.) The different structural groups for which the relevant gene clusters have been isolated and characterized are reviewed, with a description of the strategies used for the generation of the novel derivatives and the activities of these compounds against tumor cell lines.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
216
|
Wang XJ, Wang XC, Xiang WS. Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet- and chemically induced mutants. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
217
|
Abstract
The polyene macrolides nystatin A1 and amphotericin B are effective but toxic antifungal antibiotics that are also active against enveloped viruses, protozoan parasites and pathogenic prion proteins. This chapter describes methods for genetic manipulation of the amphotericin and nystatin producers, Streptomyces nodosus and Streptomyces noursei. These techniques have been used to engineer the biosynthesis of several analogues of both polyenes. Methods for production, identification, purification and characterization of new analogues are also discussed.
Collapse
Affiliation(s)
- Sergey Zotchev
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|