201
|
The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012; 45:95-112. [PMID: 22367605 DOI: 10.1007/s00726-012-1252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
Studies of the last 40 years have brought to light an important physiological network, the endocannabinoid system. Endogenous and exogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors. This modulatory homoeostatic system operates in the regulation of brain function and also in the periphery. The cannabinoid system has been shown to be involved in regulating the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are modulated by these agents, thus raising the hypothesis that these compounds may be of value in the management of chronic inflammatory diseases. The special properties of endocannabinoids as neurotransmitters, their pleiotropic effects and the impact on immune function show that the endocannabinoid system represents a revolving plate of neural and immune interactions. In this paper, we outline current information on immune effects of cannabinoids in health and disease.
Collapse
|
202
|
Segev A, Ramot A, Akirav I. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task. PLoS One 2012; 7:e29988. [PMID: 22253850 PMCID: PMC3256198 DOI: 10.1371/journal.pone.0029988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 12/11/2011] [Indexed: 11/25/2022] Open
Abstract
This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 µg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive).
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Assaf Ramot
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
203
|
Moreira FA, Aguiar DC, Resstel LB, Lisboa SF, Campos AC, Gomes FV, Guimarães FS. Neuroanatomical substrates involved in cannabinoid modulation of defensive responses. J Psychopharmacol 2012; 26:40-55. [PMID: 21616976 DOI: 10.1177/0269881111400651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Administration of Cannabis sativa derivatives causes anxiolytic or anxiogenic effects in humans and laboratory animals, depending on the specific compound and dosage used. In agreement with these findings, several studies in the last decade have indicated that the endocannabinoid system modulates neuronal activity in areas involved in defensive responses. The mechanisms of these effects, however, are still not clear. The present review summarizes recent data suggesting that they involve modulation of glutamate and GABA-mediated neurotransmission in brain sites such as the medial prefrontal cortex, amygdaloid complex, bed nucleus of the stria terminalis, hippocampus and dorsal periaqueductal gray. Moreover, we also discuss results indicating that, in these regions, the endocannabinoid system could be particularly engaged by highly stressful situations.
Collapse
Affiliation(s)
- F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
204
|
Wang M, Hill MN, Zhang L, Gorzalka BB, Hillard CJ, Alger BE. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. J Psychopharmacol 2012; 26:56-70. [PMID: 21890595 PMCID: PMC3373303 DOI: 10.1177/0269881111409606] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength.
Collapse
Affiliation(s)
- Meina Wang
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Matthew N. Hill
- Department of Psychology, University of British Columbia, Vancouver, BC Canada
| | - Longhua Zhang
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Boris B. Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, BC Canada
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA 53226
| | - Bradley E. Alger
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| |
Collapse
|
205
|
Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 2012; 37:456-66. [PMID: 21918506 PMCID: PMC3242307 DOI: 10.1038/npp.2011.204] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 μg/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders.
Collapse
|
206
|
Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 2011; 204:5-16. [PMID: 22214537 DOI: 10.1016/j.neuroscience.2011.12.030] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signaling plays in phases of HPA axis regulation, and the neural sites of action mediating this regulation, were not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress, and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Overall, the current level of information indicates that endocannabinoid signaling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala, and hypothalamus.
Collapse
Affiliation(s)
- M N Hill
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
207
|
Swim stress differentially affects limbic contents of 2-arachidonoylglycerol and 2-oleoylglycerol. Neuroscience 2011; 204:74-82. [PMID: 22192839 DOI: 10.1016/j.neuroscience.2011.11.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022]
Abstract
UNLABELLED Restraint stress exposures evoke progressively larger increases in 2-arachidonoylglycerol (2-AG) in limbic brain regions as the number of repetitions increases. The Porsolt swim test usually involves two swim exposures separated by 24 h, and we asked whether the 2-AG response differed between the first and second exposures. METHODS Four groups of male C57/Bl6N mice were studied: control; exposed to a single 6 min swim and killed immediately; exposed to a single 6 min swim and killed 24 h later; and exposed to two swims, separated by 24 h, and killed after the second swim. Outcomes were swim behavior, serum corticosterone, and 2-AG and 2-oleoylglycerol (2-OG) contents in amygdala, hippocampus, and prefrontal cortex. RESULTS Mean 2-AG contents were not significantly different among the four treatment groups in any brain region and did not correlate with immobility in either forced swim exposure. However, 2-AG contents in all three brain regions only of the mice exposed to two swims were significantly, positively correlated with serum corticosterone concentrations measured at the same time. 2-OG is present in brain and exhibits a striking regional heterogeneity in control mice. 2-OG concentrations in prefrontal cortex were significantly reduced in the mice killed on the second day compared with the mice killed on the first day. As the target of 2-OG in brain is not known, the significance of these observations await further studies. CONCLUSIONS Although prior exposure to swim stress does not alter brain 2-AG contents upon re-exposure, 2-AG concentrations in brain become significantly correlated with the hypothalamic-pituitary-adrenal (HPA) axis response to stress when prior exposure to the stress has occurred. These data suggest that even a single exposure to a short period of intense stress sensitizes the 2-AG response to re-exposure to that situation and are consistent with a role for endocannabinoid signaling in modulating stress responses.
Collapse
|
208
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 PMCID: PMC3209522 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
209
|
Sidhpura N, Parsons LH. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 2011; 61:1070-87. [PMID: 21669214 PMCID: PMC3176941 DOI: 10.1016/j.neuropharm.2011.05.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 01/20/2023]
Abstract
Endogenous cannabinoids (eCBs) are retrograde messengers that provide feedback inhibition of both excitatory and inhibitory transmission in brain through the activation of presynaptic CB₁ receptors. Substantial evidence indicates that eCBs mediate various forms of short- and long-term plasticity in brain regions involved in the etiology of addiction. The present review provides an overview of the mechanisms through which eCBs mediate various forms of synaptic plasticity and discusses evidence that eCB-mediated plasticity is disrupted following exposure to a variety of abused substances that differ substantially in pharmacodynamic mechanism including alcohol, psychostimulants and cannabinoids. The possible involvement of dysregulated eCB signaling in maladaptive behaviors that evolve over long-term drug exposure is also discussed, with a particular focus on altered behavioral responses to drug exposure, deficient extinction of drug-related memories, increased drug craving and relapse, heightened stress sensitivity and persistent affective disruption (anxiety and depression).
Collapse
Affiliation(s)
- Nimish Sidhpura
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
210
|
Newsom RJ, Osterlund C, Masini CV, Day HE, Spencer RL, Campeau S. Cannabinoid receptor type 1 antagonism significantly modulates basal and loud noise induced neural and hypothalamic-pituitary-adrenal axis responses in male Sprague-Dawley rats. Neuroscience 2011; 204:64-73. [PMID: 22138156 DOI: 10.1016/j.neuroscience.2011.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/11/2011] [Accepted: 11/17/2011] [Indexed: 01/28/2023]
Abstract
Altered regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with stress-induced changes in cognitive, emotional, and physical health. Recent evidence indicates that the endogenous cannabinoid (eCB) system may modulate HPA-axis function both directly and more centrally, via regulation of limbic brain systems that control HPA-axis activity. The current study examines the contribution of cannabinoid type 1 (CB1) receptor modulation throughout the neuraxis on control and stress-induced HPA-axis activity. Adult male Sprague-Dawley rats were given intraperitoneal injections of either CB1 receptor antagonist (AM251, 2 mg/kg) or vehicle 30 min prior to a session of loud white noise stress (95 dBA for 30 min) or placement in a familiar sound-proof chamber. Immediately following stress and control treatments, rats were killed, the brains and pituitary glands were excised for subsequent immediate early gene (c-fos mRNA) measurement, and trunk blood was collected for subsequent determination of corticosterone (CORT) and adrenocorticotropic (ACTH) hormone levels. AM251 treatment resulted in a potentiated plasma ACTH response to loud noise stress. AM251 treatment also increased stress-induced plasma CORT levels, but that increase may be due to an increase in basal plasma CORT levels, as was evident in control rats. AM251 treatment produced three distinctive c-fos mRNA response patterns across the various brain regions examined. In cortical (prelimbic, infralimbic, somatosensory, and auditory) and some subcortical structures (basolateral amygdala and paraventricular nucleus of the hypothalamus), AM251 treatment produced a substantial increase in c-fos mRNA that was comparable with the elevated c-fos mRNA levels present in those brain regions of both vehicle and AM251-treated stressed rats. In some other subcortical structures (bed nucleus of the stria terminalis and medial preoptic area) and the anterior pituitary, AM251 treatment produced a c-fos mRNA response pattern that was similar to the response pattern of ACTH hormone levels, that is, no effect on no noise control levels, but an augmentation of stress-induced levels. Conversely, in the medial geniculate and ventral posterior thalamus, AM251 treatment inhibited stress-induced c-fos mRNA induction. These data indicate that disruption of eCB signaling through CB1 receptors results in potentiated neural and endocrine responses to loud noise stress, but also substantial increases in activity in various brain regions and the adrenal gland.
Collapse
Affiliation(s)
- R J Newsom
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
211
|
Hillard CJ, Weinlander KM, Stuhr KL. Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 2011; 204:207-29. [PMID: 22123166 DOI: 10.1016/j.neuroscience.2011.11.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022]
Abstract
The endocannabinoid signaling system is a widespread, neuromodulatory system in brain and is also widely utilized in the periphery to modulate metabolic functions and the immune system. Preclinical data demonstrate that endocannabinoid signaling is an important stress buffer and modulates emotional and cognitive functions. These data suggest the hypothesis that endocannabinoid signaling could be dysfunctional in a number of mental disorders. Genetic polymorphisms in the human genes for two important proteins of the endocannabinoid signaling system, the CB1 cannabinoid receptor (CB1R) and fatty acid amide hydrolase (FAAH), have been explored in the context of normal and pathological conditions. In the case of the gene for FAAH, the mechanistic relationships among the common genetic polymorphism, the expression of the FAAH protein, and its likely impact on endocannabinoid signaling are understood. However, multiple polymorphisms in the gene for the CB1R occur and are associated with human phenotypic differences without an understanding of the functional relationships among the gene, mRNA, protein, and protein function. The endocannabinoid ligands are found in the circulation, and several studies have identified changes in their concentrations under various conditions. These data are reviewed for the purpose of generating hypotheses and to encourage further studies in this very interesting and important area.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | |
Collapse
|
212
|
Bailey CR, Neumeister A. Cb1 receptor-mediated signaling emerges as a novel lead to evidence-based treatment development for stress-related psychopathology. Neurosci Lett 2011; 502:1-4. [DOI: 10.1016/j.neulet.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
213
|
Ramikie TS, Patel S. Endocannabinoid signaling in the amygdala: anatomy, synaptic signaling, behavior, and adaptations to stress. Neuroscience 2011; 204:38-52. [PMID: 21884761 DOI: 10.1016/j.neuroscience.2011.08.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/08/2011] [Accepted: 08/17/2011] [Indexed: 01/09/2023]
Abstract
The molecular constituents of endocannabinoid (eCB) signaling are abundantly expressed within the mammalian amygdaloid complex, consistent with the robust role of eCB signaling in the modulation of emotional behavior, learning, and stress-response physiology. Here, we detail the anatomical distribution of eCB signaling machinery in the amygdala and the role of this system in the modulation of excitatory and inhibitory neuroplasticity in this region. We also summarize recent findings demonstrating dynamic alternations in eCB signaling that occur in response to stress exposure, as well as known behavioral consequences of eCB-mediated modulation of amygdala function. Finally, we discuss how integrating anatomical and physiological data regarding eCB signaling in the amygdala could help elucidate common functional motifs of this system in relation to broader forebrain function.
Collapse
Affiliation(s)
- T S Ramikie
- Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
214
|
Cannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways. Neuroscience 2011; 204:117-24. [PMID: 21871539 DOI: 10.1016/j.neuroscience.2011.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022]
Abstract
This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following extinction of preference for the cocaine-paired environment, reinstatement of place preference was determined following 6 min of swim stress or cocaine injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of mice was tested for reinstatement following administration of the cannabinoid agonist CP 55,940 (10, 20, or 40 μg/kg, i.p.). The alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 μg/kg) was administered to a third group of mice. We found that: (1) AM-251 blocked forced swim-induced, but not cocaine-induced, reinstatement of cocaine-seeking behavior; (2) the cannabinoid agonist CP 55,940 did not reinstate cocaine-seeking behavior when administered alone but did synergize with a non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to cause reinstatement. These results are consistent with the hypothesis that stress exposure triggers the endogenous activation of CB1 receptors and that activation of the endocannabinoid system is required for the stress-induced relapse of the mice to cocaine seeking. Further, the data suggest that the endocannabinoid system interacts with noradrenergic mechanisms to influence stress-induced reinstatement of cocaine-seeking behavior.
Collapse
|
215
|
Abstract
Stress activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in increased circulating corticosteroid concentrations. Stress-induced corticosteroids exert diverse actions in multiple target tissues over a broad range of timescales, ranging from rapid actions, which are induced within seconds to minutes and gene transcription independent, to slow actions, which are delayed, long lasting, and transcription dependent. Rapid corticosteroid actions in the brain include, among others, a fast negative feedback mechanism responsible for shutting down the activated HPA axis centrally. We provide a brief review of the cellular mechanisms responsible for rapid corticosteroid actions in different brain structures of the rat, including the hypothalamus, hippocampus, amygdala, and in the anterior pituitary. We propose a model for the direct feedback inhibition of the HPA axis by glucocorticoids in the hypothalamus. According to this model, glucocorticoids activate membrane glucocorticoid receptors to induce endocannabinoid synthesis in the hypothalamic paraventricular nucleus (PVN) and retrograde cannabinoid type I receptor-mediated suppression of the excitatory synaptic drive to PVN neuroendocrine cells. Rapid corticosteroid actions in the hippocampus, amygdala, and pituitary are mediated by diverse cellular mechanisms and may also contribute to the rapid negative feedback regulation of the HPA neuroendocrine axis as well as to the stress regulation of emotional and spatial memory formation.
Collapse
Affiliation(s)
- Jeffrey G Tasker
- Department of Cell and Molecular Biology and Neuroscience Program, Tulane University, New Orleans, LA 70118, USA.
| | | |
Collapse
|
216
|
Abstract
Endogenous cannabinoids play an important role in the physiology and behavioral expression of stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) axis, including the release of glucocorticoids, is the fundamental hormonal response to stress. Endocannabinoid (eCB) signaling serves to maintain HPA-axis homeostasis, by buffering basal activity as well as by mediating glucocorticoid fast feedback mechanisms. Following chronic stressor exposure, eCBs are also involved in physiological and behavioral habituation processes. Behavioral consequences of stress include fear and stress-induced anxiety as well as memory formation in the context of stress, involving contextual fear conditioning and inhibitory avoidance learning. Chronic stress can also lead to depression-like symptoms. Prominent in these behavioral stress responses is the interaction between eCBs and the HPA-axis. Future directions may differentiate among eCB signaling within various brain structures/neuronal subpopulations as well as between the distinct roles of the endogenous cannabinoid ligands. Investigation into the role of the eCB system in allostatic states and recovery processes may give insight into possible therapeutic manipulations of the system in treating chronic stress-related conditions in humans.
Collapse
|
217
|
Dono LM, Currie PJ. The cannabinoid receptor CB₁ inverse agonist AM251 potentiates the anxiogenic activity of urocortin I in the basolateral amygdala. Neuropharmacology 2011; 62:192-9. [PMID: 21736884 DOI: 10.1016/j.neuropharm.2011.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/03/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
The basolateral amygdala is reported to play an important role in the neural bases of emotional processing. Previous studies have shown that injections of urocortin I (UcnI) into the basolateral amygdala (BLA) elicit anxiety-like behaviors in animal models. The present study examined the anxiogenic effects of UcnI administered directly into the BLA of male Sprague-Dawley rats. UcnI was administered at doses of 0.1-10.0 pmol and rats were then placed in an elevated plus maze for 10 min. UcnI reliably decreased the percent time spent in the open arms of the elevated plus maze (EPM) as well as open arm entries. This effect was observed across all doses tested, indicating the induction of anxiety-like behavior. In separate groups of rats, the CB(1) inverse agonist AM251 was administered systemically (0.03-3.0 mg/kg IP) or directly into the BLA (0.25-25.0 pmol) and EPM performance assessed. Both routes of AM251 administration produced a reduction in open arm entries and in time spent in the open arms. Moreover, when rats were pretreated with AM251 either systemically or directly into the BLA, the anxiogenic effect of UcnI was potentiated. That is, co-administration of AM251 and UcnI produced a greater suppression of percent time spent in the open arms and open arm entries as compared to UcnI alone. Based on these findings, we propose that urocortin and endocannabinoid signaling are part of an integrated neural axis modulating anxiety states within the basolateral amygdala. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Lindsey M Dono
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | | |
Collapse
|
218
|
Sciolino NR, Zhou W, Hohmann AG. Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. Pharmacol Res 2011; 64:226-34. [PMID: 21600985 DOI: 10.1016/j.phrs.2011.04.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 12/29/2022]
Abstract
Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats. Environmental aversiveness was manipulated by varying illumination of an elevated plus maze. Percentage open arm time and numbers of open and closed arm entries were measured in rats receiving a single intraperitoneal (i.p.) injection of either vehicle, the MGL inhibitor JZL184 (1-8mg/kg), the benzodiazepine diazepam (1mg/kg), the cannabinoid CB(1) receptor antagonist rimonabant (1mg/kg), or JZL184 (8mg/kg) coadministered with rimonabant (1mg/kg). JZL184 (8mg/kg) produced anxiolytic-like effects (i.e., increased percentage open arm time and number of open arm entries) under high, but not low, levels of environmental aversiveness. Diazepam produced anxiolytic effects in either context. Rimonabant blocked the anxiolytic-like effects of JZL184, consistent with mediation by CB(1). Anxiolytic effects of JZL184 were preserved following chronic (8mg/kg per day×6 days) administration. Chronic and acute JZL184 treatment similarly enhanced behavioral sensitivity to an exogenous cannabinoid (WIN55,212-2; 2.5mg/kg i.p.) 24 or 72h following the terminal injection, suggesting a pervasive effect of MGL inhibition on the endocannabinoid system. We attribute our results to alterations in emotion rather than locomotor activity as JZL184 did not alter the number of closed arm entries in the plus maze or produce motor ataxia in the bar test. Our results demonstrate that JZL184 has beneficial, context-dependent effects on anxiety in rats, presumably via inhibition of MGL-mediated hydrolysis of 2-AG. These data warrant further testing of MGL inhibitors to elucidate the functional role of 2-AG in controlling anxiety and stress responsiveness. Our data further implicate a role for 2-AG in the regulation of emotion and validate MGL as a therapeutic target.
Collapse
Affiliation(s)
- Natale R Sciolino
- Department of Psychology, Neuroscience and Behavior Program, University of Georgia, Athens, GA, United States
| | | | | |
Collapse
|
219
|
Grissom NM, Bhatnagar S. The basolateral amygdala regulates adaptation to stress via β-adrenergic receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience 2011; 178:108-22. [PMID: 21256934 PMCID: PMC3049959 DOI: 10.1016/j.neuroscience.2010.12.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/13/2010] [Accepted: 12/24/2010] [Indexed: 12/28/2022]
Abstract
The reactivity of physiological systems and behavior to psychological stress is reduced with increasing familiarity with a repeated stressor. This reduced reactivity, termed habituation, is a crucial adaptation limiting negative health consequences of stress and can be disrupted in psychopathology. We hypothesized that the ability to habituate physiologically and behaviorally to previously experienced stressors depends on β-adrenergic receptor activation (β-AR) in the basolateral amygdala (BLA), a specific neural substrate important for the consolidation of multiple types of memories. We observed that administration of the β-AR antagonist propranolol into the BLA after each of four daily exposures to restraint stress prevented the normal development of neuroendocrine and behavioral habituation measured during the fifth restraint in adult male rats. In contrast, the β-AR agonist clenbuterol administered into the BLA after each restraint on days 1-4 enhanced neuroendocrine habituation at the lowest dose but attenuated behavioral habituation at high doses. We then explored intracellular signaling mechanisms in the BLA that might be a target of β-AR activation during stress. β-AR activation post restraint is necessary for the alteration in basal phosphorylated ERK (pERK) levels, as daily post-stress β-AR blockade on days 1-4 prevented repeated stress from leading to decreased pERK in the BLA on day 5. Finally, we examined the effect of blocking ERK phosphorylation in the BLA after each restraint on days 1-4 with the MEK (MAPK/ERK kinase) inhibitor U0126, and found that this was sufficient to both mimic neuroendocrine habituation in stress-naive animals and to enhance it in repeatedly stressed animals during restraint on day 5. Together, the results suggest that an individual's ability to habituate to repeated stress is regulated by activation of BLA β-AR, which may have these effects by transducing subsequent reductions in pERK. Individual variations in β-AR activation and intracellular signaling in the BLA may contribute significantly to adaptation to psychological stress and consequent resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Nicola M. Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48104
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
220
|
El Rawas R, Thiriet N, Nader J, Lardeux V, Jaber M, Solinas M. Early exposure to environmental enrichment alters the expression of genes of the endocannabinoid system. Brain Res 2011; 1390:80-9. [PMID: 21419109 DOI: 10.1016/j.brainres.2011.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 01/19/2023]
Abstract
Early environmental enrichment (EE) produces several changes in gene expression in the brain and confers protection against the behavioral, neurochemical and molecular effects of repeated administration of drugs of abuse. Because the endogenous cannabinoid system (ECS) is known to play an important role in the rewarding effects of drugs, we investigated whether the positive effects of early exposure to EE are associated with changes in the expression of genes encoding for proteins that belong to the ECS in C57 mice. Using in situ hybridization, we compared the expression of the cannabinoid receptor CB1, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL) enzymes in brain regions involved in drug addiction in mice reared in either EE or standard environments (SE) from weaning until adulthood. We found that EE increases CB1 mRNA levels in the hypothalamus and in the basolateral amygdala but decreased them in the basomedial amygdala. Similarly, we found that FAAH mRNA levels are higher in the hypothalamus and the basolateral amygdala of EE mice compared to SE mice, with no change in the basomedial amygdala. In contrast, MGL mRNA levels were not affected by EE in any of the areas analyzed. The regional selectivity of EE-induced changes may indicate that early exposure to EE induces changes in the ECS that could result in reduced responses to stress, as confirmed in EE mice in a novelty-induced suppression of feeding test, and, ultimately, in resistance to addiction.
Collapse
Affiliation(s)
- Rana El Rawas
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS, 1 rue Georges Bonnet, Poitiers, F-86022, France
| | | | | | | | | | | |
Collapse
|
221
|
Hong S, Zheng G, Wu X, Snider NT, Owyang C, Wiley JW. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 2011; 140:627-637.e4. [PMID: 21070780 PMCID: PMC3031761 DOI: 10.1053/j.gastro.2010.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/29/2010] [Accepted: 11/03/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Chronic stress is associated with visceral hyperalgesia in functional gastrointestinal disorders. We investigated whether corticosterone plays a role in chronic psychological stress-induced visceral hyperalgesia. METHODS Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous corticosterone injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486 and cannabinoid-receptor agonist WIN55,212-2. The visceromotor response to colorectal distension was measured. Receptor protein levels were measured and whole-cell patch-clamp recordings were used to assess transient receptor potential vanilloid type 1 (TRPV1) currents in L6-S2 dorsal root ganglion (DRG) neurons. Mass spectrometry was used to measure endocannabinoid anandamide content. RESULTS Chronic WA stress was associated with visceral hyperalgesia in response to colorectal distension, increased stool output and reciprocal changes in cannabinoid receptor 1 (CB1) (decreased) and TRPV1 (increased) receptor expression and function. Treatment of WA stressed rats with RU-486 prevented these changes. Control rats treated with serial injections of corticosterone in situ showed a significant increase in serum corticosterone associated with visceral hyperalgesia, enhanced anandamide content, increased TRPV1, and decreased CB1 receptor protein levels, which were prevented by co-treatment with RU-486. Exposure of isolated control L6-S2 DRGs in vitro to corticosterone reproduced the changes in CB1 and TRPV1 receptors observed in situ, which was prevented by co-treatment with RU-486 or WIN55,212-2. CONCLUSIONS These results support a novel role for corticosterone to modulate CB1 and TRPV1-receptor pathways in L6-S2 DRGs in the chronic WA stressed rat, which contributes to visceral hyperalgesia observed in this model.
Collapse
Affiliation(s)
- Shuangsong Hong
- Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, MSRB III, Room 9315, Ann Arbor, Michigan 48109, USA.
| | - Gen Zheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Xiaoyin Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Chung Owyang
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|
222
|
Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. Psychopharmacology (Berl) 2011; 214:465-76. [PMID: 21042794 PMCID: PMC3045513 DOI: 10.1007/s00213-010-2051-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Abstract
RATIONALE By enhancing brain anandamide tone, inhibitors of fatty acid amide hydrolase (FAAH) induce anxiolytic-like effects in rodents and enhance brain serotonergic transmission. Mice lacking the faah gene (FAAH(-/-)) show higher anandamide levels. However, their emotional phenotype is still debated and their brain serotonergic tone remained unexplored. OBJECTIVES AND METHODS In this study, we tested FAAH(-/-) mice in the social interaction and the open field tests performed under different lighting conditions (dim and bright) since variations of the experimental context were proposed to explain opposite findings. Moreover, by microdialysis performed under dim light, we analyzed their serotonergic transmission in frontal cortex (FC) and ventral hippocampus (vHIPP). RESULTS In both light conditions, FAAH(-/-) mice showed reduced emotionality, compared to wt controls, as suggested by the increased rearing and reduced thigmotaxis displayed in the open field and by the longer time spent in social interaction. Basal serotonergic tone was higher in the FC of mutant mice as compared to control mice, while no difference was observed in the vHIPP. K(+)-induced depolarization produced similar increases of serotonin in both areas of both genotypes. An acute treatment with the CB1 antagonist rimonabant completely abolished the emotional phenotype of FAAH(-/-) mice and prevented the K(+)-stimulated release of serotonin in their FC and vHIPP, without producing any effect in wt mice. CONCLUSIONS Our results support the role of FAAH in the regulation of emotional reactivity and suggest that anandamide-mediated hyperactivation of CB1 is responsible for the emotional phenotype of FAAH(-/-) mice and for their enhanced serotonergic tone.
Collapse
|
223
|
Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J Neurosci 2010; 30:14980-6. [PMID: 21068301 DOI: 10.1523/jneurosci.4283-10.2010] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endocannabinoid signaling is distributed throughout the brain, regulating synaptic release of both excitatory and inhibitory neurotransmitters. The presence of endocannabinoid signaling within stress-sensitive nuclei of the hypothalamus, as well as upstream limbic structures such as the amygdala, suggests it may play an important role in regulating the neuroendocrine and behavioral effects of stress. The evidence reviewed here demonstrates that endocannabinoid signaling is involved in both activating and terminating the hypothalamic-pituitary-adrenal axis response to both acute and repeated stress. In addition to neuroendocrine function, however, endocannabinoid signaling is also recruited by stress and glucocorticoid hormones to modulate cognitive and emotional processes such as memory consolidation and extinction. Collectively, these data demonstrate the importance of endocannabinoid signaling at multiple levels as both a regulator and an effector of the stress response.
Collapse
|
224
|
Brzózka MM, Fischer A, Falkai P, Havemann-Reinecke U. Acute treatment with cannabinoid receptor agonist WIN55212.2 improves prepulse inhibition in psychosocially stressed mice. Behav Brain Res 2010; 218:280-7. [PMID: 21070814 DOI: 10.1016/j.bbr.2010.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 12/01/2022]
Abstract
Cannabis, similar to psychosocial stress, is well known to exacerbate psychotic experiences and can precipitate psychotic episodes in vulnerable individuals. Cannabinoid receptors 1 (CB1) are widely expressed in the brain and are particularly important to mediate the effects of cannabis. Chronic cannabis use in patients and chronic cannabinoids treatment in animals is known to cause reduced prepulse inhibition (PPI). Similarly, chronic psychosocial stress in mice impairs PPI. In the present study, we investigated the synergistic effects of substances modulating the CB1-receptors and chronic psychosocial stress on PPI. For this purpose, adult C57Bl/6J mice were exposed to chronic psychosocial stress using the resident-intruder paradigm. The cannabinoid receptor agonist WIN55212.2 served as a surrogate marker for the effects of cannabis in the brain. After exposure to stress mice were acutely injected with WIN55212.2 (3 mg/kg) with or without pre-treatment with Rimonabant (3 mg/kg), a specific CB1-receptor antagonist, and subjected to behavioral testing. Stressed mice displayed a higher vulnerability to WIN55212.2 in the PPI test than control animals. The effects of WIN55212.2 on PPI were antagonized by Rimonabant suggesting an involvement of CB1-receptors in sensorimotor gating. Interestingly, WIN55212.2 increased PPI in psychosocially stressed mice although previous studies in rats showed the opposite effects. It may thus be possible, that depending on the doses of cannabinoids/CB1-receptor agonists applied and environmental conditions (psychosocial stress), opposite effects can be evoked in different experimental animals. Taken together, our data imply that CB1-receptors might play a crucial role in the synergistic effects of psychosocial stress and cannabinoids in brain.
Collapse
Affiliation(s)
- Magdalena M Brzózka
- Department of Psychiatry and Psychotherapy, University of Göttingen, von Siebold-Str. 5, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
225
|
Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 2010; 35:2083-100. [PMID: 20571484 PMCID: PMC3055302 DOI: 10.1038/npp.2010.80] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB(1) receptor (CB(1)R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB(1)R antagonist, rimonabant. FAAH null-mutant (FAAH(-/-)) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH(-/-) mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT(2A/2C) agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI) revealed desensitized 5-HT(2A/2C) receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT(1A) antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT(1A) heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT(1A) and 5-HT(2A/2C) receptor function.
Collapse
Affiliation(s)
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Noam Katz
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Claire Dominique Walker
- Neuroscience and Mood, Anxiety and Impulsivity Disorders-Related Research Division, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Daniele Piomelli
- Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada,Department of Psychiatry Research and Training Building, McGill University, Neurobiological Psychiatry Unit, 1033 Pine Avenue West, Montréal, Québec, Canada H3A 1A1, Tel: +1 514 398 1290, Fax: +1 514 398 4866, E-mail:
| |
Collapse
|
226
|
Rossi S, De Chiara V, Musella A, Sacchetti L, Cantarella C, Castelli M, Cavasinni F, Motta C, Studer V, Bernardi G, Cravatt BF, Maccarrone M, Usiello A, Centonze D. Preservation of striatal cannabinoid CB1 receptor function correlates with the antianxiety effects of fatty acid amide hydrolase inhibition. Mol Pharmacol 2010; 78:260-8. [PMID: 20424126 DOI: 10.1124/mol.110.064196] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The endocannabinoid anandamide (AEA) plays a crucial role in emotional control, and inhibition of its degradation by the fatty acid amide hydrolase (FAAH) has a potent antianxiety effect. The mechanism by which the magnification of AEA activity reduces anxiety is still largely undetermined. By using FAAH mutant mice and both intraperitoneal and intracerebroventricular administration of the FAAH inhibitor (3'-(aminocarbonyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate (URB597), we found that enhanced AEA signaling reversed, via central cannabinoid CB1 receptors (CB1Rs), the anxious phenotype of mice exposed to social defeat stress. This behavioral effect was associated with preserved activity of CB1Rs regulating GABA transmission in the striatum, whereas these receptors were dramatically down-regulated by stress in control animals. The hypothalamic-pituitary-adrenal (HPA) axis was not involved in the antistress effects of FAAH inhibition, although the HPA axis is a biological target of endogenous AEA. We also provided some physiological indications that striatal CB1Rs regulating GABA synapses are not the receptor targets of FAAH inhibition, which rather resulted in the stimulation of striatal CB1Rs regulating glutamate transmission. Collectively, our findings suggest that preservation of cannabinoid CB1 receptor function within the striatum is a possible synaptic correlate of the antianxiety effects of FAAH inhibition.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Hill MN, McEwen BS. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:791-7. [PMID: 19903506 PMCID: PMC2945244 DOI: 10.1016/j.pnpbp.2009.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
Abstract
The endocannabinoid system is a neuroactive lipid signaling system that functions to gate synaptic transmitter release. Accumulating evidence has demonstrated that this system is responsive to modulation by both stress and glucocorticoids within the hypothalamus and limbic structures; however, the nature of this regulation is more complex than initially assumed. The aim of the current review is to summarize the research to date which examines the effects of acute stress and glucocorticoid administration on endocannabinoid signaling in limbic-hypothalamic-pituitary-adrenal (LHPA) axis, and in turn the role endocannabinoid signaling plays in the neurobehavioural responses to acute stress and glucocorticoid administration. The majority of research suggests that acute stress produces a mobilization of the endocannabinoid 2-arachidonoylglycerol (2-AG) while concurrently reducing the tissue content of the other endocannabinoid ligand anandamide. Genetic and pharmacological studies demonstrate that the reduction in anandamide signaling may be involved in the initiation of HPA axis activation and the generation of changes in emotional behaviour, while the increase in 2-AG signaling may be involved in terminating the stress response, limiting neuronal activation and contributing to changes in motivated behaviours. Collectively, these studies reveal a complex interplay between endocannabinoids and the HPA axis, and further identify endocannabinoid signaling as a critical regulator of the stress response.
Collapse
Affiliation(s)
- Matthew N Hill
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
228
|
Gorzalka BB, Hill MN, Chang SCH. Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav 2010; 58:91-9. [PMID: 19733173 DOI: 10.1016/j.yhbeh.2009.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 08/18/2009] [Accepted: 08/26/2009] [Indexed: 11/19/2022]
Abstract
The putative role of the endocannabinoid system and the effects of cannabis use in male and female sexual functioning are summarized. The influence of cannabis intake on sexual behavior and arousability appear to be dose-dependent in both men and women, although women are far more consistent in reporting facilitatory effects. Furthermore, evidence from nonhuman species indicate somewhat more beneficial than debilitating effects of cannabinoids on female sexual proceptivity and receptivity while suggesting predominantly detrimental effects on male sexual motivation and erectile functioning. Data from human and nonhuman species converge on the ephemeral nature of THC-induced testosterone decline. However, it is clear that cannabinoid-induced inhibition of male sexual behavior is independent of concurrent declines in testosterone levels. Investigations also reveal a suppression of gonadotropin release by cannabinoids across various species. Historical milestones and promising future directions in the area of cannabinoid and sexuality research are also outlined in this review.
Collapse
Affiliation(s)
- Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, Canada, BC V6T 1Z4.
| | | | | |
Collapse
|
229
|
Armario A. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: different pathways, common outcome. Trends Pharmacol Sci 2010; 31:318-25. [PMID: 20537734 DOI: 10.1016/j.tips.2010.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 01/20/2023]
Abstract
Addictive drugs (opiates, ethanol, cannabinoids (CBs), nicotine, cocaine, amphetamines) induce activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the subsequent release of adrenocorticotropic hormone and glucocorticoids. The sequence of events leading to HPA activation appears to start within the brain, suggesting that activation is not secondary to peripheral homeostatic alterations. The precise neurochemical mechanisms and brain pathways involved are markedly dependent on the particular drug, although it is assumed that information eventually converges into the hypothalamic paraventricular nucleus (PVN). Whereas some drugs may act on the hypothalamus or directly within PVN neurons (i.e. ethanol), others exert their primary action outside the PVN (i.e. CBs, nicotine, cocaine). Corticotropin-releasing hormone (CRH) has a critical role in most cases, but the changes in c-fos and CRH gene expression in the PVN also reveal differences among drugs. More studies are needed to understand how addictive drugs act on this important neuroendocrine system and their functional consequences.
Collapse
Affiliation(s)
- Antonio Armario
- Institute of Neurosciences and Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
230
|
Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TTY, Gray JM, Hillard CJ, Gorzalka BB, Viau V. Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A 2010; 107:9406-11. [PMID: 20439721 PMCID: PMC2889099 DOI: 10.1073/pnas.0914661107] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocannabinoid signaling responds to and regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis that governs the secretion of glucocorticoids; however, the role this system plays in adaptation of the neuroendocrine response to repeated stress is not well characterized. Herein, we demonstrate a divergent regulation of the two endocannabinoid ligands, N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), following repeated stress such that AEA content is persistently decreased throughout the corticolimbic stress circuit, whereas 2-AG is exclusively elevated within the amygdala in a stress-dependent manner. Pharmacological studies demonstrate that this divergent regulation of AEA and 2-AG contribute to distinct forms of HPA axis habituation. Inhibition of AEA hydrolysis prevented the development of basal hypersecretion of corticosterone following repeated stress. In contrast, systemic or intra-amygdalar administration of a CB(1) receptor antagonist before the final stress exposure prevented the repeated stress-induced decline in corticosterone responses. The present findings demonstrate an important role for endocannabinoid signaling in the process of stress HPA habituation, and suggest that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.
Collapse
Affiliation(s)
| | | | - Brenda Bingham
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T1Z3; and
| | - Lalita Shrestha
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - J. Megan Gray
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T1Z3; and
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T1Z3; and
| |
Collapse
|