201
|
Tao Y, Koh SW, Yu X, Wang C, Liang H, Zhang Y, Li H, Wang QJ. Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. NANOSCALE ADVANCES 2019; 1:4783-4789. [PMID: 36133140 PMCID: PMC9417804 DOI: 10.1039/c9na00395a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 05/10/2023]
Abstract
Exciton/trion-involved optoelectronic properties have attracted exponential amount of attention for various applications ranging from optoelectronics, valleytronics to electronics. Herein, we report a new chemical (MXene) doping strategy to modulate the negative trion and neutral exciton for achieving high photoluminescence yield of atomically thin transition metal dichalcogenides, enabled by the regulation of carrier densities to promote electron-bound trion-to-exciton transition via charge transfer from TMDCs to MXene. As a proof of concept, the MXene nano-flake-doped tungsten disulfide is demonstrated to obtain an enhanced PL efficiency of up to ∼five folds, which obviously exceeds the reported efficiency upon electrical and/or plasma doping strategies. The PL enhancement degree can also be modulated by tuning the corresponding surface functional groups of MXene nano-flakes, reflecting that the electron-withdrawing functional groups play a vital role in this charge transfer process. These findings offer promising clues to control the optoelectronic properties of TMDCs and expand the scope of the application of MXene nano-flakes, suggesting a possibility to construct a new heterostructure junction based on MXenes and TMDCs.
Collapse
Affiliation(s)
- Ye Tao
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - See Wee Koh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Xuechao Yu
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Chongwu Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Houkun Liang
- Singapore Institute of Manufacturing Technology 71 Nanyang Drive 638075 Singapore
| | - Ying Zhang
- Singapore Institute of Manufacturing Technology 71 Nanyang Drive 638075 Singapore
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Qi Jie Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, The Photonics Institute, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
202
|
|
203
|
Scheibe B, Wychowaniec JK, Scheibe M, Peplińska B, Jarek M, Nowaczyk G, Przysiecka Ł. Cytotoxicity Assessment of Ti–Al–C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomater Sci Eng 2019; 5:6557-6569. [DOI: 10.1021/acsbiomaterials.9b01476] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Błażej Scheibe
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
- Regional Centre for Advanced Technologies and Materials, Palacký University Olomouc, 771 46 Olomouc, Czech Republic
| | | | - Magdalena Scheibe
- Regional Centre for Advanced Technologies and Materials, Palacký University Olomouc, 771 46 Olomouc, Czech Republic
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| |
Collapse
|
204
|
Li N, Jiang Y, Zhou C, Xiao Y, Meng B, Wang Z, Huang D, Xing C, Peng Z. High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti 3C 2 MXene-Derived TiO 2 Nanowires. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38116-38125. [PMID: 31545034 DOI: 10.1021/acsami.9b12168] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Humidity sensors have broad applications in health monitoring, environmental protection and human-machine interface, and robotics. Here, we developed a humidity sensor using alkali oxidation method to grow in situ TiO2 nanowires on two-dimensional Ti3C2 MXene. With an order of magnitude larger surface area compared to pure Ti3C2 or TiO2 materials, the urchin-like Ti3C2/TiO2 composite demonstrates a record high sensitivity in a low relative humidity (RH) environment (∼280 pF/% RH from 7% RH to 33% RH). Complex impedance spectroscopy and Schottky junction theory were employed to understand the underlying sensing mechanisms of the Ti3C2/TiO2 composite under various humidity conditions. We demonstrate the application of humidity sensors made with the Ti3C2/TiO2 composite for noncontact detection of the presence of various liquids as well as human fingers.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yue Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Chuanhong Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yan Xiao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Bo Meng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Ziya Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Dazhou Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
205
|
Xing C, Huang D, Chen S, Huang Q, Zhou C, Peng Z, Li J, Zhu X, Liu Y, Liu Z, Chen H, Zhao J, Li J, Liu L, Cheng F, Fan D, Zhang H. Engineering Lateral Heterojunction of Selenium-Coated Tellurium Nanomaterials toward Highly Efficient Solar Desalination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900531. [PMID: 31592110 PMCID: PMC6774058 DOI: 10.1002/advs.201900531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/12/2019] [Indexed: 05/29/2023]
Abstract
Herein, a core-shell tellurium-selenium (Te-Se) nanomaterial with polymer-tailed and lateral heterojunction structures is developed as a photothermal absorber in a bionic solar-evaporation system. It is further revealed that the amorphous Se shell surrounds the crystalline Te core, which not only protects the Te phase from oxidation but also serves as a natural barrier to life entities. The core (Te)-shell (Se) configuration thus exhibits robust stability enhanced by 0.05 eV per Se atom and excellent biocompatibility. Furthermore, high energy efficiencies of 90.71 ± 0.37% and 86.14 ± 1.02% and evaporation rates of 12.88 ± 0.052 and 1.323 ± 0.015 kg m-2 h-1 are obtained under 10 and 1 sun for simulated seawater, respectively. Importantly, no salting out is observed in salt solutions, and the collected water under natural light irradiation possesses extremely low ion concentrations of Na+, K+, Ca2+, and Mg2+ relative to real seawater. Considering the tunable electronic structures, biocompatibilities, and modifiable broadband absorption of the solar spectrum of lateral heterojunction nanomaterials of Te-Se, the way is paved to engineering 2D semiconductor materials with supporting 3D porous hydrophilic materials for application in solar desalination, wastewater treatment, and biomedical ventures.
Collapse
Affiliation(s)
- Chenyang Xing
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Center for Stretchable Electronics and Nanoscale SystemsKey Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dazhou Huang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Shiyou Chen
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Qichen Huang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Chuanhong Zhou
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nanoscale SystemsKey Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jiagen Li
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
| | - Xi Zhu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhenGuangdong518172China
| | - Yizhen Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Zhipeng Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Houkai Chen
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyShenzhen UniversityShenzhen518060China
| | - Jinlai Zhao
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jiangqing Li
- Faculty of Information TechnologyMacau University of Science and TechnologyAvenida Wai LongTaipaMacau999078China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic SurgeryShenzhen People's HospitalSecond Clinical Medical College of Jinan UniversityShenzhen518060China
| | - Faliang Cheng
- Dongguan University of TechnologyDongguan523808China
| | - Dianyuan Fan
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
206
|
Xie H, Li P, Shao J, Huang H, Chen Y, Jiang Z, Chu PK, Yu XF. Electrostatic Self-Assembly of Ti 3C 2T x MXene and Gold Nanorods as an Efficient Surface-Enhanced Raman Scattering Platform for Reliable and High-Sensitivity Determination of Organic Pollutants. ACS Sens 2019; 4:2303-2310. [PMID: 31385492 DOI: 10.1021/acssensors.9b00778] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reliable surface-enhanced Raman scattering (SERS) substrate composed of two-dimensional (2D) MXene (Ti3C2Tx) nanosheets and gold nanorods (AuNRs) is designed and fabricated for sensitive detection of organic pollutants. The AuNRs are uniformly distributed on the surface of the 2D MXene nanosheets because of the strong electrostatic interactions, forming abundant SERS hot spots. The MXene/AuNR SERS substrate exhibits high sensitivity and excellent reproducibility in the determination of common organic dyes such as rhodamine 6G, crystal violet, and malachite green. The detection limits are 1 × 10-12, 1 × 10-12, and 1 × 10-10 M, and relative standard deviations determined from 13 areas on each sample are 18.1, 10.1, and 15.6%, respectively. In the determination of more complex organic pesticides and pollutants, the substrate also shows excellent sensitivity and quantitative detection, and the detection limits for thiram and diquat of 1 × 10-10 and 1 × 10-8 M, respectively, are much lower than the contaminant levels stipulated by the US Environmental Protection Agency. The MXene/AuNR composite constitutes an efficient SERS platform for reliable and high-sensitivity environmental analysis and food safety monitoring.
Collapse
Affiliation(s)
- Hanhan Xie
- Department of Medical Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, Shenzhen 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Penghui Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jundong Shao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yue Chen
- Department of Medical Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, Shenzhen 518020, China
| | - Zhenyou Jiang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xue-Feng Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
207
|
Ciou JH, Li S, Lee PS. Ti 3 C 2 MXene Paper for the Effective Adsorption and Controllable Release of Aroma Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903281. [PMID: 31389665 DOI: 10.1002/smll.201903281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Olfactory sensing and perception play an important role in people's daily lives and greatly affects senses, emotions, and behavior. In particular, the development of the controlled release of aroma enhances human's well-being and strengthens interactions with surroundings through olfactory display, especial when combined with visual and audial cues. Here, Ti3 C2 MXene plays a dual-function role as the adsorption site of aroma molecules and the heating source for the controlled release of aroma molecules. Due to abundant termination groups on the surface and the metallic nature, Ti3 C2 MXene provides abundant active sites for the interaction with aroma molecules; simultaneously, MXene can be electrically heated to thermally desorb the aroma molecules from the interaction sites. This approach eliminates the interface incompatibility issues between the heating source and the molecular encapsulation layer in conventional olfactory display system. This work presents the controlled release of the aroma molecule phenethyl alcohol (PA) using Ti3 C2 MXene paper. Ti3 C2 MXene paper serves as the adsorption material and a heating source that achieves 100 °C within 1 s. The relative amount of PA released reaches nearly 100% after 1 min of heating.
Collapse
Affiliation(s)
- Jing-Hao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaohui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
208
|
Wang X, Cheng L. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. NANOSCALE 2019; 11:15685-15708. [PMID: 31355405 DOI: 10.1039/c9nr04044g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) nanocomposites have been widely used in biomedical applications during the past few years due to their extraordinary physicochemical properties, which has proved their importance in the field of nanomedicine. Benefiting from the excellent optical absorption in the near-infrared window and large specific surface area, many efforts have been devoted to fabricating 2D nanomaterial-based multifunctional nanoplatforms to realize photothermal therapy (PTT)-based or chemotherapy-based synergistic treatment, which exhibits obvious anti-tumor effects and significantly enhances the therapeutic efficiency of cancer compared with monotherapy. In particular, 2D nanocomposites are usually fabricated as intelligent nanoplatforms for stimuli-responsive nanocarriers, whose therapeutic effects could be specifically activated by the tumor microenvironment (TME). In addition, different fluorescent probes and functional inorganic nanomaterials could be absorbed on the surface of 2D nanomaterials to fabricate multifunctional hybrid nanomaterials with satisfactory magnetic, optical, or other properties that are widely used for multimodal imaging-guided cancer therapy. In this review, the latest development of multifunctional 2D nanocomposites for combination therapy is systematically summarized, mainly focusing on PTT-based synergistic cancer therapy, and the other forms and potential forms of synergistic cancer therapy are also simply summarized. Furthermore, the design principles of 2D nanocomposites are particularly emphasized, and the current challenges and future prospects of 2D nanocomposites for cancer theranostics are discussed simultaneously.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
| | | |
Collapse
|
209
|
Liu H, Li N, Jiang Y, Wang Q, Peng Z. Plasma treated MXene/Ag-based humidity sensor with ultrahigh sensitivity for gesture tracking. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/563/2/022046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
210
|
Lee J, Jenjob R, Davaa E, Yang SG. NIR-responsive ROS generating core and ROS-triggered 5′-Deoxy-5-fluorocytidine releasing shell structured water-swelling microgel for locoregional combination cancer therapy. J Control Release 2019; 305:120-129. [DOI: 10.1016/j.jconrel.2019.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
|
211
|
Xie Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q, Qu M, Lin Z, Zhao J, Li Y, Liu L, Bao S, Chen H, Fan D, Zhang H. Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22129-22140. [PMID: 31144494 DOI: 10.1021/acsami.9b04628] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photothermal therapy (PTT) based on two-dimensional (2D) nanomaterials has shown significant potential in cancer treatment. However, developing 2D nanomaterial-based theranostic agents with good biocompatibility and high therapeutic efficiency remains a key challenge. Bulk titanium (Ti) has been widely used as biomedical materials for their reputable biocompatibility, whereas nanosized Ti with a biological function remains unexplored. In this work, the 2D Ti nanosheets (NSs) are successfully exfoliated from nonlayer bulk Ti and utilized as an efficient theranostic nanoplatform for dual-modal computed tomography/photoacoustic (CT/PA) imaging-navigated PTT. Besides the excellent biocompatibility obtained by TiNSs as expected, they are found to show strong absorption ability with an extinction coefficient of 20.8 L g-1 cm-1 and high photothermal conversion ability with an efficiency of 61.5% owing to localized surface plasmon resonances, which exceeds most of other well-known photothermal agents, making it quite promising for PTT against cancer. Furthermore, the metallic property and light-heat-acoustic transformation endow 2D Ti with the strong CT/PA imaging signal and efficient cancer therapy, simultaneously. This work highlights the enormous potential of nanosized Ti in both the diagnosis and treatment of cancer. As a paradigm, this study also paves a new avenue for the elemental transition-metal-based cancer theranostics.
Collapse
Affiliation(s)
- Zhongjian Xie
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Shiyou Chen
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yanhong Duo
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yao Zhu
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Taojian Fan
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Qingshuang Zou
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital , Second Clinical Medical College of Jinan University , Shenzhen , Guangdong Province 518208 , P. R. China
| | - Mengmeng Qu
- Research Center for Clinical & Translational Medicine , Beijing 302 Hospital , Beijing 100039 , China
| | - Zhitao Lin
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Jinlai Zhao
- Faculty of Information Technology , Macau University of Science and Technology , Avenida Wai Long , Taipa 999078 , Macau , P. R. China
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology , Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen 518060 , P. R. China
| | - Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital , Second Clinical Medical College of Jinan University , Shenzhen , Guangdong Province 518208 , P. R. China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital , Second Clinical Medical College of Jinan University , Shenzhen , Guangdong Province 518208 , P. R. China
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital , Second Clinical Medical College of Jinan University , Shenzhen , Guangdong Province 518208 , P. R. China
| | - Hong Chen
- School of Materials Science and Energy Engineering , Foshan University , Foshan 528000 , China
| | - Dianyuan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital , Second Clinical Medical College of Jinan University , Shenzhen , Guangdong Province 518208 , P. R. China
| | - Han Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
212
|
Li Y, Zhang D, Feng X, Liao Y, Wen Q, Xiang Q. Truncated octahedral bipyramidal TiO 2/MXene Ti 3C 2 hybrids with enhanced photocatalytic H 2 production activity. NANOSCALE ADVANCES 2019; 1:1812-1818. [PMID: 36134234 PMCID: PMC9418716 DOI: 10.1039/c9na00023b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/03/2019] [Indexed: 06/11/2023]
Abstract
MXene Ti3C2/TiO2 hybrids were successfully synthesized through a simple calcination of F-terminated Ti3C2. The resultant Ti3C2/TiO2 composite photocatalysts retained a 2D multilayer structure like MXene Ti3C2, and TiO2 exhibited a truncated octahedral bipyramidal structure with exposed (001) facets under the participation of fluorine ions. The residual Ti3C2 could act as a co-catalyst to enhance the photocatalytic H2 production activity by capturing photogenerated electrons from TiO2 because of its electron reservoir feature and suitable Fermi level. The (101)-(001) surface heterojunction of the truncated octahedral bipyramidal TiO2 further accelerated the separation of photogenerated carriers. As a result, the Ti3C2/TiO2 hybrids with calcining F-terminated Ti3C2 exhibited photocatalytic hydrogen production that is twofold higher than that of Ti3C2/TiO2 hybrids with calcining OH-terminated Ti3C2. This work presented a new strategy to prepare MXene Ti3C2/TiO2 hybrids for photoconversion applications.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
- College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Dainan Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Xionghan Feng
- College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Qiye Wen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| |
Collapse
|
213
|
Szuplewska A, Kulpińska D, Dybko A, Jastrzębska AM, Wojciechowski T, Rozmysłowska A, Chudy M, Grabowska-Jadach I, Ziemkowska W, Brzózka Z, Olszyna A. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:874-886. [DOI: 10.1016/j.msec.2019.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
214
|
Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release 2019; 299:1-20. [DOI: 10.1016/j.jconrel.2019.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
215
|
Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. OPTICS EXPRESS 2019; 27:10159-10170. [PMID: 31045161 DOI: 10.1364/oe.27.010159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
We report simple and compact all-fiber erbium-doped soliton and dispersion-managed soliton femtosecond lasers mode-locked by the MXene Ti3C2Tx. A saturable absorber device fabricated by optical deposition of Ti3C2Tx onto a microfiber exhibits strong saturable absorption properties, with a modulation depth of 11.3%. The oscillator operating in the soliton regime produces 597.8 fs-pulses with 5.21 nm of bandwidth, while the cavity with weak normal dispersion (~0.008 ps2) delivers 104 fs pulses with 42.5 nm of bandwidth. Our results contribute to the growing body of work studying the nonlinear optical properties of MXene that underpin new opportunities for ultrafast photonic technology.
Collapse
|
216
|
Guo J, Zhao J, Huang D, Wang Y, Zhang F, Ge Y, Song Y, Xing C, Fan D, Zhang H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. NANOSCALE 2019; 11:6235-6242. [PMID: 30874696 DOI: 10.1039/c9nr00736a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tellurium (Te) exhibits many intriguing properties including thermoelectricity, photoelectricity, piezoelectricity, and photoconductivity, and is widely used in detectors, sensors, transistors, and energy devices. Herein, ultrathin two-dimensional (2D) Te nanosheets were fabricated using a facile and cost-effective liquid-phase exfoliation method. Mixing the as-prepared 2D Te nanosheets with polyvinylpyrrolidone (PVP) provided a uniform 2D Te/PVP membrane. The 2D Te/PVP membrane exhibited excellent mechanical properties, thermal properties, and stability. The nonlinear optical properties of the membrane were characterized over the spectral range of 800 to 1550 nm using open-aperture Z-scan technology. A large nonlinear absorption coefficient of about 10-1 cm GW-1 over the whole tested wavelength range demonstrated the efficient broadband saturable absorptivity of the 2D Te/PVP membrane. Using the 2D Te/PVP membrane as a saturable absorber (SA), a highly stable femtosecond laser with a pulse duration of 829 fs in the communication band was obtained. This work highlights the promise of 2D Te/PVP membranes in ultrafast photonics and Te as a new 2D material for use in photonic devices such as all-optical modulators, switches, and thresholds.
Collapse
Affiliation(s)
- Jia Guo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Gao N, Xing C, Wang H, Feng L, Zeng X, Mei L, Peng Z. pH-Responsive Dual Drug-Loaded Nanocarriers Based on Poly (2-Ethyl-2-Oxazoline) Modified Black Phosphorus Nanosheets for Cancer Chemo/Photothermal Therapy. Front Pharmacol 2019; 10:270. [PMID: 30941045 PMCID: PMC6433829 DOI: 10.3389/fphar.2019.00270] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Synergistic cancer therapy, such as those combining chemotherapeutic and photothermal methods, has stronger treatment effect than that of individual ones. However, it is challenging to efficiently deliver nanocarriers into tumor cells to elevate intracellular drug concentration. Herein, we developed an effective pH-responsive and dual drug co-delivery platform for combined chemo/photothermal therapy. An anticancer drug doxorubicin (DOX) was first loaded onto the surface of black phosphorus (BP). With poly(2-ethyl-2-oxazoline) (PEOz) ligand conjugated onto the polydopamine (PDA) coated BP nanosheets, targeted long circulation and cellular uptake in vivo was significantly improved. With another anticancer drug bortezomib (BTZ) loaded onto the surface of the nanocapsule, the platform can co-deliver two different drugs. The surface charge of the nanocapsule was reversed from negative to positive at the tumor extracellular pH (∼6.8), ionizing the tertiary amide groups along the PEOz chain, thus facilitating the cell internalization of the nanocarrier. The cytotoxicity therapeutic effect of this nanoplatform was further augmented under near-infrared laser irradiation. As such, our DOX-loaded BP@PDA-PEOz-BTZ platform is very promising to synergistic cancer therapy.
Collapse
Affiliation(s)
- Nansha Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haifei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Liwen Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
218
|
Xiang H, Chen Y. Energy-Converting Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805339. [PMID: 30773837 DOI: 10.1002/smll.201805339] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Serious side effects to surrounding normal tissues and unsatisfactory therapeutic efficacy hamper the further clinic applications of conventional cancer-therapeutic strategies, such as chemotherapy and surgery. The fast development of nanotechnology provides unprecedented superiorities for cancer therapeutics. Externally activatable therapeutic modalities mediated by nanomaterials, relying on highly effective energy transformation to release therapeutic elements/effects (cytotoxic reactive oxygen species, thermal effect, photoelectric effect, Compton effect, cavitation effect, mechanical effect or chemotherapeutic drug) for cancer therapies, categorized and termed as "energy-converting nanomedicine," have arouse considerable concern due to their noninvasiveness, desirable tissue-penetration depth, and accurate modulation of therapeutic dose. This review summarizes the recent advances in the engineering of intelligent functional nanotherapeutics for energy-converting nanomedicine, including photo-based, radiation-based, ultrasound-based, magnetic field-based, microwave-based, electric field-based, and radiofrequency-based nanomedicines, which are enabled by external stimuli (light, radiation, ultrasound, magnetic field, microwave, electric field, and radiofrequency). Furthermore, biosafety issues of energy-converting nanomedicine related to future clinical translation are also addressed. Finally, the potential challenges and prospects of energy-converting nanomedicine for future clinical translation are discussed.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
219
|
Pan H, Zhang C, Wang T, Chen J, Sun SK. In Situ Fabrication of Intelligent Photothermal Indocyanine Green-Alginate Hydrogel for Localized Tumor Ablation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2782-2789. [PMID: 30584767 DOI: 10.1021/acsami.8b16517] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Simplifying synthesis and administration process, improving photothermal agents' accumulation in tumors, and ensuring excellent biocompatibility and biodegradability are keys to promoting the clinical application of photothermal therapy. However, current photothermal agents have great difficulties in meeting the requirements of clinic drugs from synthesis to administration. Herein, we reported the in situ formation of a Ca2+/Mg2+ stimuli-responsive ICG-alginate hydrogel in vivo for localized tumor photothermal therapy. An ICG-alginate hydrogel can form by the simple introduction of Ca2+/Mg2+ into ICG-alginate solution in vitro, and the widely distributed divalent cations in organization in vivo enabled the in situ fabrication of the ICG-alginate hydrogel without the leakage of any agents by simple injection of ICG-alginate solution into the body of mice. The as-prepared ICG-alginate hydrogel not only owns good photothermal therapy efficacy and excellent biocompatibility but also exhibits strong ICG fixation ability, greatly benefiting the high photothermal agents' accumulation and minimizing the potential side effects induced by the diffusion of ICG to surrounding tissues. The in situ-fabricated ICG-alginate hydrogel was applied successfully in highly efficient PTT in vivo without obvious side effects. Besides, the precursor of the hydrogel, ICG and alginate, can be stored in a stable solid form, and only simple mixing and noninvasive injection are needed to achieve PTT in vivo. The proposed in situ gelation strategy using biocompatible components lays down a simple and mild way for the fabrication of high-performance PTT agents with the superiors in the aspects of synthesis, storage, transportation, and clinic administration.
Collapse
Affiliation(s)
- Haiyan Pan
- Department of Radiology , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , 94 Weijin Road , Tianjin 300071 , China
| | - Tingting Wang
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | - Jiaxi Chen
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | - Shao-Kai Sun
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| |
Collapse
|