201
|
Delgado M, Washam CL, Urbaniak A, Heflin B, Storey AJ, Lan RS, Mackintosh SG, Tackett AJ, Byrum SD, Chambers TC. Phosphoproteomics Provides Novel Insights into the Response of Primary Acute Lymphoblastic Leukemia Cells to Microtubule Depolymerization in G1 Phase of the Cell Cycle. ACS OMEGA 2021; 6:24949-24959. [PMID: 34604676 PMCID: PMC8482483 DOI: 10.1021/acsomega.1c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Microtubule targeting agents (MTAs) have been used for the treatment of cancer for many decades and are among the most successful chemotherapeutic agents. However, their application and effectiveness are limited because of toxicity and resistance as well as a lack of knowledge of molecular mechanisms downstream of microtubule inhibition. Insights into key pathways that link microtubule disruption to cell death is critical for optimal use of these drugs, for defining biomarkers useful in patient stratification, and for informed design of drug combinations. Although MTAs characteristically induce death in mitosis, microtubule destabilizing agents such as vincristine also induce death directly in G1 phase in primary acute lymphoblastic leukemia (ALL) cells. Because many signaling pathways regulating cell survival and death involve changes in protein expression and phosphorylation, we undertook a comprehensive quantitative proteomic study of G1 phase ALL cells treated with vincristine. The results revealed distinct alterations associated with c-Jun N-terminal kinase signaling, anti-proliferative signaling, the DNA damage response, and cytoskeletal remodeling. Signals specifically associated with cell death were identified by pre-treatment with the CDK4/6 inhibitor palbociclib, which caused G1 arrest and precluded death induction. These results provide insights into signaling mechanisms regulating cellular responses to microtubule inhibition and provide a foundation for a better understanding of the clinical mechanisms of MTAs and for the design of novel drug combinations. The mass spectrometry proteomics data have been deposited to the PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) via the PRIDE partner repository with the data set identifier PXD027190 and 10.6019/PXD027190.
Collapse
Affiliation(s)
- Magdalena Delgado
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Charity L. Washam
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Arkansas
Children’s Research Institute, 13 Children’s Way, Little Rock, Arkansas 72202, United States
| | - Alicja Urbaniak
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Billie Heflin
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Aaron J. Storey
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Renny S. Lan
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G. Mackintosh
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J. Tackett
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Arkansas
Children’s Research Institute, 13 Children’s Way, Little Rock, Arkansas 72202, United States
- Winthrop
P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, Arkansas 72205, United
States
| | - Stephanie D. Byrum
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Arkansas
Children’s Research Institute, 13 Children’s Way, Little Rock, Arkansas 72202, United States
- Winthrop
P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, Arkansas 72205, United
States
| | - Timothy C. Chambers
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Winthrop
P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, Arkansas 72205, United
States
| |
Collapse
|
202
|
Appunni S, Gupta D, Rubens M, Ramamoorthy V, Singh HN, Swarup V. Deregulated Protein Kinases: Friend and Foe in Ischemic Stroke. Mol Neurobiol 2021; 58:6471-6489. [PMID: 34549335 DOI: 10.1007/s12035-021-02563-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke is the third leading cause of mortality worldwide, but its medical management is still limited to the use of thrombolytics as a lifesaving option. Multiple molecular deregulations of the protein kinase family occur during the period of ischemia/reperfusion. However, experimental studies have shown that alterations in the expression of essential protein kinases and their pharmacological modulation can modify the neuropathological milieu and hasten neurophysiological recovery. This review highlights the role of key protein kinase members and their implications in the evolution of stroke pathophysiology. Activation of ROCK-, MAPK-, and GSK-3β-mediated pathways following neuronal ischemia/reperfusion injury in experimental conditions aggravate the neuropathology and delays recovery. Targeting ROCK, MAPK, and GSK-3β will potentially enhance myelin regeneration, improve blood-brain barrier (BBB) function, and suppress inflammation, which ameliorates neuronal survival. Conversely, protein kinases such as PKA, Akt, PKCα, PKCε, Trk, and PERK salvage neurons post-ischemia by mechanisms including enhanced toxin metabolism, restoring BBB integrity, neurotrophic effects, and apoptosis suppression. Certain protein kinases such as ERK1/2, JNK, and AMPK have favourable and unfavourable effects in salvaging ischemia-injured neurons. Targeting multiple protein kinase-mediated pathways simultaneously may improve neuronal recovery post-ischemia.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode, Kerala, India
| | - Deepika Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York City, NY, USA.
| | - Vishnu Swarup
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|