201
|
Cancer gene discovery in mouse and man. Biochim Biophys Acta Rev Cancer 2009; 1796:140-61. [PMID: 19285540 PMCID: PMC2756404 DOI: 10.1016/j.bbcan.2009.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species 'oncogenomics' approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis.
Collapse
|
202
|
Abstract
The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.
Collapse
Affiliation(s)
- Martin Eilers
- Institute of Molecular Biology and Tumor Research, 35033 Marburg, Germany
| | | |
Collapse
|
203
|
The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 2008; 29:650-61. [PMID: 19047373 DOI: 10.1128/mcb.00993-08] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four proteins CDK8, cyclin C, Med12, and Med13 can associate with Mediator and are presumed to form a stable "CDK8 subcomplex" in cells. We describe here the isolation and enzymatic activity of the 600-kDa CDK8 subcomplex purified directly from human cells and also via recombinant expression in insect cells. Biochemical analysis of the recombinant CDK8 subcomplex identifies predicted (TFIIH and RNA polymerase II C-terminal domain [Pol II CTD]) and novel (histone H3, Med13, and CDK8 itself) substrates for the CDK8 kinase. Notably, these novel substrates appear to be metazoan-specific. Such diverse targets imply strict regulation of CDK8 kinase activity. Along these lines, we observe that Mediator itself enables CDK8 kinase activity on chromatin, and we identify Med12--but not Med13--to be essential for activating the CDK8 kinase. Moreover, mass spectrometry analysis of the endogenous CDK8 subcomplex reveals several associated factors, including GCN1L1 and the TRiC chaperonin, that may help control its biological function. In support of this, electron microscopy analysis suggests TRiC sequesters the CDK8 subcomplex and kinase assays reveal the endogenous CDK8 subcomplex--unlike the recombinant submodule--is unable to phosphorylate the Pol II CTD.
Collapse
|
204
|
Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2008; 49:2081-90. [PMID: 19021050 PMCID: PMC4011712 DOI: 10.1080/10428190802419640] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The proliferation index in mantle cell lymphoma (MCL) has not been validated in the context of aggressive therapy regimens in the rituximab era. We assessed Ki67 and PIM1 (a cell cycle-related gene upregulated in blastoid MCL) expression by immunohistochemistry in a phase II study Cancer and Leukemia Group B 59909 of aggressive chemotherapy and rituximab followed by autologous stem cell transplantation plus rituximab in untreated MCL patients <70 years of age. As a continuous variable or using a cutoff of 35%, higher image analysis (IA Ki67, n = 52) was associated with shorter progression free survival (PFS) (P < or = 0.030) and event free survival (EFS) (P < or = 0.017). PIM1 expression (n = 50) was associated with PFS (P = 0.033) and EFS (P = 0.043). Bivariate Cox models showed IA Ki67 and PIM1 were independent of clinical factors. High Ki67 (>35%) is an important independent prognostic marker in aggressively treated MCL in the rituximab era. PIM1 expression predicts poor outcome and, given its potential role as a therapeutic target, deserves further study.
Collapse
Affiliation(s)
- Eric D Hsi
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol 2008; 28:6668-80. [PMID: 18779318 DOI: 10.1128/mcb.01025-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34(+) cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34(+) cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.
Collapse
|
206
|
Sanz-García M, López-Sánchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics 2008; 7:2199-214. [PMID: 18617507 PMCID: PMC2577208 DOI: 10.1074/mcp.m700586-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human vaccinia-related kinase (VRK) 1 is a novel serine-threonine kinase that regulates several transcription factors, nuclear envelope assembly, and chromatin condensation and is also required for cell cycle progression. The regulation of this kinase family is unknown. Mass spectrometry has permitted the identification of Ran as an interacting and regulatory protein of the VRK serine-threonine kinase activities. The stable interaction has been validated by pulldown of endogenous proteins as well as by reciprocal immunoprecipitations. The three members of the VRK family stably interact with Ran, and the interaction was not affected by the bound nucleotide, GDP or GTP. The interaction was stronger with the RanT24N that is locked in its inactive conformation and cannot bind nucleotides. None of the kinases phosphorylated Ran or RCC1. VRK1 does not directly interact with RCC1, but if Ran is present they can be isolated as a complex. The main effect of the interaction of inactive RanGDP with VRK1 is the inhibition of its kinase activity, which was detected by a reduction in VRK1 autophosphorylation and a reduction in phosphorylation of histone H3 in residues Thr-3 and Ser-10. The kinase activity inhibition can be relieved by the interaction with the constitutively active RanGTP or RanL43E, which locks Ran in its GTP-bound active conformation. In this complex, the interaction with VRK proteins does not alter the effect of its guanine exchange factor, RCC1. Ran is a novel negative regulator of nuclear VRK1 and VRK2 kinase activity, which may vary in different subcellular localizations generating an asymmetric intracellular distribution of kinase activity depending on local protein interactions.
Collapse
Affiliation(s)
- Marta Sanz-García
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca E-37007, Spain
| | | | | |
Collapse
|
207
|
Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008; 20:334-40. [PMID: 18513937 DOI: 10.1016/j.ceb.2008.04.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
P-TEFb (CycT1:Cdk9), the metazoan RNA polymerase II Ser2 C-terminal domain (CTD) kinase, regulates transcription elongation at many genes and integrates mRNA synthesis with histone modification, pre-mRNA processing, and mRNA export. Recruitment of P-TEFb to target genes requires deubiquitination of H2Bub, phosphorylation of H3S10, and the bromodomain protein, Brd4. Brd4 activates growth-related genes in the G1 phase of the cell cycle and can also tether P-TEFb to mitotic chromosomes, possibly to mark sites of active transcription throughout cell division. P-TEFb co-operates with c-Myc during transactivation and cell transformation, and also requires SKIP (c-Ski-interacting protein), an mRNA elongation and splicing factor. Some functions of the P-TEFb/Ser2P CTD are executed by the Spt6 transcription elongation factor, which binds directly to the phosphorylated CTD and recruits the Iws1 ('interacts with Spt6') protein. Iws1, in turn, interacts with the REF1/Aly nuclear export adaptor and stimulates the kinetics of mRNA export. Given the prominent role of Spt6 in regulating chromatin structure, the CTD-bound Spt6:Iws1 complex may also control histone modifications during elongation. Following transcription, P-TEFb accompanies the mature mRNA to the cytoplasm to promote translation elongation.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037-1099, USA
| | | | | |
Collapse
|
208
|
The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity. Mol Cell Biol 2008; 28:4829-42. [PMID: 18490439 DOI: 10.1128/mcb.00175-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Notch signal pathway plays multifaceted roles to promote or suppress tumorigenesis. The Notch1 receptor intracellular domain (N1IC), the activated form of the Notch1 receptor, activates the c-myc proto-oncogene. The complex of N1IC and transcription factor YY1 binds to the human c-myc promoter to enhance c-myc expression in a CBF1-independent manner. Here we demonstrated that N1IC interacted with the c-Myc-regulating proteins alpha-enolase and c-myc promoter binding protein 1 (MBP-1). Both alpha-enolase and MBP-1 suppressed the N1IC-enhanced activity of the c-myc promoter in a CBF1-independent manner. The YY1 response element in front of the P2 c-myc promoter was essential and sufficient for the modulation of c-myc by N1IC and alpha-enolase or MBP-1. Furthermore, N1IC, YY1, and alpha-enolase or MBP-1 but not CBF1 bound to the c-myc promoter through associating with the YY1 response element. Hemin-induced erythroid differentiation was suppressed by N1IC in K562 cells. This suppression was relieved by the expression of alpha-enolase and MBP-1. In addition, both alpha-enolase and MBP-1 suppressed the N1IC-enhanced colony-forming ability through c-myc. These results indicate that the activated Notch1 receptor and alpha-enolase or MBP-1 cooperate in controlling c-myc expression through binding the YY1 response element of the c-myc promoter to regulate tumorigenesis.
Collapse
|
209
|
Zhao X, Heng JIT, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 2008; 10:643-53. [PMID: 18488021 DOI: 10.1038/ncb1727] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/25/2008] [Indexed: 02/06/2023]
Abstract
Development of the nervous system requires that timely withdrawal from the cell cycle be coupled with initiation of differentiation. Ubiquitin-mediated degradation of the N-Myc oncoprotein in neural stem/progenitor cells is thought to trigger the arrest of proliferation and begin differentiation. Here we report that the HECT-domain ubiquitin ligase Huwe1 ubiquitinates the N-Myc oncoprotein through Lys 48-mediated linkages and targets it for destruction by the proteasome. This process is physiologically implemented by embryonic stem (ES) cells differentiating along the neuronal lineage and in the mouse brain during development. Genetic and RNA interference-mediated inactivation of the Huwe1 gene impedes N-Myc degradation, prevents exit from the cell cycle by opposing the expression of Cdk inhibitors and blocks differentiation through persistent inhibition of early and late markers of neuronal differentiation. Silencing of N-myc in cells lacking Huwe1 restores neural differentiation of ES cells and rescues cell-cycle exit and differentiation of the mouse cortex, demonstrating that Huwe1 restrains proliferation and enables neuronal differentiation by mediating the degradation of N-Myc. These findings indicate that Huwe1 links destruction of N-Myc to the quiescent state that complements differentiation in the neural tissue.
Collapse
Affiliation(s)
- Xudong Zhao
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 2008; 27:4809-19. [PMID: 18438430 DOI: 10.1038/onc.2008.123] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pim kinases are found to be highly expressed in leukemia, lymphoma, prostate and pancreatic cancer. Bitransgenic mice overexpressing either Pim-1 or Pim-2 and c-Myc succumb to pre-B-cell lymphoma at a strikingly accelerated speed. Despite that Pim-1/Pim-2 has long been recognized as a strong synergistic partner with c-Myc in tumorigenesis, the mechanism underlying the synergism is still not well understood. Overexpression of Pim-1/Pim-2 kinase dramatically stabilizes c-Myc in vivo, and the stabilization is partially mediated by phosphorylation of c-Myc by Pim kinase on a novel site, Ser329. We provide evidence that Pim-2 is more efficient in directly phosphorylating c-Myc Ser329 to stabilize c-Myc. In contrast, we find that Pim-1 is more effective in mediating a decrease in c-Myc Thr58 phosphorylation and an increase in c-Myc Ser62 phosphorylation than in phosphorylating Ser329. In either case, through stabilizing c-Myc, Pim-1/Pim-2 kinases enhance the transcriptional activity of c-Myc. Also knocking down either Pim-1 or Pim-2 dramatically decreases the endogenous levels of c-Myc and thus, its transcriptional activity. Finally, coexpression of the Pim kinases and c-Myc enhances the transforming activity of c-Myc as does the phosphomimic mutant of c-Myc on Ser329. We conclude that these findings appear to explain at least in part the mechanism underlying the synergism between the Pim kinases and c-Myc in tumorigenesis.
Collapse
Affiliation(s)
- Y Zhang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | | | | | | |
Collapse
|
211
|
Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 2008; 27:1447-57. [PMID: 18418385 DOI: 10.1038/emboj.2008.78] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 03/27/2008] [Indexed: 11/09/2022] Open
Abstract
The human Mediator complex is generally required for expression of protein-coding genes. Here, we show that the GCN5L acetyltransferase stably associates with Mediator together with the TRRAP polypeptide. Yet, contrary to expectations, TRRAP/GCN5L does not associate with the transcriptionally active core Mediator but rather with Mediator that contains the cdk8 subcomplex. Consequently, this derivative 'T/G-Mediator' complex does not directly activate transcription in a reconstituted human transcription system. However, within T/G-Mediator, cdk8 phosphorylates serine-10 on histone H3, which in turn stimulates H3K14 acetylation by GCN5L within the complex. Tandem phosphoacetylation of H3 correlates with transcriptional activation, and ChIP assays demonstrate co-occupancy of T/G-Mediator components at several activated genes in vivo. Moreover, cdk8 knockdown causes substantial reduction of global H3 phosphoacetylation, suggesting that T/G-Mediator is a major regulator of this H3 mark. Cooperative H3 modification provides a mechanistic basis for GCN5L association with cdk8-Mediator and also identifies a biochemical means by which cdk8 can indirectly activate gene expression. Indeed our results suggest that T/G-Mediator directs early events-such as modification of chromatin templates-in transcriptional activation.
Collapse
Affiliation(s)
- Krista D Meyer
- Department of Chemistry and Biochemistry, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
212
|
Hartzog GA, Tamkun JW. A new role for histone tail modifications in transcription elongation. Genes Dev 2007; 21:3209-13. [DOI: 10.1101/gad.1628707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
213
|
Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N, Patnaik D, Higgins JMG, Potier N, Scheidtmann KH, Buettner R, Schüle R. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 2007; 10:53-60. [PMID: 18066052 DOI: 10.1038/ncb1668] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 11/23/2007] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications of histones such as methylation, acetylation and phosphorylation regulate chromatin structure and gene expression. Here we show that protein-kinase-C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor target genes. PRK1 is pivotal to androgen receptor function because PRK1 knockdown or inhibition impedes androgen receptor-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphorylation and inhibits androgen-induced demethylation of histone H3. Moreover, serine-5-phosphorylated RNA polymerase II is no longer observed at androgen receptor target promoters. Phosphorylation of H3T11 by PRK1 accelerates demethylation by the Jumonji C (JmjC)-domain-containing protein JMJD2C. Thus, phosphorylation of H3T11 by PRK1 establishes a novel chromatin mark for gene activation, identifying PRK1 as a gatekeeper of androgen receptor-dependent transcription. Importantly, levels of PRK1 and phosphorylated H3T11 correlate with Gleason scores of prostate carcinomas. Finally, inhibition of PRK1 blocks proliferation of androgen receptor-induced tumour cell proliferation, making PRK1 a promising therapeutic target.
Collapse
Affiliation(s)
- Eric Metzger
- Universitäts-Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Rottmann S, Speckgens S, Lüscher-Firzlaff J, Lüscher B. Inhibition of apoptosis by MAD1 is mediated by repression of the PTEN tumor suppressor gene. FASEB J 2007; 22:1124-34. [PMID: 17998413 DOI: 10.1096/fj.07-9627com] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The MYC/MAX/MAD network of transcriptional regulators controls distinct aspects of cell physiology, including cell proliferation and apoptosis. Within the network MAD proteins antagonize the functions of MYC oncoproteins, and the latter are deregulated in the majority of human cancers. While MYC sensitizes cells to proapoptotic signals, the transcriptional repressor MAD1 inhibits apoptosis in response to a broad range of stimuli, including oncoproteins. The molecular targets of MAD1 that mediate inhibition of apoptosis are not known. Here we describe the phosphatase and tensin homologue deleted on chromosome ten (PTEN) tumor suppressor gene as a target of MAD1. By binding to the proximal promoter region, MAD1 downregulated PTEN expression. PTEN functions as a lipid phosphatase that regulates the phosphatidylinositol 3-kinase/AKT pathway. Indeed MAD1-dependent repression of PTEN led to activation of AKT and subsequent stimulation of the antiapoptotic NF-kappaB pathway. Interfering with AKT function affected the control of Fas-induced apoptosis by MAD1. In addition, knockdown of PTEN using small interfering RNA (siRNA) or the lack of PTEN rendered cells insensitive to inhibition of apoptosis by MAD1. These findings identify the PTEN gene as a target of the MYC-antagonist MAD1 and provide a molecular framework critical for the ability of MAD1 to inhibit apoptosis.
Collapse
Affiliation(s)
- Sabine Rottmann
- Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Universitätsklinikum, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
215
|
|