201
|
Maizel AC, Shea S, Nickerson A, Schaefer C, Higgins CP. Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14617-14627. [PMID: 34665614 DOI: 10.1021/acs.est.1c02871] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are highly mobile in the saturated subsurface, yet aqueous film-forming foam (AFFF)-impacted source zones appear to be long lasting PFAS reservoirs. This study examined the release of over one hundred anionic and zwitterionic PFASs from two AFFF-impacted surface soils under saturated conditions with packed soil columns. Perfluoroalkyl acids (PFAAs) were released more rapidly than their polyfluorinated precursors, while anionic PFASs that were present in partially uncharged states were released more slowly than PFASs that were present entirely as anions, as were zwitterionic PFASs with terminal cationic functional groups when compared with analogous zwitterions with only anionic terminal groups. Nonideal transport was observed in both per- and polyfluorinated classes, as soil column effluent concentrations of slowly released PFASs increased by up to 107-fold with sustained artificial groundwater flow. A flow-interruption experiment suggested the influence of rate-limited desorption on diverse PFAS classes, including PFAAs with as few as four perfluorinated carbons. These results suggest that during infiltration the slow, rate-limited desorption of anionic and zwitterionic PFAA precursors may result in these compounds comprising an increasingly large fraction of the remaining PFASs in AFFF-impacted surface soils.
Collapse
Affiliation(s)
- Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Stefanie Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Anastasia Nickerson
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Avenue, Edison, New Jersey 08837, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
202
|
Uriakhil MA, Sidnell T, De Castro Fernández A, Lee J, Ross I, Bussemaker M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. CHEMOSPHERE 2021; 282:131025. [PMID: 34118624 DOI: 10.1016/j.chemosphere.2021.131025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are xenobiotics, present at variable concentrations in soils and groundwater worldwide. Some of the current remediation techniques being researched or applied for PFAS-impacted soils involve solidification-stabilisation, soil washing, excavation and disposal to landfill, on site or in situ smouldering, thermal desorption, ball milling and incineration. Given the large volumes of soil requiring treatment, there is a need for a more environmentally friendly technique to remove and treat PFASs from soils. Sorbents such as granular/powdered activated carbon, ion exchange resins and silicas are used in water treatment to remove PFAS. In this work, PFAS adsorption mechanisms and the effect of pore size, pH and organic matter on adsorption efficacy are discussed. Then, adsorption of PFAS to soils and sorbents is considered when assessing the viability of remediation techniques. Sonication-aided treatment was predicted to be an effective removal technique for PFAS from a solid phase, and the effect of varying frequency, power and particle size on the effectiveness of the desorption process is discussed. Causes and mitigation strategies for possible cavitation-induced particle erosion during ultrasound washing are also identified. Following soil remediation, degrading the extracted PFAS using sonolysis in a water-organic solvent mixture is discussed. The implications for future soil remediation and sorbent regeneration based on the findings in this study are given.
Collapse
Affiliation(s)
- Mohammad Angaar Uriakhil
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Tim Sidnell
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | | | - Judy Lee
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Ian Ross
- Tetra Tech, Quay West at MediaCityUK, Trafford Wharf Rd, Trafford Park, Manchester, England, M17 1HH, UK
| | - Madeleine Bussemaker
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK.
| |
Collapse
|
203
|
Liu CJ, McKay G, Jiang D, Tenorio R, Cath JT, Amador C, Murray CC, Brown JB, Wright HB, Schaefer C, Higgins CP, Bellona C, Strathmann TJ. Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). WATER RESEARCH 2021; 205:117677. [PMID: 34624586 DOI: 10.1016/j.watres.2021.117677] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Previous laboratory scale studies indicate nanofiltration (NF) and UV-sulfite photochemical treatments as promising technologies for the removal and destruction, respectively, of per- and polyfluoroalkyl substances (PFASs) from contaminated water. This study reports on a field demonstration of a pilot-scale hybrid NF and UV-sulfite treatment train for the remediation of 12 PFASs detected in groundwater impacted by aqueous film-forming foam (AFFF) at a U.S. Department of Defense installation. For most of the detected PFASs, NF rejection was consistently ≥ 95% over a 30-day field trial when operating at 90% total permeate recovery. Rejection of short-chain perfluorosulfonic acids (PFSAs) by NF decreased when recoveries increased from 90 to 97%; tests with a reverse osmosis (RO) membrane showed ≥ 99% rejection of all PFASs regardless of increasing recovery. UV treatment of the NF reject following 90% permeate recovery resulted in variable destruction of individual PFASs, with rates also being dependent on pH and the identity and concentration of UV photosensitizer. Rates of perfluorocarboxylic acid (PFCA) degradation were greater than those measured for PFSAs and perfluoroalkyl acid (PFAA) precursors and were independent of perfluoroalkyl chain length. In contrast, rates of PFSA degradation increased with increasing chain length. Consistent levels of PFAS degradation by UV-sulfite were observed during a 30-day demonstration experiment in NF reject water amended with 10 mM sulfite and adjusted to pH 11.2. Collectively, > 75% of the detected PFAS mass in the NF reject was destroyed after 4 h of UV treatment, increasing to > 90% after 8 h of treatment. An analysis of electrical energy inputs for the hybrid NF/UV-sulfite treatment train showed energy per order magnitude (EE/O) requirements ranging from ≤ 13.1 kWh/m3 for PFCAs and 14.1 kWh/m3 for PFOS to values > 100 kWh/m3 for more recalcitrant short-chain PFSA analogues. The UV reactor and water-cooling system were the major contributors to overall energy requirements and represent the greatest opportunities for improving efficiency of the technology.
Collapse
Affiliation(s)
- Charlie J Liu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA; Kennedy Jenks Consultants, San Francisco, CA 94104, USA
| | - Garrett McKay
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Daqian Jiang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA; Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Raul Tenorio
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - J Tani Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Camille Amador
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Conner C Murray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Juliane B Brown
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
204
|
Rovero M, Cutt D, Griffiths R, Filipowicz U, Mishkin K, White B, Goodrow S, Wilkin RT. Limitations of Current Approaches for Predicting Groundwater Vulnerability from PFAS Contamination in the Vadose Zone. GROUND WATER MONITORING & REMEDIATION 2021; 41:62-75. [PMID: 35087263 PMCID: PMC8788618 DOI: 10.1111/gwmr.12485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Published literature for reported sorption coefficients (Kd) of eight anionic per- and polyfluoroalkyl substances (PFAS) in soil was reviewed. Kd values spanned three to five log units indicating that no single value would be appropriate for use in estimating PFAS impacts to groundwater using existing soil-water partition equations. Regression analysis was used to determine if the soil or solution parameters might be used to predict Kd values. None of the 15 experimental parameters collected could individually explain variability in reported Kd values. Significant associations between Kd and soil calcium and sodium content were found for many of the selected PFAS, suggesting that soil cation content may be critical to PFAS sorption, as previously noted in sources like Higgins and Luthy (2006), while organic carbon content was significant only at elevated levels (>5%). Unexplained discrepancies between the results from studies where PFAS were introduced to soil and desorbed in the laboratory and those that used material from PFAS-impacted sites suggest that laboratory experiments may be overlooking some aspects critical to PFAS sorption. Future studies would benefit from the development and use of standardized analytical methods to improve data quality and the establishment of soil parameters appropriate for collection to produce more complete data sets for predictive analysis.
Collapse
Affiliation(s)
- Matt Rovero
- Oak Ridge Associated Universities, U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Groundwater Characterization and Remediation Division, 919 Kerr Research Drive, Ada, OK 74820
| | - Diana Cutt
- U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Technical Support Coordination Division, 290 Broadway, New York, NY 10007
| | - Rachel Griffiths
- U.S. Environmental Protection Agency, Region 2, 290 Broadway, New York, NY 10007
| | - Urszula Filipowicz
- U.S. Environmental Protection Agency, Region 2, 290 Broadway, New York, NY 10007
| | - Katherine Mishkin
- U.S. Environmental Protection Agency, Region 3, 1650 Arch Street, Philadelphia, PA 19103
| | - Brad White
- U.S. Environmental Protection Agency, Region 3, 1650 Arch Street, Philadelphia, PA 19103
| | - Sandra Goodrow
- New Jersey Department of Environmental Protection, 428 East State Street, 1st Floor, Trenton, NJ 08625
| | - Richard T Wilkin
- U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Groundwater Characterization and Remediation Division, 919 Kerr Research Drive, Ada, OK 74820
| |
Collapse
|
205
|
Borthakur A, Wang M, He M, Ascencio K, Blotevogel J, Adamson DT, Mahendra S, Mohanty SK. Perfluoroalkyl acids on suspended particles: Significant transport pathways in surface runoff, surface waters, and subsurface soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126159. [PMID: 34229412 DOI: 10.1016/j.jhazmat.2021.126159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/28/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Eroded particles from the source zone could transport a high concentration of perfluoroalkyl acids (PFAAs) to sediments and water bodies. Yet, the contribution of suspended particles has not been systematically reviewed. Analyzing reported studies, we quantitatively demonstrate that suspended particles in surface water can contain significantly higher concentrations of PFAAs than the sediment below, indicating the source of suspended particles are not the sediment but particles eroded and carried from the source zone upstream. The affinity of PFAAs to particles depends on the particle composition, including organic carbon fraction and iron or aluminum oxide content. In soils, most PFAAs are retained within the top 5 m below the ground surface. The distribution of PFAAs in the subsurface varies based on site properties and local weather conditions. The depth corresponding to the maximum concentration of PFAA in soil decreases with an increase in soil organic carbon or rainfall amount received in the catchment areas. We attribute a greater accumulation of PFAAs near the upper layer of the subsurface to an increase in the accumulation of particles eroded from source zones upstream receiving heavy rainfall. Precursor transformation in the aerobic zone is significantly higher than in the anaerobic zone, thereby making the aerobic subsurface zone serve as a long-term source of groundwater pollution. Collectively, these results suggest that suspended particles, often an overlooked vector for PFAAs, can be a dominant pathway for the transport of PFAAs in environments.
Collapse
Affiliation(s)
- Annesh Borthakur
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meng He
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Katia Ascencio
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
206
|
Brusseau ML, Guo B, Huang D, Yan N, Lyu Y. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. WATER RESEARCH 2021; 202:117405. [PMID: 34273774 PMCID: PMC8559529 DOI: 10.1016/j.watres.2021.117405] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 05/11/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) adsorb at air-water interfaces during transport in unsaturated porous media. This can cause surfactant-induced flow and enhanced retention that is a function of concentration, which complicates characterization and modeling of PFAS transport under unsaturated conditions. The influence of surfactant-induced flow and nonlinear air-water interfacial adsorption (AWIA) on PFAS transport was investigated with a series of miscible-displacement transport experiments conducted with a several-log range in input concentrations. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and ammonium perfluoro 2-methyl-3-oxahexanoate (GenX) were used as model PFAS. The results were interpreted in terms of critical reference concentrations associated with PFAS surface activities and their relationship to the relevancy of transport processes such as surfactant-induced flow and nonlinear AWIA for concentration ranges of interest. Analysis of the measured transport behavior of PFAS under unsaturated-flow conditions demonstrated that AWIA was linear when the input concentration was sufficiently below the critical reference concentration. This includes the absence of significant arrival-front self-sharpening and extended elution tailing of the breakthrough curves, as well as the similarity of retardation factors measured for a wide range of input concentrations. Independently-predicted simulations produced with a comprehensive flow and transport model that accounts for transient variably-saturated flow, surfactant-induced flow, nonlinear rate-limited solid-phase sorption, and nonlinear rate-limited AWIA provided excellent predictions of the measured transport. A series of simulations was conducted with the model to test the specific impact of various processes potentially influencing PFOS transport. The simulation results showed that surfactant-induced flow was negligible and that AWIA was effectively linear when the input concentration was sufficiently below the critical reference concentration. PFAS retention associated with AWIA can be considered to be ideal in such cases, thereby supporting the use of simplified mathematical models. Conversely, apparent nonideal transport behavior was observed for experiments conducted with input concentrations similar to or greater than the critical reference concentration.
Collapse
Affiliation(s)
- Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ, USA; Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA.
| | - Bo Guo
- Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Dandan Huang
- Environmental Science Department, University of Arizona, Tucson, AZ, USA; School of Water Resources & Environment, China University of Geosciences, Beijing 100083, P.R. China
| | - Ni Yan
- Environmental Science Department, University of Arizona, Tucson, AZ, USA; Key Lab of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
| | - Ying Lyu
- Environmental Science Department, University of Arizona, Tucson, AZ, USA; Key Lab of Groundwater Resources and Environment, Jilin Provincial Key Laboratory of Water Resources and Environment, and Institute of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| |
Collapse
|
207
|
Bräunig J, Baduel C, Barnes CM, Mueller JF. Sorbent assisted immobilisation of perfluoroalkyl acids in soils - effect on leaching and bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125171. [PMID: 33529830 DOI: 10.1016/j.jhazmat.2021.125171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
Contamination of soils and groundwater with perfluoroalkyl acids (PFAAs) is widespread due to their use in aqueous film-forming foams (AFFF). In this study the effectiveness of RemBind®, a sorbent containing activated carbon and aluminium oxyhydroxides was tested, as a tool to reduce the leaching and bioavailability of 12 PFAAs in soils, by amending contaminated soils with 5-30% (by weight) of the sorbents. Batch tests were used to determine the leaching of PFAAs. Their bioavailability to earthworms and wheat grass was assessed in greenhouse microcosms. Leaching and bioavailability of PFOS was reduced by up to 99.9%, at most sorbent application rates. Lowest reduction of leaching was found for shorter perfluoroalkyl chain length chemicals. The specific formulation of RemBind®, which is available in a basic and superior formulation, as well as the application rate were parameters for increasing effectiveness of the treatment. Furthermore, differences in leaching as well as bioavailability were seen depending on the perfluoroalkyl chain length. A preliminary assessment of the long-term stability of the treatment, assessed after a three-year curing period, suggested that the sorbent continued to be effective in reducing PFAAs in leachates, thus showing the potential of this sorbent to hinder further environmental contamination.
Collapse
Affiliation(s)
- Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia.
| | - Christine Baduel
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| | - Craig M Barnes
- Airservices Australia, 25 Constitution Avenue, Canberra ACT 2601, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| |
Collapse
|
208
|
Roostaei J, Colley S, Mulhern R, May AA, Gibson JM. Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125075. [PMID: 33858085 DOI: 10.1016/j.jhazmat.2021.125075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants that pose significant challenges in mechanistic fate and transport modeling due to their diverse and complex chemical characteristics. Machine learning provides a novel approach for predicting the spatial distribution of PFAS in the environment. We used spatial location information to link PFAS measurements from 1207 private drinking water wells around a fluorochemical manufacturing facility to a mechanistic model of PFAS air deposition and to publicly available data on soil, land use, topography, weather, and proximity to multiple PFAS sources. We used the resulting linked data set to train a Bayesian network model to predict the risk that GenX, a member of the PFAS class, would exceed a state provisional health goal (140 ng/L) in private well water. The model had high accuracy (ROC curve index for five-fold cross-validation of 0.85, 90% CI 0.84-0.87). Among factors significantly associated with GenX risk in private wells, the most important was the historic rate of atmospheric deposition of GenX from the fluorochemical manufacturing facility. The model output was used to generate spatial risk predictions for the study area to aid in risk assessment, environmental investigations, and targeted public health interventions.
Collapse
Affiliation(s)
- Javad Roostaei
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN 47405, United States
| | - Sarah Colley
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill 27516, United States
| | - Riley Mulhern
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill 27516, United States
| | - Andrew A May
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, United States
| | - Jacqueline MacDonald Gibson
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
209
|
Li XQ, Hua ZL, Wu JY, Gu L. Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community. WATER RESEARCH 2021; 197:117080. [PMID: 33813171 DOI: 10.1016/j.watres.2021.117080] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
The broad application of perfluoroalkyl acids (PFAAs) has attracted global concern regarding their adverse environmental effects. The possible removal processes of PFAAs in constructed wetlands were excavated and quantified using two typical submerged macrophytes (rooted Potamogeton wrightii and rootless Ceratophyllum demersum). Our results showed that 33.59-88.99% of PFAAs could be removed via not only sediment sorption or phytoextraction but also by the bioaccumulation of microbiota. The sediment acts as a vital sink for PFAAs, preloading 23.51-50.09% and 16.65-52.18% of PFAAs in treatments with P. wrightii (Pw1) and C. demersum (Cd1), respectively. C. demersum showed a better capacity to accumulate PFAAs (0.91-32.03%) than P. wrightii (<10%). Considerable PFAAs were observed to be distributed in microbes, underlining the non-negligible role of microbiota in bioaccumulating PFAAs. The contributions of planktonic microbes, biofilm microbes, and extracellular polymeric substances in biofilms were 0.39-20.96%, 0.03-7.95%, and 0.39-14.15% in Pw1 and 0.23-15.68%, 0.01-15.68%, and 0.53-26.77% in Cd1, respectively. The adsorption/uptake was significantly correlated with the perfluoroalkyl chain length (p<0.05), except for the uptake of biofilms in C. demersum. Furthermore, PFAAs and submerged macrophytes could decrease the richness of microbiota but increase the relative abundance of some strains in Betaproteobacteriales, Sphingomonadales, and Cytophagales. Our results were helpful for understanding the removal processes of PFAAs in constructed wetlands and their linkages with PFAA properties, thus further providing insight into the management and removal of emerging organic contaminants.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Jian-Yi Wu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| |
Collapse
|
210
|
Sharifan H, Bagheri M, Wang D, Burken JG, Higgins CP, Liang Y, Liu J, Schaefer CE, Blotevogel J. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145427. [PMID: 33736164 DOI: 10.1016/j.scitotenv.2021.145427] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a heterogeneous group of persistent organic pollutants that have been detected in various environmental compartments around the globe. Emerging research has revealed the preferential accumulation of PFASs in shallow soil horizons, particularly at sites impacted by firefighting activities, agricultural applications, and atmospheric deposition. Once in the vadose zone, PFASs can sorb to soil, accumulate at interfaces, become volatilized, be taken up in biota, or leach to the underlying aquifer. At the same time, polyfluorinated precursor species may transform into highly recalcitrant perfluoroalkyl acids, changing their chemical identity and thus transport behavior along the way. In this review, we critically discuss the current state of the knowledge and aim to interconnect the complex processes that control the fate and transport of PFASs in the vadose zone. Furthermore, we identify key challenges and future research needs. Consequently, this review may serve as an interdisciplinary guide for the risk assessment and management of PFAS-contaminated sites.
Collapse
Affiliation(s)
- Hamidreza Sharifan
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Dan Wang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Joel G Burken
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
211
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|