201
|
Cui L, Shearwin KE. Clonetegration Using OSIP Plasmids: One-Step DNA Assembly and Site-Specific Genomic Integration in Bacteria. Methods Mol Biol 2017; 1472:139-155. [PMID: 27671938 DOI: 10.1007/978-1-4939-6343-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clonetegration is a method for site-specific insertion of DNA into prokaryotic chromosomes, based on bacteriophage integrases. The method combines DNA cloning/assembly and chromosomal integration into a single step, providing a simple and rapid strategy for inserting DNA sequences into bacterial chromosomes.
Collapse
Affiliation(s)
- Lun Cui
- Synthetic Biology Group, Institute Pasteur, Paris, 75015, France
| | - Keith E Shearwin
- Department of Molecular and Cellular Biology, School of Biological Science, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
202
|
Novel T7-like expression systems used for Halomonas. Metab Eng 2017; 39:128-140. [DOI: 10.1016/j.ymben.2016.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022]
|
203
|
Abstract
Recently developed DNA assembly methods have enabled the rapid and simultaneous assembly of multiple parts to create complex synthetic gene circuits. A number of groups have proposed the use of computationally designed orthogonal spacer sequences to guide the ordered assembly of parts using overlap-directed or homologous recombination-based methods. This approach is particularly useful for assembling multiple parts with repetitive elements. Orthogonal spacer sequences (sometimes called UNSs-unique nucleotide sequences) also have a number of other potential uses including in the design of synthetic promoters regulated by novel regulatory elements.
Collapse
Affiliation(s)
- James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK. .,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.
| | - Velia Siciliano
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
204
|
Chappell J, Lucks JB. Turning It Up to 11: Modular Proteins Amplify RNA Sensors for Sophisticated Circuitry. Cell Syst 2016; 3:509-511. [PMID: 28009261 DOI: 10.1016/j.cels.2016.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ligand-sensing RNA switches can be enhanced using protein-based amplifiers to deliver sophisticated signal-processing genetic circuitry.
Collapse
Affiliation(s)
- James Chappell
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
205
|
Brödel AK, Jaramillo A, Isalan M. Engineering orthogonal dual transcription factors for multi-input synthetic promoters. Nat Commun 2016; 7:13858. [PMID: 27982027 PMCID: PMC5171851 DOI: 10.1038/ncomms13858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022] Open
Abstract
Synthetic biology has seen an explosive growth in the capability of engineering artificial gene circuits from transcription factors (TFs), particularly in bacteria. However, most artificial networks still employ the same core set of TFs (for example LacI, TetR and cI). The TFs mostly function via repression and it is difficult to integrate multiple inputs in promoter logic. Here we present to our knowledge the first set of dual activator-repressor switches for orthogonal logic gates, based on bacteriophage λ cI variants and multi-input promoter architectures. Our toolkit contains 12 TFs, flexibly operating as activators, repressors, dual activator–repressors or dual repressor–repressors, on up to 270 synthetic promoters. To engineer non cross-reacting cI variants, we design a new M13 phagemid-based system for the directed evolution of biomolecules. Because cI is used in so many synthetic biology projects, the new set of variants will easily slot into the existing projects of other groups, greatly expanding current engineering capacities.
Genetic circuits usually employ the same set of transcription factors which can act via repression or activation of the target promoter. Here the authors present dual activator-repressor switches, designed via directed evolution, for orthogonal logic gates and multi-input circuit architectures.
Collapse
Affiliation(s)
- Andreas K Brödel
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alfonso Jaramillo
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.,Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Évry, 91030 Évry, France
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
206
|
Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. J Cell Biol 2016; 216:73-82. [PMID: 27932576 PMCID: PMC5223614 DOI: 10.1083/jcb.201611002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
207
|
Wei H, Hu B, Tang S, Zhao G, Guan Y. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates. Sci Rep 2016; 6:37477. [PMID: 27869177 PMCID: PMC5116584 DOI: 10.1038/srep37477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology.
Collapse
Affiliation(s)
- Hua Wei
- Animal Science and Veterinary Medicine College, Shenyang Agricultural University, #120 Dongling Road, Shenyang, Liaoning, 110866, China.,Department of Biochemistry and Molecular Biology, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Suming Tang
- Department of Biochemistry and Molecular Biology, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
208
|
Holowko MB, Wang H, Jayaraman P, Poh CL. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli. ACS Synth Biol 2016; 5:1275-1283. [PMID: 27529184 DOI: 10.1021/acssynbio.6b00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.
Collapse
Affiliation(s)
- Maciej B. Holowko
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Huijuan Wang
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Premkumar Jayaraman
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| | - Chueh Loo Poh
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
209
|
Saeki K, Tominaga M, Kawai-Noma S, Saito K, Umeno D. Rapid Diversification of BetI-Based Transcriptional Switches for the Control of Biosynthetic Pathways and Genetic Circuits. ACS Synth Biol 2016; 5:1201-1210. [PMID: 26991155 DOI: 10.1021/acssynbio.5b00230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biologists are in need of genetic switches, or inducible sensor/promoter systems, that can be reliably integrated in multiple contexts. Using a liquid-based selection method, we systematically engineered the choline-inducible transcription factor BetI, yielding various choline-inducible and choline-repressive promoter systems with various input-output characteristics. In addition to having high stringency and a high maximum induction level, they underwent a graded and single-peaked response to choline. Taking advantage of these features, we demonstrated the utility of these systems for controlling the carotenoid biosynthetic pathway and for constructing two-input logic gates. Additionally, we demonstrated the rapidity, throughput, robustness, and cost-effectiveness of our selection method, which facilitates the conversion of natural genetic controlling systems into systems that are designed for various synthetic biology applications.
Collapse
Affiliation(s)
- Kazuya Saeki
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Masahiro Tominaga
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Shigeko Kawai-Noma
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Daisuke Umeno
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology
Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
210
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
211
|
Abstract
The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
212
|
Lebar T, Jerala R. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits. ACS Synth Biol 2016; 5:1050-1058. [PMID: 27344932 DOI: 10.1021/acssynbio.5b00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence , 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence , 1000 Ljubljana, Slovenia
| |
Collapse
|
213
|
Managing bioengineering complexity with AI techniques. Biosystems 2016; 148:40-46. [DOI: 10.1016/j.biosystems.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022]
|
214
|
Bradley RW, Buck M, Wang B. Recognizing and engineering digital-like logic gates and switches in gene regulatory networks. Curr Opin Microbiol 2016; 33:74-82. [DOI: 10.1016/j.mib.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023]
|
215
|
Skjoedt ML, Snoek T, Kildegaard KR, Arsovska D, Eichenberger M, Goedecke TJ, Rajkumar AS, Zhang J, Kristensen M, Lehka BJ, Siedler S, Borodina I, Jensen MK, Keasling JD. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 2016; 12:951-958. [DOI: 10.1038/nchembio.2177] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
|
216
|
Maddalena LLD, Niederholtmeyer H, Turtola M, Swank ZN, Belogurov GA, Maerkl SJ. GreA and GreB Enhance Expression of Escherichia coli RNA Polymerase Promoters in a Reconstituted Transcription-Translation System. ACS Synth Biol 2016; 5:929-35. [PMID: 27186988 DOI: 10.1021/acssynbio.6b00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions, making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Lea L. de Maddalena
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Henrike Niederholtmeyer
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matti Turtola
- Department
of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Zoe N. Swank
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Sebastian J. Maerkl
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
217
|
Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. eLife 2016; 5. [PMID: 27525484 PMCID: PMC5019841 DOI: 10.7554/elife.15200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI:http://dx.doi.org/10.7554/eLife.15200.001 Nature has evolved a number of ways to link signals from a cell’s environment, like the concentration of a hormone, to the behavior of that cell. These new connections often form by reusing certain common signaling components, such as mitogen-activated protein kinases. These enzymes – referred to as MAPKs for short – are activated by specific signals and alter the activity of target proteins in the cell by adding a phosphate group to them: a process called phosphorylation. These connections thus dictate how cells respond to their environments – and consequently, disruptions to the connections are a common source of disease. Groves, Khakhar et al. set out to understand how connections can be made between a MAPK and a new target protein to gain insights into how these links emerge through evolution and how they might break in disease. Their approach focused on one of the ways that phosphorylation can alter the activity of a target protein: marking it for degradation. Experiments with budding yeast showed that a MAPK could only achieve this if two conditions are met. First, the target protein and kinase need to bind to each other. Second, the target needs to contain a site that when phosphorylated is subsequently recognized by the cell’s protein degradation machinery. By engineering proteins so that they fulfilled these two criteria, Groves, Khakhar et al. created new connections between a yeast MAPK called Fus3 or a human MAPK called ERK2 and a variety of targets. The results showed that the parts of the proteins involved in the interaction step could be completely separate from the parts that are involved in the phosphorylation step. This suggests that connections between kinases and their targets can be rewired simple by mixing together parts of other existing proteins. Finally, Groves, Khakhar et al. confirmed that engineered connections between kinases and targets could predictably change how yeast cells responded to a hormone that normally controls the yeast’s reproductive cycle. Together these results bring us one step closer to understanding how cells assemble the signaling pathways that they use to process information. However further work is needed to see if these findings can be generalized to other signaling components, and if so, to explore if new connections can be built to yield more complicated cellular behaviors. DOI:http://dx.doi.org/10.7554/eLife.15200.002
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, United States
| | - Arjun Khakhar
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Cory M Nadel
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States
| |
Collapse
|
218
|
CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 2016; 38:170-179. [PMID: 27481676 DOI: 10.1016/j.ymben.2016.07.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022]
Abstract
Trans-acting regulators provide novel opportunities to study essential genes and regulate metabolic pathways. We have adapted the clustered regularly interspersed palindromic repeats (CRISPR) system from Streptococcus pyogenes to repress genes in trans in the cyanobacterium Synechococcus sp. strain PCC 7002 (hereafter PCC 7002). With this approach, termed CRISPR interference (CRISPRi), transcription of a specific target sequence is repressed by a catalytically inactive Cas9 protein recruited to the target DNA by base-pair interactions with a single guide RNA that is complementary to the target sequence. We adapted this system for PCC 7002 and achieved conditional and titratable repression of a heterologous reporter gene, yellow fluorescent protein. Next, we demonstrated the utility of finely tuning native gene expression by downregulating the abundance of phycobillisomes. In addition, we created a conditional auxotroph by repressing synthesis of the carboxysome, an essential component of the carbon concentrating mechanism cyanobacteria use to fix atmospheric CO2. Lastly, we demonstrated a novel strategy for increasing central carbon flux by conditionally downregulating a key node in nitrogen assimilation. The resulting cells produced 2-fold more lactate than a baseline engineered cell line, representing the highest photosynthetically generated productivity to date. This work is the first example of titratable repression in cyanobacteria using CRISPRi, enabling dynamic regulation of essential processes and manipulation of flux through central carbon metabolism. This tool facilitates the study of essential genes of unknown function and enables groundbreaking metabolic engineering capability, by providing a straightforward approach to redirect metabolism and carbon flux in the production of high-value chemicals.
Collapse
|
219
|
Rugbjerg P, Genee HJ, Jensen K, Sarup-Lytzen K, Sommer MOA. Molecular Buffers Permit Sensitivity Tuning and Inversion of Riboswitch Signals. ACS Synth Biol 2016; 5:632-8. [PMID: 27138234 PMCID: PMC4949582 DOI: 10.1021/acssynbio.5b00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Predictable integration
of foreign biological signals and parts
remains a key challenge in the systematic engineering of synthetic
cellular actuations, and general methods to improve signal transduction
and sensitivity are needed. To address this problem we modeled and
built a molecular signal buffer network in Saccharomyces cerevisiae inspired by chemical pH buffer systems. The molecular buffer system
context-insulates a riboswitch enabling synthetic control of colony
formation and modular signal manipulations. The riboswitch signal
is relayed to a transcriptional activation domain of a split transcription
factor, while interacting DNA-binding domains mediate the transduction
of signal and form an interacting molecular buffer. The molecular
buffer system enables modular signal inversion through integration
with repressor modules. Further, tuning of input sensitivity was achieved
through perturbation of the buffer pair ratio guided by a mathematical
model. Such buffered signal tuning networks will be useful for domestication
of RNA-based sensors enabling tunable outputs and library-wide selections
for drug discovery and metabolic engineering.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, DK-2970 Hørsholm, Denmark
| | - Hans Jasper Genee
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, DK-2970 Hørsholm, Denmark
| | - Kristian Jensen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, DK-2970 Hørsholm, Denmark
| | - Kira Sarup-Lytzen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, DK-2970 Hørsholm, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, DK-2970 Hørsholm, Denmark
| |
Collapse
|
220
|
Abstract
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology--including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits--and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products.
Collapse
|
221
|
Medford JI, Prasad A. Towards programmable plant genetic circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:139-148. [PMID: 27297052 DOI: 10.1111/tpj.13235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones.
Collapse
Affiliation(s)
- June I Medford
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ashok Prasad
- School of Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Biological and Chemical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
222
|
Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E, Pocock M, Bissell M, Madsen C, Nguyen T, Zhang M, Zhang Z, Zundel Z, Densmore D, Gennari JH, Wipat A, Sauro HM, Myers CJ. Sharing Structure and Function in Biological Design with SBOL 2.0. ACS Synth Biol 2016; 5:498-506. [PMID: 27111421 DOI: 10.1021/acssynbio.5b00215] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate.
Collapse
Affiliation(s)
- Nicholas Roehner
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Kevin Clancy
- Thermo Fisher Scientific, Carlsbad, California 92008, United States
| | - Bryan Bartley
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Goksel Misirli
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Raik Grünberg
- Institute
for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Ernst Oberortner
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Matthew Pocock
- Turing Ate My Hamster, Ltd., Newcastle
upon Tyne NE27 0RT, U.K
| | | | - Curtis Madsen
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Tramy Nguyen
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Michael Zhang
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Zhen Zhang
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Zach Zundel
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Douglas Densmore
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - John H. Gennari
- Department
of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, United States
| | - Anil Wipat
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Herbert M. Sauro
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Chris J. Myers
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
223
|
Fernandez-Rodriguez J, Voigt CA. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res 2016; 44:6493-502. [PMID: 27298256 PMCID: PMC5291274 DOI: 10.1093/nar/gkw537] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
224
|
Wang Z, Cirino PC. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms. Curr Opin Biotechnol 2016; 42:159-168. [PMID: 27284635 DOI: 10.1016/j.copbio.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
Engineering efficient biosynthesis of natural products in microorganisms requires optimizing gene expression levels to balance metabolite flux distributions and to minimize accumulation of toxic intermediates. Such metabolic optimization is challenged with identifying the right gene targets, and then determining and achieving appropriate gene expression levels. After decades of having a relatively limited set of gene regulation tools available, metabolic engineers are recently enjoying an ever-growing repertoire of more precise and tunable gene expression platforms. Here we review recent applications of natural and designed transcriptional and translational regulatory machinery for engineering biosynthesis of natural products in microorganisms. Customized trans-acting RNAs (sgRNA, asRNA and sRNA), along with appropriate accessory proteins, are allowing for unparalleled tuning of gene expression. Meanwhile metabolite-responsive transcription factors and riboswitches have been implemented in strain screening and evolution, and in dynamic gene regulation. Further refinements and expansions on these platform technologies will circumvent many long-term obstacles in natural products biosynthesis.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
225
|
Cress BF, Jones JA, Kim DC, Leitz QD, Englaender JA, Collins SM, Linhardt RJ, Koffas MAG. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res 2016; 44:4472-85. [PMID: 27079979 PMCID: PMC4872105 DOI: 10.1093/nar/gkw231] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Robust gene circuit construction requires use of promoters exhibiting low crosstalk. Orthogonal promoters have been engineered utilizing an assortment of natural and synthetic transcription factors, but design of large orthogonal promoter-repressor sets is complicated, labor-intensive, and often results in unanticipated crosstalk. The specificity and ease of targeting the RNA-guided DNA-binding protein dCas9 to any 20 bp user-defined DNA sequence makes it a promising candidate for orthogonal promoter regulation. Here, we rapidly construct orthogonal variants of the classic T7-lac promoter using site-directed mutagenesis, generating a panel of inducible hybrid promoters regulated by both LacI and dCas9. Remarkably, orthogonality is mediated by only two to three nucleotide mismatches in a narrow window of the RNA:DNA hybrid, neighboring the protospacer adjacent motif. We demonstrate that, contrary to many reports, one PAM-proximal mismatch is insufficient to abolish dCas9-mediated repression, and we show for the first time that mismatch tolerance is a function of target copy number. Finally, these promoters were incorporated into the branched violacein biosynthetic pathway as dCas9-dependent switches capable of throttling and selectively redirecting carbon flux in Escherichia coli. We anticipate this strategy is relevant for any promoter and will be adopted for many applications at the interface of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - J Andrew Jones
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Daniel C Kim
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Quentin D Leitz
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jacob A Englaender
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shannon M Collins
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
226
|
Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science 2016; 352:aac7341. [PMID: 27034378 DOI: 10.1126/science.aac7341] [Citation(s) in RCA: 613] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/21/2016] [Indexed: 12/12/2022]
Abstract
Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.
Collapse
Affiliation(s)
- Alec A K Nielsen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan S Der
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Jonghyeon Shin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant Vaidyanathan
- Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Vanya Paralanov
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - Elizabeth A Strychalski
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - David Ross
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - Douglas Densmore
- Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
227
|
Lee YJ, Hoynes-O'Connor A, Leong MC, Moon TS. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res 2016; 44:2462-73. [PMID: 26837577 PMCID: PMC4797300 DOI: 10.1093/nar/gkw056] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Allison Hoynes-O'Connor
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew C Leong
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
228
|
Beal J, Haddock-Angelli T, Gershater M, de Mora K, Lizarazo M, Hollenhorst J, Rettberg R, iGEM Interlab Study Contributors. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli. PLoS One 2016; 11:e0150182. [PMID: 26937966 PMCID: PMC4777433 DOI: 10.1371/journal.pone.0150182] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/10/2016] [Indexed: 11/18/2022] Open
Abstract
We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies, Cambridge, MA, United States of America
- * E-mail:
| | | | | | - Kim de Mora
- iGEM Foundation, Cambridge, MA, United States of America
| | | | | | - Randy Rettberg
- iGEM Foundation, Cambridge, MA, United States of America
| | | |
Collapse
|
229
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
230
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
231
|
Merulla D, van der Meer JR. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. ACS Synth Biol 2016; 5:36-45. [PMID: 26348795 DOI: 10.1021/acssynbio.5b00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.
Collapse
Affiliation(s)
- Davide Merulla
- Department of Fundamental
Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
232
|
Abstract
A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip‐based oligo synthesis was applied to build a large library of 5,668 terminator–promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
233
|
Ciechonska M, Grob A, Isalan M. From noise to synthetic nucleoli: can synthetic biology achieve new insights? Integr Biol (Camb) 2016; 8:383-93. [PMID: 26751735 DOI: 10.1039/c5ib00271k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
234
|
Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F. Synthetic biology: insights into biological computation. Integr Biol (Camb) 2016; 8:518-32. [DOI: 10.1039/c5ib00274e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology.
Collapse
Affiliation(s)
- Romilde Manzoni
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Arturo Urrios
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Silvia Velazquez-Garcia
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Francesc Posas
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| |
Collapse
|
235
|
Promising applications of synthetic biology – and how to avoid their potential pitfalls. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
236
|
Van Hove B, Love AM, Ajikumar PK, De Mey M. Programming Biology: Expanding the Toolset for the Engineering of Transcription. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
237
|
Glasscock C, Lucks J, DeLisa M. Engineered Protein Machines: Emergent Tools for Synthetic Biology. Cell Chem Biol 2016; 23:45-56. [DOI: 10.1016/j.chembiol.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
238
|
Xenobiotic Life. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
239
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
240
|
Fernandez-Rodriguez J, Yang L, Gorochowski TE, Gordon DB, Voigt CA. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth Biol 2015; 4:1361-72. [PMID: 26548807 DOI: 10.1021/acssynbio.5b00170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic memory can be implemented using enzymes that catalyze DNA inversions, where each orientation corresponds to a "bit". Here, we use two DNA invertases (FimE and HbiF) that reorient DNA irreversibly between two states with opposite directionality. First, we construct memory that is set by FimE and reset by HbiF. Next, we build a NOT gate where the input promoter drives FimE and in the absence of signal the reverse state is maintained by the constitutive expression of HbiF. The gate requires ∼3 h to turn on and off. The evolutionary stabilities of these circuits are measured by passaging cells while cycling function. The memory switch is stable over 400 h (17 days, 14 state changes); however, the gate breaks after 54 h (>2 days) due to continuous invertase expression. Genome sequencing reveals that the circuit remains intact, but the host strain evolves to reduce invertase expression. This work highlights the need to evaluate the evolutionary robustness and failure modes of circuit designs, especially as more complex multigate circuits are implemented.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Yang
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas E. Gorochowski
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - D. Benjamin Gordon
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Christopher A. Voigt
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
241
|
Ike K, Arasawa Y, Koizumi S, Mihashi S, Kawai-Noma S, Saito K, Umeno D. Evolutionary Design of Choline-Inducible and -Repressible T7-Based Induction Systems. ACS Synth Biol 2015; 4:1352-60. [PMID: 26289535 DOI: 10.1021/acssynbio.5b00107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By assembly and evolutionary engineering of T7-phage-based transcriptional switches made from endogenous components of the bet operon on the Escherichia coli chromosome, genetic switches inducible by choline, a safe and inexpensive compound, were constructed. The functional plasticity of the BetI repressor was revealed by rapid and high-frequency identification of functional variants with various properties, including those with high stringency, high maximum expression level, and reversed phenotypes, from a pool of BetI mutants. The plasmid expression of BetI mutants resulted in the choline-inducible (Bet-ON) or choline-repressible (Bet-OFF) switching of genes under the pT7/betO sequence at unprecedentedly high levels, while keeping the minimal leaky expression in uninduced conditions.
Collapse
Affiliation(s)
- Kohei Ike
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Yusuke Arasawa
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Satoshi Koizumi
- Technology Development & Research Department, Kyowa Hakko Bio Co., Ltd., 1-6-1, Ohtemachi, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Satoshi Mihashi
- Technology Development & Research Department, Kyowa Hakko Bio Co., Ltd., 1-6-1, Ohtemachi, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Shigeko Kawai-Noma
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
| | - Daisuke Umeno
- Department
of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cyo, Inage-ku, Chiba 263-8522, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
242
|
Cress BF, Trantas EA, Ververidis F, Linhardt RJ, Koffas MAG. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 2015; 36:205-14. [DOI: 10.1016/j.copbio.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
243
|
Wang W, Li X, Li Y, Li S, Fan K, Yang K. A genetic biosensor for identification of transcriptional repressors of target promoters. Sci Rep 2015; 5:15887. [PMID: 26510468 PMCID: PMC4625125 DOI: 10.1038/srep15887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Transcriptional repressors provide widespread biological significance in the regulation of gene expression. However, in prokaryotes, it is particularly difficult to find transcriptional repressors that recognize specific target promoters on genome-scale. To address this need, a genetic biosensor for identifying repressors of target promoters was developed in Escherichia coli from a de novo designed genetic circuit. This circuit can convert the negative input of repressors into positive output of reporters, thereby facilitating the selection and identification of repressors. After evaluating the sensitivity and bias, the biosensor was used to identify the repressors of scbA and aco promoters (PscbA and Paco), which control the transcription of signalling molecule synthase genes in Streptomyces coelicolor and Streptomyces avermitilis, respectively. Two previously unknown repressors of PscbA were identified from a library of TetR family regulators in S. coelicolor, and three novel repressors of Paco were identified from a genomic library of S. avermitilis. Further in vivo and in vitro experiments confirmed that these newly identified repressors attenuated the transcription of their target promoters by direct binding. Overall, the genetic biosensor developed here presents an innovative and powerful strategy that could be applied for identifying genome-wide unknown repressors of promoters in bacteria.
Collapse
Affiliation(s)
- Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
244
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
245
|
Niederholtmeyer H, Sun ZZ, Hori Y, Yeung E, Verpoorte A, Murray RM, Maerkl SJ. Rapid cell-free forward engineering of novel genetic ring oscillators. eLife 2015; 4:e09771. [PMID: 26430766 PMCID: PMC4714972 DOI: 10.7554/elife.09771] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022] Open
Abstract
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data collection, and poor quantitative characterization. Cell-free systems are appealing alternative environments, but it remains questionable whether biological networks behave similarly in cell-free systems and in cells. We characterized in a cell-free system the ‘repressilator’, a three-node synthetic oscillator. We then engineered novel three, four, and five-gene ring architectures, from characterization of circuit components to rapid analysis of complete networks. When implemented in cells, our novel 3-node networks produced population-wide oscillations and 95% of 5-node oscillator cells oscillated for up to 72 hr. Oscillation periods in cells matched the cell-free system results for all networks tested. An alternate forward engineering paradigm using cell-free systems can thus accurately capture cellular behavior. DOI:http://dx.doi.org/10.7554/eLife.09771.001 Engineers often use simplified models to test their ideas. For example, engineers test small-scale models of new airplane designs in wind tunnels to see how easily air flows by them. This saves the engineers the time and expense of building a full-sized aircraft only to learn it has serious design flaws. The interactions of genes and proteins within living cells can be incredibly complex, and working out how a particular network works can take months or years in living cells. To try to speed up and simplify the process, scientists are developing models that do not involve cells. These models replicate the chemistry inside of the cells and allow scientists to observe complex interactions between genes, proteins and other cellular components. Some scientists have recreated complex patterns of gene expression in these cell-free models, but these systems still take a long time to make. It is also not yet clear whether these models accurately depict what happens in living cells. Now, Niederholtmeyer, Sun et al. have created a cell-free system that allows the interactions of a large network of genes to be examined in a single day – a process that would previously have taken weeks or months. To test the model, Niederholtmeyer, Sun et al. recreated how networks of genes in the bacterium Escherichia coli interact to form “oscillations”, which produce a regular rhythm of gene expression. When the cell-free oscillator networks were inserted into live E. coli cells, the oscillators continued to produce the same patterns of gene expression as they did outside the cells. Overall, the experiments show that cell-free models can accurately reproduce, or emulate, the behavior of cellular networks. This work now opens the door for engineering ever more complex genetic networks in a cell-free system, which in turn will enable rapid prototyping and detailed characterization of complex biological reaction networks. DOI:http://dx.doi.org/10.7554/eLife.09771.002
Collapse
Affiliation(s)
- Henrike Niederholtmeyer
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zachary Z Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yutaka Hori
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Enoch Yeung
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Amanda Verpoorte
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
246
|
White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. Biotechnol Adv 2015; 33:1653-70. [PMID: 26303096 DOI: 10.1016/j.biotechadv.2015.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose.
Collapse
|
247
|
Castillo-Hair SM, Villota ER, Coronado AM. Design principles for robust oscillatory behavior. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:125-33. [PMID: 26279706 DOI: 10.1007/s11693-015-9178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.
Collapse
Affiliation(s)
- Sebastian M Castillo-Hair
- Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería, Av. Túpac Amaru s/n - Puerta 3, Pabellón A, 25 Lima, Peru
| | - Elizabeth R Villota
- Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería, Av. Túpac Amaru s/n - Puerta 3, Pabellón A, 25 Lima, Peru
| | - Alberto M Coronado
- Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería, Av. Túpac Amaru s/n - Puerta 3, Pabellón A, 25 Lima, Peru
| |
Collapse
|
248
|
Leavitt JM, Alper HS. Advances and current limitations in transcript-level control of gene expression. Curr Opin Biotechnol 2015; 34:98-104. [DOI: 10.1016/j.copbio.2014.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
|
249
|
Biarnes-Carrera M, Breitling R, Takano E. Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 2015; 28:91-8. [PMID: 26164547 DOI: 10.1016/j.cbpa.2015.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 01/14/2023]
Abstract
Signalling circuits based on quorum sensing mechanisms have been popular tools for synthetic biology. Recent advances in our understanding of the analogous systems regulating antibiotics production in soil bacteria suggest that these might provide useful complementary tools to increase the complexity of possible circuit designs. Here we discuss the diversity of these natural circuits, which use γ-butyrolactones (GBLs) as their main inter-cellular signal, highlighting the range of new building blocks they could provide, as well as a number of exciting recent applications of GBL-based circuits in heterologous systems. We conclude by presenting examples of the novel circuit complexity that could become accessible through the use of GBL-based designs.
Collapse
Affiliation(s)
- Marc Biarnes-Carrera
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
250
|
Beal J. Signal-to-Noise Ratio Measures Efficacy of Biological Computing Devices and Circuits. Front Bioeng Biotechnol 2015; 3:93. [PMID: 26177070 PMCID: PMC4485182 DOI: 10.3389/fbioe.2015.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2015] [Indexed: 11/13/2022] Open
Abstract
Engineering biological cells to perform computations has a broad range of important potential applications, including precision medical therapies, biosynthesis process control, and environmental sensing. Implementing predictable and effective computation, however, has been extremely difficult to date, due to a combination of poor composability of available parts and of insufficient characterization of parts and their interactions with the complex environment in which they operate. In this paper, the author argues that this situation can be improved by quantitative signal-to-noise analysis of the relationship between computational abstractions and the variation and uncertainty endemic in biological organisms. This analysis takes the form of a ΔSNRdB function for each computational device, which can be computed from measurements of a device's input/output curve and expression noise. These functions can then be combined to predict how well a circuit will implement an intended computation, as well as evaluating the general suitability of biological devices for engineering computational circuits. Applying signal-to-noise analysis to current repressor libraries shows that no library is currently sufficient for general circuit engineering, but also indicates key targets to remedy this situation and vastly improve the range of computations that can be used effectively in the implementation of biological applications.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies, Cambridge, MA, USA
| |
Collapse
|