201
|
Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 2017; 50:117-125. [PMID: 27998397 PMCID: PMC5422023 DOI: 10.5483/bmbrep.2017.50.3.222] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a “cancer heterogeneity” due to “CSC plasticity” A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
202
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
203
|
Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 2017; 18:58. [PMID: 28351383 PMCID: PMC5370462 DOI: 10.1186/s13059-017-1185-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.
Collapse
Affiliation(s)
- John J Cole
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tony McBryan
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Brock
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Richard A Miller
- Department of Pathology and Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA.
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK.
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
204
|
Sánchez-Vega F, Gotea V, Chen YC, Elnitski L. CpG island methylator phenotype in adenocarcinomas from the digestive tract: Methods, conclusions, and controversies. World J Gastrointest Oncol 2017; 9:105-120. [PMID: 28344746 PMCID: PMC5348626 DOI: 10.4251/wjgo.v9.i3.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/01/2016] [Accepted: 01/03/2017] [Indexed: 02/05/2023] Open
Abstract
Over the last two decades, cancer-related alterations in DNA methylation that regulate transcription have been reported for a variety of tumors of the gastrointestinal tract. Due to its relevance for translational research, great emphasis has been placed on the analysis and molecular characterization of the CpG island methylator phenotype (CIMP), defined as widespread hypermethylation of CpG islands in clinically distinct subsets of cancer patients. Here, we present an overview of previous work in this field and also explore some open questions using cross-platform data for esophageal, gastric, and colorectal adenocarcinomas from The Cancer Genome Atlas. We provide a data-driven, pan-gastrointestinal stratification of individual samples based on CIMP status and we investigate correlations with oncogenic alterations, including somatic mutations and epigenetic silencing of tumor suppressor genes. Besides known events in CIMP such as BRAF V600E mutation, CDKN2A silencing or MLH1 inactivation, we discuss the potential role of emerging actors such as Wnt pathway deregulation through truncating mutations in RNF43 and epigenetic silencing of WIF1. Our results highlight the existence of molecular similarities that are superimposed over a larger backbone of tissue-specific features and can be exploited to reduce heterogeneity of response in clinical trials.
Collapse
|
205
|
The inheritance of epigenetic defects. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
206
|
Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway. Gastric Cancer 2017; 20:8-15. [PMID: 27718135 DOI: 10.1007/s10120-016-0650-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Multiple pathogenic mechanisms by which Helicobacter pylori infection induces gastric cancer have been established in the last two decades. In particular, aberrant DNA methylation is induced in multiple driver genes, which inactivates them. Methylation profiles in gastric cancer are associated with specific subtypes, such as microsatellite instability. Recent comprehensive and integrated analyses showed that many cancer-related pathways are more frequently altered by aberrant DNA methylation than by mutations. Aberrant DNA methylation can even be present in noncancerous gastric mucosae, producing an "epigenetic field for cancerization." Mechanistically, H. pylori-induced chronic inflammation, but not H. pylori itself, plays a direct role in the induction of aberrant DNA methylation. The expression of three inflammation-related genes, Il1b, Nos2, and Tnf, is highly associated with the induction of aberrant DNA methylation. Importantly, the degree of accumulated aberrant DNA methylation is strongly correlated with gastric cancer risk. A recent multicenter prospective cohort study demonstrated the utility of epigenetic cancer risk diagnosis for metachronous gastric cancer. Suppression of aberrant DNA methylation by a demethylating agent was shown to inhibit gastric cancer development in an animal model. Induction of aberrant DNA methylation is the major pathway by which H. pylori infection induces gastric cancer, and this can be utilized for translational opportunities.
Collapse
|
207
|
Momparler RL, Côté S, Momparler LF, Idaghdour Y. Inhibition of DNA and Histone Methylation by 5-Aza-2'-Deoxycytidine (Decitabine) and 3-Deazaneplanocin-A on Antineoplastic Action and Gene Expression in Myeloid Leukemic Cells. Front Oncol 2017; 7:19. [PMID: 28261562 PMCID: PMC5309231 DOI: 10.3389/fonc.2017.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations play an important role in the development of acute myeloid leukemia (AML) by silencing of genes that suppress leukemogenesis and differentiation. One of the key epigenetic changes in AML is gene silencing by DNA methylation. The importance of this alteration is illustrated by the induction of remissions in AML by 5-aza-2′-deoxycytidine (5-AZA-CdR, decitabine), a potent inhibitor of DNA methylation. However, most patients induced into remission by 5-AZA-CdR will relapse, suggesting that a second agent should be sought to increase the efficacy of this epigenetic therapy. An interesting candidate for this purpose is 3-deazaneplanocin A (DZNep). This analog inhibits EZH2, a histone methyltransferase that trimethylates lysine 27 histone H3 (H3K27me3), a marker for gene silencing. This second epigenetic silencing mechanism also plays an important role in leukemogenesis as shown in preclinical studies where DZNep exhibits potent inhibition of colony formation by AML cells. We reported previously that 5-AZA-CdR in combination with DZNep exhibits a synergistic antineoplastic action against human HL-60 AML cells and the synergistic activation of several tumor suppressor genes. In this report, we showed that this combination also induced a synergistic activation of apoptosis in HL-60 cells. The synergistic antineoplastic action of 5-AZA-CdR plus DZNep was also observed on a second human myeloid leukemia cell line, AML-3. In addition, 5-AZA-CdR in combination with the specific inhibitors of EZH2, GSK-126, or GSK-343, also exhibited a synergistic antineoplastic action on both HL-60 and AML-3. The combined action of 5-AZA-CdR and DZNep on global gene expression in HL-60 cells was investigated in greater depth using RNA sequencing analysis. We observed that this combination of epigenetic agents exhibited a synergistic activation of hundreds of genes. The synergistic activation of so many genes that suppress malignancy by 5-AZA-CdR plus DZNep suggests that epigenetic gene silencing by DNA and histone methylation plays a major role in leukemogenesis. Targeting DNA and histone methylation is a promising approach that merits clinical investigation for the treatment of AML.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de Pharmacologie, Université de Montréal, Montreal, QC, Canada; Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine, Montréal, QC, Canada
| | - Sylvie Côté
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Louise F Momparler
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Youssef Idaghdour
- Department of Biology, New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| |
Collapse
|
208
|
Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun 2017; 8:14433. [PMID: 28195122 PMCID: PMC5316884 DOI: 10.1038/ncomms14433] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are mostly benign brain tumours, with a potential for becoming atypical or malignant. On the basis of comprehensive genomic, transcriptomic and epigenomic analyses, we compared benign meningiomas to atypical ones. Here, we show that the majority of primary (de novo) atypical meningiomas display loss of NF2, which co-occurs either with genomic instability or recurrent SMARCB1 mutations. These tumours harbour increased H3K27me3 signal and a hypermethylated phenotype, mainly occupying the polycomb repressive complex 2 (PRC2) binding sites in human embryonic stem cells, thereby phenocopying a more primitive cellular state. Consistent with this observation, atypical meningiomas exhibit upregulation of EZH2, the catalytic subunit of the PRC2 complex, as well as the E2F2 and FOXM1 transcriptional networks. Importantly, these primary atypical meningiomas do not harbour TERT promoter mutations, which have been reported in atypical tumours that progressed from benign ones. Our results establish the genomic landscape of primary atypical meningiomas and potential therapeutic targets. Meningiomas are mostly benign brain tumours with the potential for becoming atypical or malignant. Here, the authors show that primary atypical meningiomas are epigenetically and genetically distinct from benign and progressed tumours, highlighting possible therapeutic targets such as PRC2.
Collapse
|
209
|
Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proc Natl Acad Sci U S A 2017; 114:2230-2234. [PMID: 28193856 DOI: 10.1073/pnas.1616556114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, it was suggested that tissue variation in cancer risk originates from differences in the number of stem-cell divisions underlying each tissue, leading to different mutation loads. We show that this variation is also correlated with the degree of aberrant CpG island DNA methylation in normal cells. Methylation accumulates during aging in a subset of molecules, suggesting that the epigenetic landscape within a founder-cell population may contribute to tumor formation.
Collapse
|
210
|
Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:137-176. [DOI: 10.1016/bs.pmbts.2017.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
211
|
Matsusaka K, Kaneda A. DNA and Histone Methylation in Gastric Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:377-390. [DOI: 10.1007/978-3-319-59786-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
212
|
Martín-Subero JI, Esteller M. Epigenetic Mechanisms in Cancer Development. THE MOLECULAR BASIS OF HUMAN CANCER 2017:263-275. [DOI: 10.1007/978-1-59745-458-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
213
|
Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 2016; 7:1927-46. [PMID: 26646321 PMCID: PMC4811507 DOI: 10.18632/oncotarget.6481] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinomas (ccRCCs) harbor frequent mutations in epigenetic modifiers including SETD2, the H3K36me3 writer. We profiled DNA methylation (5mC) across the genome in cell line-based models of SETD2 inactivation and SETD2 mutant primary tumors because 5mC has been linked to H3K36me3 and is therapeutically targetable. SETD2 depleted cell line models (long-term and acute) exhibited a DNA hypermethylation phenotype coinciding with ectopic gains in H3K36me3 centered across intergenic regions adjacent to low expressing genes, which became upregulated upon dysregulation of the epigenome. Poised enhancers of developmental genes were prominent hypermethylation targets. SETD2 mutant primary ccRCCs, papillary renal cell carcinomas, and lung adenocarcinomas all demonstrated a DNA hypermethylation phenotype that segregated tumors by SETD2 genotype and advanced grade. These findings collectively demonstrate that SETD2 mutations drive tumorigenesis by coordinated disruption of the epigenome and transcriptome,and they have important implications for future therapeutic strategies targeting chromatin regulator mutant tumors.
Collapse
|
214
|
Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer 2016; 16:803-810. [PMID: 27658528 DOI: 10.1038/nrc.2016.83] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb repressive complex 2 (PRC2), has attracted broad research attention in the past few years because of its involvement in the development and maintenance of many types of cancer and the use of specific EZH2 inhibitors in clinical trials. Several observations show that PRC2 can have both oncogenic and tumour-suppressive functions. We propose that these apparently opposing roles of PRC2 in cancer are a consequence of the molecular function of the complex in maintaining, rather than specifying, the transcriptional repression state of its several thousand target genes.
Collapse
Affiliation(s)
- Itys Comet
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Eva M Riising
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin Leblanc
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
215
|
Gao Y, Teschendorff AE. Epigenetic and genetic deregulation in cancer target distinct signaling pathway domains. Nucleic Acids Res 2016; 45:583-596. [PMID: 27899617 PMCID: PMC5314760 DOI: 10.1093/nar/gkw1100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer is characterized by both genetic and epigenetic alterations. While cancer driver mutations and copy-number alterations have been studied at a systems-level, relatively little is known about the systems-level patterns exhibited by their epigenetic counterparts. Here we perform a pan-cancer wide systems-level analysis, mapping candidate cancer-driver DNA methylation (DNAm) alterations onto a human interactome. We demonstrate that functional DNAm alterations in cancer tend to map to nodes of lower connectivity and inter-connectivity, compared to the corresponding alterations at the genomic level. We find that epigenetic alterations are relatively over-represented in extracellular and transmembrane signaling domains, whereas cancer genes undergoing amplification or deletion tend to be enriched within the intracellular domain. A pan-cancer wide meta-analysis identifies WNT and chemokine signaling, as two key pathways where epigenetic deregulation preferentially targets extracellular components. We further pinpoint specific chemokine ligands/receptors whose epigenetic deregulation associates with key epigenetic enzymes, representing potential targets for epigenetic therapy. Our results suggest that epigenetic deregulation in cancer not only targets tissue-specific transcription factors, but also modulates signaling within the extra-cellular domain, providing novel system-level insight into the potential distinctive role of genetic and epigenetic alterations in cancer.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Lab for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai 200031, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Andrew E Teschendorff
- CAS Key Lab for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai 200031, China .,Department of Women's Cancer, University College London, 74 Huntley Street, London WC1E 6BT, UK.,Statistical Genomics Group, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
216
|
Charlet J, Tomari A, Dallosso AR, Szemes M, Kaselova M, Curry TJ, Almutairi B, Etchevers HC, McConville C, Malik KTA, Brown KW. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma. Mol Carcinog 2016; 56:1290-1301. [PMID: 27862318 PMCID: PMC5396313 DOI: 10.1002/mc.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023]
Abstract
Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Charlet
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ayumi Tomari
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Anthony R Dallosso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Martina Kaselova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Thomas J Curry
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bader Almutairi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Heather C Etchevers
- Faculté de Médecine, Aix-Marseille University, GMGF, UMR_S910, Marseille, France.,Faculté de Médecine, INSERM U910, Marseille, France
| | - Carmel McConville
- Institute of Cancer & Genomic Sciences, University of Birmingham, UK
| | - Karim T A Malik
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Keith W Brown
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
217
|
Cejas P, Cavazza A, Yandava CN, Moreno V, Horst D, Moreno-Rubio J, Burgos E, Mendiola M, Taing L, Goel A, Feliu J, Shivdasani RA. Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype. Cancer Res 2016; 77:766-779. [PMID: 27899379 DOI: 10.1158/0008-5472.can-16-1346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
Abstract
Cancer cells exhibit dramatic alterations of chromatin organization at cis-regulatory elements, but the molecular basis, extent, and impact of these alterations are still being unraveled. Here, we identify extensive genome-wide modification of sites bearing the active histone mark H3K4me2 in primary human colorectal cancers, as compared with corresponding benign precursor adenomas. Modification of certain colorectal cancer sites highlighted the activity of the transcription factor CNOT3, which is known to control self-renewal of embryonic stem cells (ESC). In primary colorectal cancer cells, we observed a scattered pattern of CNOT3 expression, as might be expected for a tumor-initiating cell marker. Colorectal cancer cells exhibited nuclear and cytoplasmic expression of CNOT3, suggesting possible roles in both transcription and mRNA stability. We found that CNOT3 was bound primarily to genes whose expression was affected by CNOT3 loss, and also at sites modulated in certain types of colorectal cancers. These target genes were implicated in ESC and cancer self-renewal and fell into two distinct groups: those dependent on CNOT3 and MYC for optimal transcription and those repressed by CNOT3 binding and promoter hypermethylation. Silencing CNOT3 in colorectal cancer cells resulted in replication arrest. In clinical specimens, early-stage tumors that included >5% CNOT3+ cells exhibited a correlation to worse clinical outcomes compared with tumors with little to no CNOT3 expression. Together, our findings implicate CNOT3 in the coordination of colonic epithelial cell self-renewal, suggesting this factor as a new biomarker for molecular and prognostic classification of early-stage colorectal cancer. Cancer Res; 77(3); 766-79. ©2016 AACR.
Collapse
Affiliation(s)
- Paloma Cejas
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Hospital La Paz Institute for Health Research CIBERONC, Madrid, Spain
| | - Alessia Cavazza
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - C N Yandava
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor Moreno
- Department of Medical Oncology, Hospital La Paz Institute for Health Research CIBERONC, Madrid, Spain
| | - David Horst
- Pathology Institute, Ludwig-Maximilians-Universitat, Munich, Germany
| | - Juan Moreno-Rubio
- Department of Medical Oncology, Hospital La Paz Institute for Health Research CIBERONC, Madrid, Spain
| | - Emilio Burgos
- Department of Pathology, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Marta Mendiola
- Department of Medical Oncology, Hospital La Paz Institute for Health Research CIBERONC, Madrid, Spain.,Department of Pathology, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Len Taing
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ajay Goel
- Center for Gastrointestinal Cancer Research, Baylor University Medical Center, Dallas, Texas
| | - Jaime Feliu
- Department of Medical Oncology, Hospital La Paz Institute for Health Research CIBERONC, Madrid, Spain
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
218
|
Bernhart SH, Kretzmer H, Holdt LM, Jühling F, Ammerpohl O, Bergmann AK, Northoff BH, Doose G, Siebert R, Stadler PF, Hoffmann S. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci Rep 2016; 6:37393. [PMID: 27876760 PMCID: PMC5120258 DOI: 10.1038/srep37393] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023] Open
Abstract
Bivalent (poised or paused) chromatin comprises activating and repressing histone modifications at the same location. This combination of epigenetic marks at promoter or enhancer regions keeps genes expressed at low levels but poised for rapid activation. Typically, DNA at bivalent promoters is only lowly methylated in normal cells, but frequently shows elevated methylation levels in cancer samples. Here, we developed a universal classifier built from chromatin data that can identify cancer samples solely from hypermethylation of bivalent chromatin. Tested on over 7,000 DNA methylation data sets from several cancer types, it reaches an AUC of 0.92. Although higher levels of DNA methylation are often associated with transcriptional silencing, counter-intuitive positive statistical dependencies between DNA methylation and expression levels have been recently reported for two cancer types. Here, we re-analyze combined expression and DNA methylation data sets, comprising over 5,000 samples, and demonstrate that the conjunction of hypermethylation of bivalent chromatin and up-regulation of the corresponding genes is a general phenomenon in cancer. This up-regulation affects many developmental genes and transcription factors, including dozens of homeobox genes and other genes implicated in cancer. Thus, we reason that the disturbance of bivalent chromatin may be intimately linked to tumorigenesis.
Collapse
Affiliation(s)
- Stephan H Bernhart
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Helene Kretzmer
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Lesca M Holdt
- Ludwig-Maximilians-University, Institute of Laboratory Medicine, Munich, 81377, Germany
| | - Frank Jühling
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Inserm, U1110 - Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, 67000, France.,Université de Strasbourg, Strasbourg, 67000, France
| | - Ole Ammerpohl
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany
| | - Anke K Bergmann
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany.,Christian Albrechts University Kiel &University Hospital Schleswig-Holstein - Campus Kiel, Department of Pediatrics, Kiel, 24105, Germany
| | - Bernd H Northoff
- Ludwig-Maximilians-University, Institute of Laboratory Medicine, Munich, 81377, Germany
| | - Gero Doose
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Reiner Siebert
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany.,Ulm University &Ulm University Medical Center, Institute for Human Genetics, Ulm, 89081, Germany
| | - Peter F Stadler
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, 04107, Germany.,University of Vienna, Department of Theoretical Chemistry, Vienna, 1090, Austria.,Max-Planck-Institute for Mathematics in Sciences, Leipzig, 04103, Germany.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Steve Hoffmann
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, 04107, Germany
| |
Collapse
|
219
|
Worsham MJ, Chen KM, Datta I, Stephen JK, Chitale D, Gothard A, Divine G. The biological significance of methylome differences in human papilloma virus associated head and neck cancer. Oncol Lett 2016; 12:4949-4956. [PMID: 28101231 PMCID: PMC5228097 DOI: 10.3892/ol.2016.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/26/2016] [Indexed: 01/02/2023] Open
Abstract
In recent years, studies have suggested that promoter methylation in human papilloma virus (HPV) positive head and neck squamous cell carcinoma (HNSCC) has a mechanistic role and has the potential to improve patient survival. The present study aimed to replicate key molecular findings from previous analyses of the methylomes of HPV positive and HPV negative HNSCC in an independent cohort, to assess the reliability of differentially methylated markers in HPV-associated tumors. HPV was measured using real-time quantitative PCR and the biological significance of methylation differences was assessed by Ingenuity Pathway Analysis (IPA). Using an identical experimental design of a 450K methylation platform, 7 of the 11 genes were detected to be significantly differentially methylated and all 11 genes were either hypo- or hypermethylated, which was in agreement with the results of a previous study. IPA's enriched networks analysis identified one network with msh homeobox 2 (MSX2) as a central node. Locally dense interactions between genes in networks tend to reflect significant biology; therefore MSX2 was selected as an important gene. Sequestration in the top four canonical pathways was noted for 5-hydroxytryptamine receptor 1E (serotonin signaling), collapsin response mediator protein 1 (semaphorin signaling) and paired like homeodomain 2 (bone morphogenic protein and transforming growth factor-β signaling). Placement of 9 of the 11 genes in highly ranked pathways and bionetworks identified key biological processes to further emphasize differences between HNSCC HPV positive and negative pathogenesis.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Kang Mei Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Josena K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
220
|
Sen S, Block KF, Pasini A, Baylin SB, Easwaran H. Genome-wide positioning of bivalent mononucleosomes. BMC Med Genomics 2016; 9:60. [PMID: 27634286 PMCID: PMC5025636 DOI: 10.1186/s12920-016-0221-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background Bivalent chromatin refers to overlapping regions containing activating histone H3 Lys4 trimethylation (H3K4me3) and inactivating H3K27me3 marks. Existence of such bivalent marks on the same nucleosome has only recently been suggested. Previous genome-wide efforts to characterize bivalent chromatin have focused primarily on individual marks to define overlapping zones of bivalency rather than mapping positions of truly bivalent mononucleosomes. Results Here, we developed an efficacious sequential ChIP technique for examining global positioning of individual bivalent nucleosomes. Using next generation sequencing approaches we show that although individual H3K4me3 and H3K27me3 marks overlap in broad zones, bivalent nucleosomes are focally enriched in the vicinity of the transcription start site (TSS). These seem to occupy the H2A.Z nucleosome positions previously described as salt-labile nucleosomes, and are correlated with low gene expression. Although the enrichment profiles of bivalent nucleosomes show a clear dependency on CpG island content, they demonstrate a stark anti-correlation with methylation status. Conclusions We show that regional overlap of H3K4me3 and H3K27me3 chromatin tend to be upstream to the TSS, while bivalent nucleosomes with both marks are mainly promoter proximal near the TSS of CpG island-containing genes with poised/low expression. We discuss the implications of the focal enrichment of bivalent nucleosomes around the TSS on the poised chromatin state of promoters in stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0221-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subhojit Sen
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.,UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (East), Mumbai, 400098, India
| | - Kirsten F Block
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Alice Pasini
- Division of Respiratory Medicine and Nottingham Respiratory Biomedical Research Unit, University of Nottingham, City Hospital, Nottingham, NG5 1BP, UK
| | - Stephen B Baylin
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.
| | - Hariharan Easwaran
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.
| |
Collapse
|
221
|
A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-GENES GENOMES GENETICS 2016; 6:2773-80. [PMID: 27402357 PMCID: PMC5015934 DOI: 10.1534/g3.116.030262] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nonmethylable cytosine analogs, 5-azacytidine and zebularine, are widely used to inhibit DNA methyltransferase activity and reduce genomic DNA methylation. In this study, whole-genome bisulfite sequencing is used to construct maps of DNA methylation with single base pair resolution in Arabidopsis thaliana seedlings treated with each demethylating agent. We find that both inhibitor treatments result in nearly indistinguishable patterns of genome-wide DNA methylation and that 5-azacytidine had a slightly greater demethylating effect at higher concentrations across the genome. Transcriptome analyses revealed a substantial number of upregulated genes, with an overrepresentation of transposable element genes, in particular CACTA-like elements. This demonstrates that chemical demethylating agents have a disproportionately large effect on loci that are otherwise silenced by DNA methylation.
Collapse
|
222
|
Henrich KO, Bender S, Saadati M, Dreidax D, Gartlgruber M, Shao C, Herrmann C, Wiesenfarth M, Parzonka M, Wehrmann L, Fischer M, Duffy DJ, Bell E, Torkov A, Schmezer P, Plass C, Höfer T, Benner A, Pfister SM, Westermann F. Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas. Cancer Res 2016; 76:5523-37. [PMID: 27635046 DOI: 10.1158/0008-5472.can-15-2507] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/29/2016] [Indexed: 11/16/2022]
Abstract
The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR.
Collapse
Affiliation(s)
- Kai-Oliver Henrich
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany. k.henrich@dkfz
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany & Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Germany
| | - Maral Saadati
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Dreidax
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Moritz Gartlgruber
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Chunxuan Shao
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Martha Parzonka
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Lea Wehrmann
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Emma Bell
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alica Torkov
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany & Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Germany
| | - Frank Westermann
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany. k.henrich@dkfz
| |
Collapse
|
223
|
An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer. Biomolecules 2016; 6:biom6030037. [PMID: 27598218 PMCID: PMC5039423 DOI: 10.3390/biom6030037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is among the five most common cancers diagnosed in the Western world and causes significant mortality and morbidity rates in affected patients. Therapeutic options to treat the disease in advanced muscle-invasive bladder cancer (MIBC) include cystectomy and chemotherapy. Neoadjuvant cisplatin-based combination chemotherapy is effective in MIBC; however, it has not been widely adopted by the community. One reason is that many patients do not respond to neoadjuvant chemotherapy, and no biomarker currently exists to identify these patients. It is also not clear whether a strategy to sensitize chemoresistant patients may exist. We sought to identify cisplatin-resistance patterns in preclinical models of bladder cancer, and test whether treatment with the epigenetic modifier decitabine is able to sensitize cisplatin-resistant bladder cancer cell lines. Using a screening approach in cisplatin-resistant bladder cancer cell lines, we identified dysregulated genes by RNA sequencing (RNAseq) and DNA methylation assays. DNA methylation analysis of tumors from 18 patients receiving cisplatin-based chemotherapy was used to confirm in vitro results. Cisplatin-resistant bladder cancer cells were treated with decitabine to investigate epigenetic sensitization of resistant cell lines. Our results show that HOXA9 promoter methylation status is associated with response to cisplatin-based chemotherapy in bladder cancer cell lines and in metastatic bladder cancer. Bladder cancer cells resistant to cisplatin chemotherapy can be sensitized to cisplatin by the DNA methylation inhibitor decitabine. Our data suggest that HOXA9 promoter methylation could serve as potential predictive biomarker and decitabine might sensitize resistant tumors in patients receiving cisplatin-based chemotherapy.
Collapse
|
224
|
Respuela P, Rada-Iglesias A. Enhancer Remodeling During Early Mammalian Embryogenesis: Lessons for Somatic Reprogramming, Rejuvenation, and Aging. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
225
|
Abstract
SUMMARYEpigenetic changes are present in all human cancers and are now known to cooperate with genetic alterations to drive the cancer phenotype. These changes involve DNA methylation, histone modifiers and readers, chromatin remodelers, microRNAs, and other components of chromatin. Cancer genetics and epigenetics are inextricably linked in generating the malignant phenotype; epigenetic changes can cause mutations in genes, and, conversely, mutations are frequently observed in genes that modify the epigenome. Epigenetic therapies, in which the goal is to reverse these changes, are now one standard of care for a preleukemic disorder and form of lymphoma. The application of epigenetic therapies in the treatment of solid tumors is also emerging as a viable therapeutic route.
Collapse
Affiliation(s)
- Stephen B Baylin
- Cancer Biology Program, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
226
|
Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. Int J Mol Sci 2016; 17:ijms17091446. [PMID: 27598138 PMCID: PMC5037725 DOI: 10.3390/ijms17091446] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023] Open
Abstract
Epigenetics describes mechanisms which control gene expression and cellular processes without changing the DNA sequence. The main mechanisms in epigenetics are DNA methylation in CpG-rich promoters, histone modifications and non-coding RNAs (ncRNAs). DNA methylation modifies the function of the DNA and correlates with gene silencing. Histone modifications including acetylation/deacetylation and phosphorylation act in diverse biological processes such as transcriptional activation/inactivation and DNA repair. Non-coding RNAs play a large part in epigenetic regulation of gene expression in addition to their roles at the transcriptional and post-transcriptional level. Osteoporosis is the most common skeletal disorder, characterized by compromised bone strength and bone micro-architectural deterioration that predisposes the bones to an increased risk of fracture. It is most often caused by an increase in bone resorption that is not sufficiently compensated by a corresponding increase in bone formation. Nowadays it is well accepted that osteoporosis is a multifactorial disorder and there are genetic risk factors for osteoporosis and bone fractures. Here we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling.
Collapse
|
227
|
Teschendorff AE, Zheng SC, Feber A, Yang Z, Beck S, Widschwendter M. The multi-omic landscape of transcription factor inactivation in cancer. Genome Med 2016; 8:89. [PMID: 27562343 PMCID: PMC4997779 DOI: 10.1186/s13073-016-0342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of these transcription factors are not expressed in any given normal tissue. METHODS We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types. RESULTS We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns. CONCLUSIONS These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK.
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andy Feber
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Zhen Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
228
|
Kamimae S, Yamamoto E, Kai M, Niinuma T, Yamano HO, Nojima M, Yoshikawa K, Kimura T, Takagi R, Harada E, Harada T, Maruyama R, Sasaki Y, Tokino T, Shinomura Y, Sugai T, Imai K, Suzuki H. Epigenetic silencing of NTSR1 is associated with lateral and noninvasive growth of colorectal tumors. Oncotarget 2016; 6:29975-90. [PMID: 26334593 PMCID: PMC4745776 DOI: 10.18632/oncotarget.5034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
Our aim was to identify DNA methylation changes associated with the growth pattern and invasiveness of colorectal cancers (CRCs). Comparison of the methylation statuses of large (≥20 mm in diameter along the colonic surface) noninvasive tumors (NTs) and small (<20 mm in diameter along the colonic surface) invasive tumors (ITs) using CpG island microarray analysis showed neurotensin receptor 1 (NTSR1) to be hypermethylated in large NTs. Quantitative bisulfite pyrosequencing revealed that NTSR1 is frequently methylated in colorectal tumors, with large NTs exhibiting the highest methylation levels. The higher NTSR1 methylation levels were associated with better prognoses. By contrast, NTSR1 copy number gains were most frequent among small ITs. Methylation of NTSR1 was associated with the gene's silencing in CRC cell lines, whereas ectopic expression of NTSR1 promoted proliferation and invasion by CRC cells. Analysis of primary tumors composed of adenomatous and malignant portions revealed that NTSR1 is frequently methylated in the adenomatous portion, while methylation levels are generally lower in the cancerous portions. These results suggest that NTSR1 methylation is associated with lateral and noninvasive growth of colorectal tumors, while low levels of methylation may contribute to the malignant potential through activation of NTSR1. Our data also indicate that NTSR1 methylation may be a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Seiko Kamimae
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology, Rheumatology, Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology, Rheumatology, Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiro-o Yamano
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Tomoaki Kimura
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Ryo Takagi
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Eiji Harada
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology, Rheumatology, Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology, Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Kohzoh Imai
- Center for Medical Innovation, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
229
|
Klutstein M, Nejman D, Greenfield R, Cedar H. DNA Methylation in Cancer and Aging. Cancer Res 2016; 76:3446-50. [PMID: 27256564 DOI: 10.1158/0008-5472.can-15-3278] [Citation(s) in RCA: 580] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/14/2016] [Indexed: 12/26/2022]
Abstract
DNA methylation is known to be abnormal in all forms of cancer, but it is not really understood how this occurs and what is its role in tumorigenesis. In this review, we take a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development. Aberrant DNA methylation in cancer can be generated either prior to or following cell transformation through mutations. Increasing evidence suggests, however, that most methylation changes are generated in a programmed manner and occur in a subpopulation of tissue cells during normal aging, probably predisposing them for tumorigenesis. It is likely that this methylation contributes to the tumor state by inhibiting the plasticity of cell differentiation processes. Cancer Res; 76(12); 3446-50. ©2016 AACR.
Collapse
Affiliation(s)
- Michael Klutstein
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Deborah Nejman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Razi Greenfield
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
230
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
231
|
Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nat Commun 2016; 7:11620. [PMID: 27216078 PMCID: PMC4890182 DOI: 10.1038/ncomms11620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/14/2016] [Indexed: 02/06/2023] Open
Abstract
The exact timing and contribution of epigenetic reprogramming to carcinogenesis are unclear. Women harbouring BRCA1/2 mutations demonstrate a 30–40-fold increased risk of high-grade serous extra-uterine Müllerian cancers (HGSEMC), otherwise referred to as ‘ovarian carcinomas', which frequently develop from fimbrial cells but not from the proximal portion of the fallopian tube. Here we compare the DNA methylome of the fimbrial and proximal ends of the fallopian tube in BRCA1/2 mutation carriers and non-carriers. We show that the number of CpGs displaying significant differences in methylation levels between fimbrial and proximal fallopian tube segments are threefold higher in BRCA mutation carriers than in controls, correlating with overexpression of activation-induced deaminase in their fimbrial epithelium. The differentially methylated CpGs accurately discriminate HGSEMCs from non-serous subtypes. Epigenetic reprogramming is an early pre-malignant event integral to BRCA1/2 mutation-driven carcinogenesis. Our findings may provide a basis for cancer-preventative strategies. Women with germline variants in BRCA genes are predisposed to ovarian cancer. In this study, the authors demonstrate that fimbrial tissue from the ovary, the site of ovarian cancer, in BRCA mutant carriers contains marked DNA methylation changes compared with the proximal region of the ovary.
Collapse
|
232
|
An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma Based on mRNA, microRNA, and DNA Methylation Biomarkers. J Thorac Oncol 2016; 10:1037-48. [PMID: 26134223 DOI: 10.1097/jto.0000000000000560] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Up to 30% stage I lung cancer patients suffer recurrence within 5 years of curative surgery. We sought to improve existing protein-coding gene and microRNA expression prognostic classifiers by incorporating epigenetic biomarkers. METHODS Genome-wide screening of DNA methylation and pyrosequencing analysis of HOXA9 promoter methylation were performed in two independently collected cohorts of stage I lung adenocarcinoma. The prognostic value of HOXA9 promoter methylation alone and in combination with mRNA and miRNA biomarkers was assessed by Cox regression and Kaplan-Meier survival analysis in both cohorts. RESULTS Promoters of genes marked by polycomb in embryonic stem cells were methylated de novo in tumors and identified patients with poor prognosis. The HOXA9 locus was methylated de novo in stage I tumors (p < 0.0005). High HOXA9 promoter methylation was associated with worse cancer-specific survival (hazard ratio [HR], 2.6; p = 0.02) and recurrence-free survival (HR, 3.0; p = 0.01), and identified high-risk patients in stratified analysis of stages IA and IB. Four protein-coding gene (XPO1, BRCA1, HIF1α, and DLC1), miR-21 expression, and HOXA9 promoter methylation were each independently associated with outcome (HR, 2.8; p = 0.002; HR, 2.3; p = 0.01; and HR, 2.4; p = 0.005, respectively), and when combined, identified high-risk, therapy naive, stage I patients (HR, 10.2; p = 3 × 10). All associations were confirmed in two independently collected cohorts. CONCLUSION A prognostic classifier comprising three types of genomic and epigenomic data may help guide the postoperative management of stage I lung cancer patients at high risk of recurrence.
Collapse
|
233
|
Ullah N, Liaqat S, Fatima S, Zehra F, Anwer M, Sadiq M. Stem cells and cancer: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)61057-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
234
|
Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J 2016; 35:1298-311. [PMID: 27113256 DOI: 10.15252/embj.201593534] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Parental genomes in the endosperm are marked by differential DNA methylation and are therefore epigenetically distinct. This epigenetic asymmetry is established in the gametes and maintained after fertilization by unknown mechanisms. In this manuscript, we have addressed the key question whether parentally inherited differential DNA methylation affects de novo targeting of chromatin modifiers in the early endosperm. Our data reveal that polycomb-mediated H3 lysine 27 trimethylation (H3K27me3) is preferentially localized to regions that are targeted by the DNA glycosylase DEMETER (DME), mechanistically linking DNA hypomethylation to imprinted gene expression. Our data furthermore suggest an absence of de novo DNA methylation in the early endosperm, providing an explanation how DME-mediated hypomethylation of the maternal genome is maintained after fertilization. Lastly, we show that paternal-specific H3K27me3-marked regions are located at pericentromeric regions, suggesting that H3K27me3 and DNA methylation are not necessarily exclusive marks at pericentromeric regions in the endosperm.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| |
Collapse
|
235
|
Zheng SC, Widschwendter M, Teschendorff AE. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 2016; 8:705-19. [PMID: 27104983 DOI: 10.2217/epi-2015-0017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.
Collapse
Affiliation(s)
- Shijie C Zheng
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK.,Statistical Cancer Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
236
|
Marchesi I, Bagella L. Targeting Enhancer of Zeste Homolog 2 as a promising strategy for cancer treatment. World J Clin Oncol 2016; 7:135-148. [PMID: 27081636 PMCID: PMC4826959 DOI: 10.5306/wjco.v7.i2.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in development regulation. In specific, they regulate the transition from proliferation to differentiation, contributing to stem-cell maintenance and inhibiting an inappropriate activation of differentiation programs. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, which induces transcriptional inhibition through the tri-methylation of histone H3, an epigenetic change associated with gene silencing. EZH2 expression is high in precursor cells while its level decreases in differentiated cells. EZH2 is upregulated in various cancers with high levels associated with metastatic cancer and poor prognosis. Indeed, aberrant expression of EZH2 causes the inhibition of several tumor suppressors and differentiation genes, resulting in an uncontrolled proliferation and tumor formation. This editorial explores the role of Polycomb repressive complex 2 in cancer, focusing in particular on EZH2. The canonical function of EZH2 in gene silencing, the non-canonical activities as the methylation of other proteins and the role in gene transcriptional activation, were summarized. Moreover, mutations of EZH2, responsible for an increased methyltransferase activity in cancer, were recapitulated. Finally, various drugs able to inhibit EZH2 with different mechanism were described, specifically underscoring the effects in several cancers, in order to clarify the role of EZH2 and understand if EZH2 blockade could be a new strategy for developing specific therapies or a way to increase sensitivity of cancer cells to standard therapies.
Collapse
|
237
|
Yen CY, Huang HW, Shu CW, Hou MF, Yuan SSF, Wang HR, Chang YT, Farooqi AA, Tang JY, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373:185-92. [DOI: 10.1016/j.canlet.2016.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 02/09/2023]
|
238
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
239
|
Koya J, Kataoka K, Sato T, Bando M, Kato Y, Tsuruta-Kishino T, Kobayashi H, Narukawa K, Miyoshi H, Shirahige K, Kurokawa M. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat Commun 2016; 7:10924. [PMID: 27010239 PMCID: PMC4820786 DOI: 10.1038/ncomms10924] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
Despite the clinical impact of DNMT3A mutation on acute myeloid leukaemia, the molecular mechanisms regarding how this mutation causes leukaemogenesis in vivo are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant haematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are downregulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells, representing a DNA methylation-independent role of mutated DNMT3A. DNMT3A R882H also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, the DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), causing transcriptional silencing, revealing a DNA methylation-independent role of DNMT3A mutation. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. From our data, it is shown that DNMT3A mutants can block the differentiation of HSCs and leukaemic cells via PRC1. This interaction could be targetable in DNMT3A-mutated leukaemias. DNMT3A mutations are known to cause acute myeloid leukaemia. Here, Koya et al. show that DNMT3A R882H mutation causes monoblastic transformation and haematopoietic stem cell accumulation in a methylation-independent manner, by suppressing the polycomb repressive complex 1, causing transcriptional silencing.
Collapse
Affiliation(s)
- Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kato
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takako Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
240
|
Chen Y, Breeze CE, Zhen S, Beck S, Teschendorff AE. Tissue-independent and tissue-specific patterns of DNA methylation alteration in cancer. Epigenetics Chromatin 2016; 9:10. [PMID: 26958079 PMCID: PMC4782576 DOI: 10.1186/s13072-016-0058-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background
There is growing evidence that DNA methylation alterations contribute to carcinogenesis. While cancer tissue exhibits widespread DNA methylation changes, the proportion of tissue-specific versus tissue-independent DNA methylation alterations in cancer is unclear. In addition, it is unknown which factors determine the patterns of aberrant DNA methylation in cancer. Results Using HumanMethylation450 BeadChips (450k), we here analyze genome-wide DNA methylation patterns of ten types of fetal tissue, in addition to matched normal-cancer data for corresponding tissue types, encompassing over 3000 samples. We demonstrate that the level of aberrant cancer DNA methylation in gene promoters and gene bodies is highly correlated between cancer types. We estimate that up to 60 % of the DNA methylation variation in a cancer genome of a given tissue type is explained by the corresponding variation in a cancer genome of another type, implying that much of the cancer DNA methylation landscape is tissue independent. We further show that histone marks in normal cells are better predictors of aberrant cancer DNA methylation than the corresponding signals in human embryonic stem cells. We build predictors of cancer DNA methylation patterns and show that although inclusion of three histone marks (H3K4me3, H3K27me3 and H3K36me3) improves model accuracy, the bivalent marks are the most predictive. Finally, we show that chromatin accessibility of gene promoters in normal tissue dictates the promoter’s propensity to acquire aberrant DNA methylation in cancer in so far as it determines its level of DNA methylation in normal tissue. Conclusions Our data show that a considerable fraction of the aberrant cancer DNA methylation landscape results from a mechanism that is largely tissue specific. Histone marks as specified in the normal cell of origin provide highly predictive models of aberrant cancer DNA methylation and outperform those derived from the same marks in hESCs. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 People's Republic of China
| | - Charles E Breeze
- Medical Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK
| | - Shao Zhen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Stephan Beck
- Medical Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ; Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK ; Department of Women's Cancer, University College London, 74 Huntley Street, London, WCIE 6AU UK
| |
Collapse
|
241
|
Wang Y, Zhang J, Xiao X, Liu H, Wang F, Li S, Wen Y, Wei Y, Su J, Zhang Y, Zhang Y. The identification of age-associated cancer markers by an integrative analysis of dynamic DNA methylation changes. Sci Rep 2016; 6:22722. [PMID: 26949191 PMCID: PMC4779991 DOI: 10.1038/srep22722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/18/2016] [Indexed: 12/29/2022] Open
Abstract
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies.
Collapse
Affiliation(s)
- Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jingyu Zhang
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xingjun Xiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150086, China
| | - Hongbo Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Song Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanhua Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunming Zhang
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
242
|
Signaroldi E, Laise P, Cristofanon S, Brancaccio A, Reisoli E, Atashpaz S, Terreni MR, Doglioni C, Pruneri G, Malatesta P, Testa G. Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network. Nat Commun 2016; 7:10753. [PMID: 26923714 PMCID: PMC4773478 DOI: 10.1038/ncomms10753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas constitute one of the most significant areas of unmet medical need, owing to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We find that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated with invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a critical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signalling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signalling.
Collapse
Affiliation(s)
- Elena Signaroldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Pasquale Laise
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Silvia Cristofanon
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Arianna Brancaccio
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Elisa Reisoli
- Trasferimento Genico, IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Sina Atashpaz
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Maria Rosa Terreni
- Pathology Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Claudio Doglioni
- Pathology Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Giancarlo Pruneri
- Division of Pathology and Laboratory Medicine, European Institute of Oncology, via Ripamonti 435, Milan 20141, Italy
| | - Paolo Malatesta
- Trasferimento Genico, IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, Genoa 16132, Italy
- Department of Experimental Medicine (DiMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
243
|
Holm K, Staaf J, Lauss M, Aine M, Lindgren D, Bendahl PO, Vallon-Christersson J, Barkardottir RB, Höglund M, Borg Å, Jönsson G, Ringnér M. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res 2016; 18:27. [PMID: 26923702 PMCID: PMC4770527 DOI: 10.1186/s13058-016-0685-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Methods Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. Results We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. Conclusions Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0685-5) contains supplementary material, which is available to authorized users.
Collapse
|
244
|
Becket E, Chopra S, Duymich CE, Lin JJ, You JS, Pandiyan K, Nichols PW, Siegmund KD, Charlet J, Weisenberger DJ, Jones PA, Liang G. Identification of DNA Methylation-Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma. Cancer Res 2016; 76:1954-64. [PMID: 26759245 DOI: 10.1158/0008-5472.can-15-2622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Abstract
Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR.
Collapse
Affiliation(s)
- Elinne Becket
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Sameer Chopra
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Christopher E Duymich
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Justin J Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine Konkuk University, Seoul, Korea
| | - Kurinji Pandiyan
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Peter W Nichols
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Jessica Charlet
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Peter A Jones
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. Van Andel Research Institute, Grand Rapids, Michigan
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
245
|
Differentiation therapy: a promising strategy for cancer treatment. CHINESE JOURNAL OF CANCER 2016; 35:3. [PMID: 26739838 PMCID: PMC4704415 DOI: 10.1186/s40880-015-0059-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Abstract
Poor differentiation is an important hallmark of cancer cells, and differentiation therapy holds great promise for cancer treatment. The restoration of IkB kinase α (IKKα) leads to the differentiation of nasopharyngeal carcinoma cells with reduced tumorigenicity. The findings by Yan et al. validate the polycomb protein enhancer of zeste homologue 2 (EZH2) as a target for intervention.
Collapse
|
246
|
Polovinkin AN, Krylov IB, Druzhkov PN, Ivanchenko MV, Meyerov IB, Zaikin AA, Zolotykh NY. Solving problems of clustering and classification of cancer diseases based on DNA methylation data. PATTERN RECOGNITION AND IMAGE ANALYSIS 2016. [DOI: 10.1134/s1054661816010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
247
|
Putiri EL, Tiedemann RL, Liu C, Choi JH, Robertson KD. Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Oncotarget 2015; 5:6338-52. [PMID: 25071008 PMCID: PMC4171634 DOI: 10.18632/oncotarget.2215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The correlation between DNA methylation and a subset of histone post-translational modifications (positive and negative) has hinted at an underlying regulatory crosstalk between histone marks and DNA methylation in patterning the human DNA methylome, an idea further supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation at a genome-wide level. Using RNAi in a pluripotent human embryonic carcinoma cell line we depleted essential components of the MLL/COMPASS, polycomb repressive complex 2 (PRC2), and PRC1 histone modifying complexes that establish, respectively, the post-translational modifications H3K4me3, H3K27me3, and H2AK119ub, and assayed the impact of the subsequent depletion of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Depletion of H3K4me3 and, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those commonly targeted for aberrant hypermethylation in cancer. Taken together, our results elucidate novel roles for polycomb and MLL/COMPASS in regulating DNA methylation and define targets of this regulation.
Collapse
Affiliation(s)
- Emily L Putiri
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Rochelle L Tiedemann
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Cancer Center, Georgia Regents University, Augusta, GA
| | - Chunsheng Liu
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Jeong-Hyeon Choi
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Cancer Center, Georgia Regents University, Augusta, GA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
248
|
Liu F, Gu L, Cao Y, Fan X, Zhang F, Sang M. Aberrant overexpression of EZH2 and H3K27me3 serves as poor prognostic biomarker for esophageal squamous cell carcinoma patients. Biomarkers 2015; 21:80-90. [PMID: 26631178 DOI: 10.3109/1354750x.2015.1118537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been reported that the trimethylation of histone 3 on lysine 27 (H3K27me3) is required for enhancer of zeste homology 2 (EZH2)-mediated repression of various genes essential for tumorigenesis and tumor development. Here, we reported the expression of EZH2 and H3K27me3 in esophageal squamous cell carcinoma (ESCC) specimens was higher than the pericarcinoma esophageal specimens. Their expression was positively associated with the poor prognosis of ESCC patients. EZH2 expression, histological grade and distant lymph node metastasis were all independent factors for poor prognosis of ESCC. In addition, enforced expression of EZH2 in esophageal cancer-derived cells could increase the overall H3K27me3 level. Our results suggested the expression of EZH2 and H3K27me3 could serve as biomarkers in the prediction of ESCC patients' survival and ESCC metastasis.
Collapse
Affiliation(s)
| | | | - Yu Cao
- a Tumor Research Institute
| | | | - Fengjuan Zhang
- c Ultrasonography Department, The Fourth Hospital of Hebei Medical University , Hebei , China
| | - Meixiang Sang
- a Tumor Research Institute .,b Research Center , and
| |
Collapse
|
249
|
Alonso S, González B, Ruiz-Larroya T, Durán Domínguez M, Kato T, Matsunaga A, Suzuki K, Strongin AY, Gimènez-Bonafé P, Perucho M. Epigenetic inactivation of the extracellular matrix metallopeptidase ADAMTS19 gene and the metastatic spread in colorectal cancer. Clin Epigenetics 2015; 7:124. [PMID: 26634009 PMCID: PMC4667455 DOI: 10.1186/s13148-015-0158-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND ADAMTS19 encodes a member of the ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) protein family with emerging roles in carcinogenesis and metastasis. ADAMTS shares several distinct protein modules including a propeptide region, a metalloproteinase domain, a disintegrin-like domain, and a thrombospondin type 1 (TS) motif. In a previous work, we found ADAMTS19 frequently hypermethylated in colorectal cancer (CRC). We explored the association of methylation with tumor genotype and phenotype. RESULTS The methylation status of the CpG island in the promoter of ADAMTS19 was determined in 252 colorectal, 65 pancreatic, 33 breast and 169 ovarian primary tumors, 70 CRC metastases, and 10 CRC cell lines. Tumor-specific methylation of ADAMTS19 was significantly more frequent in gastrointestinal than in gynecological cancers (odds ratio (OR) = 2.9, confidence interval (CI) = (1.9-4.7), p = 5.2 × 10(-7)) and was independent of the methylation of adjacent loci in CRC. Hypermethylation associated with CRC with mutated BRAF oncogene (OR = 10.1, CI = (3.1-42.9), p = 6.3 × 10(-6)) and with the mucinous phenotype in CRC (OR = 2.1, CI = (1.1-4.1), p = 0.023) and ovarian cancer (OR = 60, CI = (16-346), p = 4 × 10(-16)). Methylation was significantly more frequent in CRC metastases homing to the ovary and omentum than in those homing to the liver and lung (OR = 6.1, CI = (1.8-22.2), p = 0.001). Differentiating local from distant metastatic spread, methylation negatively associated with tumor progression (p = 0.031) but positively with depth of invasion (p = 0.030). Hypermethylation associated with transcriptional repression in CRC cell lines, and treatment with 5'-AZA-2'-deoxycytidine led to reactivation of mRNA expression. shRNA-mediated silencing of ADAMTS19 had no effect on the in vitro proliferation rate of CRC cells but significantly diminished their collective migration speed (56 %, p = 3.3 × 10(-4)) and potential to migrate in collagen I (64 %, p = 4.3 × 10(-10)). CONCLUSIONS Our results highlight the frequent involvement of ADAMTS19 epigenetic silencing in CRC and mucinous ovarian cancer. The mechanistic preferences for the target organ of metastatic spread may lead to the development of diagnostic CRC biomarkers. The association with the mucinous phenotype also may have diagnostic applications for ovarian cancer.
Collapse
Affiliation(s)
- Sergio Alonso
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain
| | - Beatriz González
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain
| | - Tatiana Ruiz-Larroya
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | | | - Takaharu Kato
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503 Japan
| | - Akihiro Matsunaga
- Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503 Japan
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | - Pepita Gimènez-Bonafé
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Departament de Ciències Fisiològiques II, Campus Ciènces de Salut de Bellvitge, IDIBELL, University of Barcelona, Barcelona, 08907 Spain
| | - Manuel Perucho
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
250
|
Bartlett TE, Jones A, Goode EL, Fridley BL, Cunningham JM, Berns EMJJ, Wik E, Salvesen HB, Davidson B, Trope CG, Lambrechts S, Vergote I, Widschwendter M. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers. PLoS One 2015; 10:e0143178. [PMID: 26629914 PMCID: PMC4667934 DOI: 10.1371/journal.pone.0143178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.
Collapse
Affiliation(s)
- Thomas E. Bartlett
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Deparment of Mathematics, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Allison Jones
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Els M. J. J. Berns
- Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, The Netherlands
| | - Elisabeth Wik
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Helga B. Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Claes G. Trope
- Department of Gynaecological Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Martin Widschwendter
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|