201
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
202
|
Chen Z, Liang Q, Wei Z, Chen X, Shi Q, Yu Z, Sun T. An Overview of In Vitro Biological Neural Networks for Robot Intelligence. CYBORG AND BIONIC SYSTEMS 2023; 4:0001. [PMID: 37040493 PMCID: PMC10076061 DOI: 10.34133/cbsystems.0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
In vitro biological neural networks (BNNs) interconnected with robots, so-called BNN-based neurorobotic systems, can interact with the external world, so that they can present some preliminary intelligent behaviors, including learning, memory, robot control, etc. This work aims to provide a comprehensive overview of the intelligent behaviors presented by the BNN-based neurorobotic systems, with a particular focus on those related to robot intelligence. In this work, we first introduce the necessary biological background to understand the 2 characteristics of the BNNs: nonlinear computing capacity and network plasticity. Then, we describe the typical architecture of the BNN-based neurorobotic systems and outline the mainstream techniques to realize such an architecture from 2 aspects: from robots to BNNs and from BNNs to robots. Next, we separate the intelligent behaviors into 2 parts according to whether they rely solely on the computing capacity (computing capacity-dependent) or depend also on the network plasticity (network plasticity-dependent), which are then expounded respectively, with a focus on those related to the realization of robot intelligence. Finally, the development trends and challenges of the BNN-based neurorobotic systems are discussed.
Collapse
Affiliation(s)
- Zhe Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Liang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihou Wei
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xie Chen
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqiang Yu
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 10081, China
- Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
203
|
Dong S, Yan J, Xie Z, Yuan Y, Ji H. Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation. J Neural Eng 2022; 19. [PMID: 36541474 DOI: 10.1088/1741-2552/aca799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Objective. Closed-loop transcranial ultrasound stimulation (TUS) can be applied at a specific time according to the state of neural activity to achieve timely and precise neuromodulation and improve the modulation effect. In a previous study, we found that closed-loop TUS at the peaks and troughs of the theta rhythm in the mouse hippocampus was able to increase the absolute power and decrease the relative power of the theta rhythm of local field potentials (LFPs) independent of the peaks and troughs of the stimulus. However, it remained unclear whether the modulation effect of this closed-loop TUS-induced mouse hippocampal neural oscillation depended on the peaks and troughs of the theta rhythm.Approach. In this study, we used ultrasound with different stimulation modes and durations to stimulate the peaks (peak stimulation) and troughs (trough stimulation) of the hippocampal theta rhythm. The LFPs in the area of ultrasound stimulation were recorded and the amplitudes and power spectra of the theta rhythm before and after ultrasound stimulation were analyzed.Main results. The results showed that (a) the relative change in amplitude of theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (b) the relative change in the absolute power of the theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (c) the relative change in amplitude of the theta rhythm increases nonlinearly with the stimulation duration (SD) under peak stimulation, and; (d) the relative change in absolute power exhibits a nonlinear increase with SD under peak stimulation.Significance. These results suggest that the modulation effect of closed-loop TUS on theta rhythm is dependent on the stimulation mode and duration under peak stimulation. TUS has the potential to precisely modulate theta rhythm-related neural activity.
Collapse
Affiliation(s)
- Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, People's Republic of China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hui Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| |
Collapse
|
204
|
Lu G, Qian X, Gong C, Ji J, Thomas BB, Humayun MS, Zhou Q. Ultrasound Retinal Stimulation: A Mini-Review of Recent Developments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3224-3231. [PMID: 36343006 PMCID: PMC10424795 DOI: 10.1109/tuffc.2022.3220568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasound neuromodulation is an emerging technology. A significant amount of effort has been devoted to investigating the feasibility of noninvasive ultrasound retinal stimulation. Recent studies have shown that ultrasound can activate neurons in healthy and degenerated retinas. Specifically, high-frequency ultrasound can evoke localized neuron responses and generate patterns in visual circuits. In this review, we recapitulate pilot studies on ultrasound retinal stimulation, compare it with other neuromodulation technologies, and discuss its advantages and limitations. An overview of the opportunities and challenges to develop a noninvasive retinal prosthesis using high-frequency ultrasound is also provided.
Collapse
|
205
|
Yoon CW, Pan Y, Wang Y. The application of mechanobiotechnology for immuno-engineering and cancer immunotherapy. Front Cell Dev Biol 2022; 10:1064484. [PMID: 36483679 PMCID: PMC9725026 DOI: 10.3389/fcell.2022.1064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Immune-engineering is a rapidly emerging field in the past few years, as immunotherapy evolved from a paradigm-shifting therapeutic approach for cancer treatment to promising immuno-oncology models in clinical trials and commercial products. Linking the field of biomedical engineering with immunology, immuno-engineering applies engineering principles and utilizes synthetic biology tools to study and control the immune system for diseases treatments and interventions. Over the past decades, there has been a deeper understanding that mechanical forces play crucial roles in regulating immune cells at different stages from antigen recognition to actual killing, which suggests potential opportunities to design and tailor mechanobiology tools to novel immunotherapy. In this review, we first provide a brief introduction to recent technological and scientific advances in mechanobiology for immune cells. Different strategies for immuno-engineering are then discussed and evaluated. Furthermore, we describe the opportunities and challenges of applying mechanobiology and related technologies to study and engineer immune cells and ultimately modulate their function for immunotherapy. In summary, the synergetic integration of cutting-edge mechanical biology techniques into immune-engineering strategies can provide a powerful platform and allow new directions for the field of immunotherapy.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yijia Pan
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
206
|
Murphy KR, Farrell JS, Gomez JL, Stedman QG, Li N, Leung SA, Good CH, Qiu Z, Firouzi K, Butts Pauly K, Khuri-Yakub BPT, Michaelides M, Soltesz I, de Lecea L. A tool for monitoring cell type-specific focused ultrasound neuromodulation and control of chronic epilepsy. Proc Natl Acad Sci U S A 2022; 119:e2206828119. [PMID: 36343238 PMCID: PMC9674244 DOI: 10.1073/pnas.2206828119] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound (FUS) is a powerful tool for noninvasive modulation of deep brain activity with promising therapeutic potential for refractory epilepsy; however, tools for examining FUS effects on specific cell types within the deep brain do not yet exist. Consequently, how cell types within heterogeneous networks can be modulated and whether parameters can be identified to bias these networks in the context of complex behaviors remains unknown. To address this, we developed a fiber Photometry Coupled focused Ultrasound System (PhoCUS) for simultaneously monitoring FUS effects on neural activity of subcortical genetically targeted cell types in freely behaving animals. We identified a parameter set that selectively increases activity of parvalbumin interneurons while suppressing excitatory neurons in the hippocampus. A net inhibitory effect localized to the hippocampus was further confirmed through whole brain metabolic imaging. Finally, these inhibitory selective parameters achieved significant spike suppression in the kainate model of chronic temporal lobe epilepsy, opening the door for future noninvasive therapies.
Collapse
Affiliation(s)
- Keith R. Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | | | - Juan L. Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, Baltimore, MD 21224
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Quintin G. Stedman
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Ningrui Li
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Steven A. Leung
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Cameron H. Good
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60601
| | - Zhihai Qiu
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Kamyar Firouzi
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA 94305
| | | | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, Baltimore, MD 21224
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
207
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
208
|
Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. LIGHT, SCIENCE & APPLICATIONS 2022; 11:321. [PMID: 36323662 PMCID: PMC9630534 DOI: 10.1038/s41377-022-01004-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
Collapse
Affiliation(s)
- Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ying Jiang
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Linli Shi
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Runyu Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Nan Zheng
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
209
|
Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022; 189:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.
Collapse
|
210
|
Chu YC, Lim J, Chien A, Chen CC, Wang JL. Activation of Mechanosensitive Ion Channels by Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1981-1994. [PMID: 35945063 DOI: 10.1016/j.ultrasmedbio.2022.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensitive channels (MSCs) play an important role in how cells transduce mechanical stimuli into electrical or chemical signals, which provides an interventional possibility through the manipulation of ion channel activation using different mechanical stimulation conditions. With good spatial resolution and depth of penetration, ultrasound is often proposed as the tool of choice for such therapeutic applications. Despite the identification of many ion channels as mechanosensitive in recent years, only a limited number of MSCs have been reported to be activated by ultrasound with substantial evidence. Furthermore, although many therapeutic implications using ultrasound have been explored, few offered insights into the molecular basis and the biological effects induced by ultrasound in relieving pain and accelerate tissue healing. In this review, we examined the literature, in particular studies that provided evidence of cellular responses to ultrasound, with and without the target ion channels. The ultrasound activation conditions were then summarized for these ion channels, and these conditions were related to their mode of activation based on the current biological concepts. The overall goal is to bridge the results relating to the activation of MSCs that is specific for ultrasound with the current knowledge in molecular structure and the available physiological evidence that may have facilitated such phenomena. We discussed how collating the information revealed by available scientific investigations helps in the design of a more effective stimulus device for the proposed translational purposes. Traditionally, studies on the effects of ultrasound have focused largely on its mechanical and physical interaction with the targeted tissue through thermal-based therapies as well as non-thermal mechanisms including ultrasonic cavitation; gas body activation; the direct action of the compressional, tensile and shear stresses; radiation force; and acoustic streaming. However, the current review explores and attempts to establish whether the application of low-intensity ultrasound may be associated with the activation of specific MSCs, which in turn triggers relevant cell signaling as its molecular mechanism in achieving the desired therapeutic effects. Non-invasive brain stimulation has recently become an area of intense research interest for rehabilitation, and the implication of low-intensity ultrasound is particularly critical given the need to minimize heat generation to preserve tissue integrity for such applications.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
211
|
Su Z, Yan J, Ji H, Liu M, Zhang X, Li X, Yuan Y. Time-frequency cross-coupling between cortical low-frequency neuronal calcium oscillations and blood oxygen metabolism evoked by ultrasound stimulation. Cereb Cortex 2022; 33:4665-4676. [PMID: 36137570 DOI: 10.1093/cercor/bhac370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) can modulate the coupling of high-frequency (160-200 Hz) neural oscillations and cerebral blood oxygen metabolism (BOM); however, the correlation of low-frequency (0-2 Hz) neural oscillations with BOM in temporal and frequency domains under TUS remains unclear. To address this, we monitored the TUS-evoked neuronal calcium oscillations and BOM simultaneously in the mouse visual cortex by using multimodal optical imaging with a high spatiotemporal resolution. We demonstrated that TUS can significantly increase the intensity of the neuronal calcium oscillations and BOM; the peak value, peak time, and duration of calcium oscillations are functionally related to stimulation duration; TUS does not significantly increase the neurovascular coupling strength between calcium oscillations and BOM in the temporal domain; the time differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their spectral ranges; the frequency differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their time ranges; and TUS can significantly change the phase of calcium oscillations and BOM from uniform distribution to a more concentrated region. In conclusion, ultrasound stimulation can evoke the time-frequency cross-coupling between the cortical low-frequency neuronal calcium oscillations and BOM in mouse.
Collapse
Affiliation(s)
- Zhaocheng Su
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
212
|
Liu T, Choi MH, Zhu J, Zhu T, Yang J, Li N, Chen Z, Xian Q, Hou X, He D, Guo J, Fei C, Sun L, Qiu Z. Sonogenetics: Recent advances and future directions. Brain Stimul 2022; 15:1308-1317. [PMID: 36130679 DOI: 10.1016/j.brs.2022.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Sonogenetics refers to the use of genetically encoded, ultrasound-responsive mediators for noninvasive and selective control of neural activity. It is a promising tool for studying neural circuits. However, due to its infancy, basic studies and developments are still underway, including gauging key in vivo performance metrics such as spatiotemporal resolution, selectivity, specificity, and safety. In this paper, we summarize recent findings on sonogenetics to highlight technical hurdles that have been cleared, challenges that remain, and future directions for optimization.
Collapse
Affiliation(s)
- Tianyi Liu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Mi Hyun Choi
- Department of Bioengineering, Stanford University, CA, USA
| | - Jiejun Zhu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Tingting Zhu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Jin Yang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Na Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; School of Microelectronics, Xidian University, Xi'an, China
| | - Zihao Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; School of Microelectronics, Xidian University, Xi'an, China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Dongmin He
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Jinghui Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Physiology, Faculty of Medicine, Jinan University, Guangzhou, China
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi'an, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China.
| |
Collapse
|
213
|
Xie Z, Yan J, Dong S, Ji H, Yuan Y. Phase-locked closed-loop ultrasound stimulation modulates theta and gamma rhythms in the mouse hippocampus. Front Neurosci 2022; 16:994570. [PMID: 36161160 PMCID: PMC9493179 DOI: 10.3389/fnins.2022.994570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have demonstrated that open-loop transcranial ultrasound stimulation (TUS) can modulate theta and gamma rhythms of the local field potentials (LFPs) in the mouse hippocampus; however, the manner in which closed-loop TUS with different pressures based on phase-locking of theta rhythms modulates theta and gamma rhythm remains unclear. In this study, we established a closed-loop TUS system, which can perform closed-loop TUS by predicting the peaks and troughs of the theta rhythm. Comparison of the power, sample entropy and complexity, and phase-amplitude coupling (PAC) between the theta and gamma rhythms under peak and trough stimulation of the theta rhythm revealed the following: (1) the variation in the absolute power of the gamma rhythm and the relative power of the theta rhythm under TUS at 0.6–0.8 MPa differ between peak and trough stimulation; (2) the relationship of the sample entropy of the theta and gamma rhythms with ultrasound pressure depends on peak and trough stimulation; and (3) peak and trough stimulation affect the PAC strength between the theta and gamma rhythm as a function of ultrasound pressure. These results demonstrate that the modulation of the theta and gamma rhythms by ultrasound pressure depends on peak and trough stimulation of the theta rhythm in the mouse hippocampus.
Collapse
Affiliation(s)
- Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Hui Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Hui Ji,
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
- Yi Yuan,
| |
Collapse
|
214
|
Ramachandran S, Niu X, Yu K, He B. Transcranial ultrasound neuromodulation induces neuronal correlation change in the rat somatosensory cortex. J Neural Eng 2022; 19:10.1088/1741-2552/ac889f. [PMID: 35947970 PMCID: PMC9514023 DOI: 10.1088/1741-2552/ac889f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Transcranial focused ultrasound (tFUS) is a neuromodulation technique which has been the focus of increasing interest for noninvasive brain stimulation with high spatial specificity. Its ability to excite and inhibit neural circuits as well as to modulate perception and behavior has been demonstrated, however, we currently lack understanding of how tFUS modulates the ways neurons interact with each other. This understanding would help elucidate tFUS's mechanism of systemic neuromodulation and allow future development of therapies for treating neurological disorders.Approach.In this study, we investigate how tFUS modulates neural interaction and response to peripheral electrical limb stimulation through intracranial multi-electrode recordings in the rat somatosensory cortex. We deliver ultrasound in a pulsed pattern to induce frequency dependent plasticity in a manner similar to what is found following electrical stimulation.Main Results.We show that neural firing in response to peripheral electrical stimulation is increased after ultrasound stimulation at all frequencies, showing tFUS induced changes in excitability of individual neuronsin vivo. We demonstrate tFUS sonication repetition frequency dependent pairwise correlation changes between neurons, with both increases and decreases observed at different frequencies.Significance.These results extend previous research showing tFUS to be capable of inducing synaptic depression and demonstrate its ability to modulate network dynamics as a whole.
Collapse
Affiliation(s)
| | - Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
| |
Collapse
|
215
|
Badadhe JD, Roh H, Lee BC, Kim JH, Im M. Ultrasound stimulation for non-invasive visual prostheses. Front Cell Neurosci 2022; 16:971148. [PMID: 35990889 PMCID: PMC9382087 DOI: 10.3389/fncel.2022.971148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, it is estimated there are more than 2.2 billion visually impaired people. Visual diseases such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and optic neuritis can cause irreversible profound vision loss. Many groups have investigated different approaches such as microelectronic prostheses, optogenetics, stem cell therapy, and gene therapy to restore vision. However, these methods have some limitations such as invasive implantation surgery and unknown long-term risk of genetic manipulation. In addition to the safety of ultrasound as a medical imaging modality, ultrasound stimulation can be a viable non-invasive alternative approach for the sight restoration because of its ability to non-invasively control neuronal activities. Indeed, recent studies have demonstrated ultrasound stimulation can successfully modulate retinal/brain neuronal activities without causing any damage to the nerve cells. Superior penetration depth and high spatial resolution of focused ultrasound can open a new avenue in neuromodulation researches. This review summarizes the latest research results about neural responses to ultrasound stimulation. Also, this work provides an overview of technical viewpoints in the future design of a miniaturized ultrasound transducer for a non-invasive acoustic visual prosthesis for non-surgical and painless restoration of vision.
Collapse
Affiliation(s)
- Jaya Dilip Badadhe
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Byung Chul Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jae Hun Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
216
|
Chen H, Felix C, Folloni D, Verhagen L, Sallet J, Jerusalem A. Modelling transcranial ultrasound neuromodulation: an energy-based multiscale framework. Acta Biomater 2022; 151:317-332. [PMID: 35902037 DOI: 10.1016/j.actbio.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Several animal and human studies have now established the potential of low intensity, low frequency transcranial ultrasound (TUS) for non-invasive neuromodulation. Paradoxically, the underlying mechanisms through which TUS neuromodulation operates are still unclear, and a consensus on the identification of optimal sonication parameters still remains elusive. One emerging hypothesis based on thermodynamical considerations attributes the acoustic-induced nerve activity alterations to the mechanical energy and/or entropy conversions occurring during TUS action. Here, we propose a multiscale modelling framework to examine the energy states of neuromodulation under TUS. First, macroscopic tissue-level acoustic simulations of the sonication of a whole monkey brain are conducted under different sonication protocols. For each one of them, mechanical loading conditions of the received waves in the anterior cingulate cortex region are recorded and exported into a microscopic cell-level 3D viscoelastic finite element model of neuronal axon embedded extracellular medium. Pulse-averaged elastically stored and viscously dissipated energy rate densities during axon deformation are finally computed under different sonication incident angles and are mapped against distinct combinations of sonication parameters of the TUS. The proposed multiscale framework allows for the analysis of vibrational patterns of the axons and its comparison against the spectrograms of stimulating ultrasound. The results are in agreement with literature data on neuromodulation, demonstrating the potential of this framework to identify optimised acoustic parameters in TUS neuromodulation. The proposed approach is finally discussed in the context of multiphysics energetic considerations, argued here to be a promising avenue towards a scalable framework for TUS in silico predictions. STATEMENT OF SIGNIFICANCE: Low-intensity transcranial ultrasound (TUS) is poised to become a leading neuromodulation technique for the treatment of neurological disorders. Paradoxically, how it operates at the cellular scale remains unknown, hampering progress in personalised treatment. To this end, models of the multiphysics of neurons able to upscale results to the organ scale are required. We propose here to achieve this by considering an axon submitted to an ultrasound wave extracted from a simulation at the organ scale. Doing so, information pertaining to both stored and dissipated axonal energies can be extracted for a given head/brain morphology. This two-scale multiphysics energetic approach is a promising scalable framework for in silico predictions in the context of personalised TUS treatment.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ciara Felix
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Donders Institute, Radboud University, Nijmegen, Netherlands
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Inserm, Stem Cell and Brain Research Institute, Université Lyon 1, Bron, France
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
217
|
Delmas P, Parpaite T, Coste B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron 2022; 110:2713-2727. [PMID: 35907398 DOI: 10.1016/j.neuron.2022.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 10/16/2022]
Abstract
Many ion channels have been described as mechanosensitive according to various criteria. Most broadly defined, an ion channel is called mechanosensitive if its activity is controlled by application of a physical force. The last decade has witnessed a revolution in mechanosensory physiology at the molecular, cellular, and system levels, both in health and in diseases. Since the discovery of the PIEZO proteins as prototypical mechanosensitive channel, many proteins have been proposed to transduce mechanosensory information in mammals. However, few of these newly identified candidates have all the attributes of bona fide, pore-forming mechanosensitive ion channels. In this perspective, we will cover and discuss new data that have advanced our understanding of mechanosensation at the molecular level.
Collapse
Affiliation(s)
- Patrick Delmas
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France.
| | - Thibaud Parpaite
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| | - Bertrand Coste
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| |
Collapse
|
218
|
Shi L, Jiang Y, Zheng N, Cheng JX, Yang C. High-precision neural stimulation through optoacoustic emitters. NEUROPHOTONICS 2022; 9:032207. [PMID: 35355658 PMCID: PMC8941197 DOI: 10.1117/1.nph.9.3.032207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 05/03/2023]
Abstract
Neuromodulation poses an invaluable role in deciphering neural circuits and exploring clinical treatment of neurological diseases. Optoacoustic neuromodulation is an emerging modality benefiting from the merits of ultrasound with high penetration depth as well as the merits of photons with high spatial precision. We summarize recent development in a variety of optoacoustic platforms for neural modulation, including fiber, film, and nanotransducer-based devices, highlighting the key advantages of each platform. The possible mechanisms and main barriers for optoacoustics as a viable neuromodulation tool are discussed. Future directions in fundamental and translational research are proposed.
Collapse
Affiliation(s)
- Linli Shi
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
| | - Ying Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Nan Zheng
- Boston University, Division of Materials Science and Engineering, Boston, Massachusetts, United States
| | - Ji-Xin Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| | - Chen Yang
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| |
Collapse
|
219
|
Lee S, Lee K, Choi M, Park J. Implantable acousto-optic window for monitoring ultrasound-mediated neuromodulation in vivo. NEUROPHOTONICS 2022; 9:032203. [PMID: 35874142 PMCID: PMC9298854 DOI: 10.1117/1.nph.9.3.032203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Significance: Ultrasound has recently received considerable attention in neuroscience because it provides noninvasive control of deep brain activity. Although the feasibility of ultrasound stimulation has been reported in preclinical and clinical settings, its mechanistic understanding remains limited. While optical microscopy has become the "gold standard" tool for investigating population-level neural functions in vivo, its application for ultrasound neuromodulation has been technically challenging, as most conventional ultrasonic transducers are not designed to be compatible with optical microscopy. Aim: We aimed to develop a transparent acoustic transducer based on a glass coverslip called the acousto-optic window (AOW), which simultaneously provides ultrasound neuromodulation and microscopic monitoring of neural responses in vivo. Approach: The AOW was fabricated by the serial deposition of transparent acoustic stacks on a circular glass coverslip, comprising a piezoelectric material, polyvinylidene fluoride-trifluoroethylene, and indium-tin-oxide electrodes. The fabricated AOW was implanted into a transgenic neural-activity reporter mouse after open craniotomy. Two-photon microscopy was used to observe neuronal activity in response to ultrasonic stimulation through the AOW. Results: The AOW allowed microscopic imaging of calcium activity in cortical neurons in response to ultrasound stimulation. The optical transparency was ∼ 40 % over the visible and near-infrared spectra, and the ultrasonic pressure was 0.035 MPa at 10 MHz corresponding to 10 mW / cm 2 . In anesthetized Gad2-GCaMP6-tdTomato mice, we observed robust ultrasound-evoked activation of inhibitory cortical neurons at depths up to 200 μ m . Conclusions: The AOW is an implantable ultrasonic transducer that is broadly compatible with optical imaging modalities. The AOW will facilitate our understanding of ultrasound neuromodulation in vivo.
Collapse
Affiliation(s)
- Sungho Lee
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
- Seoul National University, Institute of Molecular Biology and Genetics, Seoul, Republic of Korea
| | - Keunhyung Lee
- Sungkyunkwan University, Department of Intelligent Precision Healthcare Convergence, Suwon, Republic of Korea
| | - Myunghwan Choi
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
- Seoul National University, Institute of Molecular Biology and Genetics, Seoul, Republic of Korea
| | - Jinhyoung Park
- Sungkyunkwan University, Department of Intelligent Precision Healthcare Convergence, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| |
Collapse
|
220
|
Zhuo SY, Li GF, Gong HQ, Qiu WB, Zheng HR, Liang PJ. Low-frequency, low-intensity ultrasound modulates light responsiveness of mouse retinal ganglion cells. J Neural Eng 2022; 19. [PMID: 35772385 DOI: 10.1088/1741-2552/ac7d75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Ultrasound modulates the firing activity of retinal ganglion cells (RGCs), but the effects of lower-frequency, lower-intensity ultrasound on RGCs and underlying mechanism(s) remain poorly understood. This study aims to address these questions. APPROACH Multi-electrode recordings were used in this study to record the firing sequences of RGCs in isolated mouse retinas. RGCs' background firing activities as well as their light responses were recorded with or without ultrasound stimulation. Cross-correlation analyses were performed to investigate the possible cellular/circuitry mechanism(s) underlying ultrasound modulation. MAIN RESULTS It was found that ultrasound stimulation of isolated mouse retina enhanced the background activity of ON-RGCs and OFF-RGCs. In addition, background ultrasound stimulation shortened the light response latency of both ON-RGCs and OFF-RGCs, while enhancing part of the RGCs' (both ON- and OFF-subtypes) light response and decreasing that of the others. In some ON-OFF RGCs, the ON- and OFF-responses of an individual cell were oppositely modulated by the ultrasound stimulation, which suggests that ultrasound stimulation does not necessarily exert its effect directly on RGCs, but rather via its influence on other type(s) of cells. By analyzing the cross-correlation between the firing sequences of RGC pairs, it was found that concerted activity occurred during ultrasound stimulation differed from that occurred during light stimulation, in both spatial and temporal aspects. These results suggest that the cellular circuits involved in ultrasound- and light-induced concerted activities are different and glial cells may be involved in the circuit in response to ultrasound. SIGNIFICANCE These findings demonstrate that ultrasound affects neuronal background activity and light responsiveness, which are critical for visual information processing. These results may also imply a hitherto unrecognized role of glial cell activation in the bidirectional modulation effects of RGCs and may be critical for the nervous system.
Collapse
Affiliation(s)
- Shun-Yi Zhuo
- Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Guo-Feng Li
- Guangdong Medical University, Songshan Lake Science and Technology Park, Dongguan, Guangdong, 523000, CHINA
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Dongchuan 800 road, Shanghai, 200240, CHINA
| | - Wei-Bao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave.,, Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Hai-Rong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, China, Shanghai, 800 Dongchuan Road, Shanghai, Shanghai, 200240, CHINA
| |
Collapse
|
221
|
Lescrauwaet E, Vonck K, Sprengers M, Raedt R, Klooster D, Carrette E, Boon P. Recent Advances in the Use of Focused Ultrasound as a Treatment for Epilepsy. Front Neurosci 2022; 16:886584. [PMID: 35794951 PMCID: PMC9251412 DOI: 10.3389/fnins.2022.886584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Epilepsy affects about 1% of the population. Approximately one third of patients with epilepsy are drug-resistant (DRE). Resective surgery is an effective treatment for DRE, yet invasive, and not all DRE patients are suitable resective surgery candidates. Focused ultrasound, a novel non-invasive neurointerventional method is currently under investigation as a treatment alternative for DRE. By emitting one or more ultrasound waves, FUS can target structures in the brain at millimeter resolution. High intensity focused ultrasound (HIFU) leads to ablation of tissue and could therefore serve as a non-invasive alternative for resective surgery. It is currently under investigation in clinical trials following the approval of HIFU for essential tremor and Parkinson’s disease. Low intensity focused ultrasound (LIFU) can modulate neuronal activity and could be used to lower cortical neuronal hyper-excitability in epilepsy patients in a non-invasive manner. The seizure-suppressive effect of LIFU has been studied in several preclinical trials, showing promising results. Further investigations are required to demonstrate translation of preclinical results to human subjects.
Collapse
Affiliation(s)
- Emma Lescrauwaet
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- *Correspondence: Emma Lescrauwaet,
| | - Kristl Vonck
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Sprengers
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Robrecht Raedt
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Evelien Carrette
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- 4Brain Lab, Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
222
|
Balbi M, Blackmore DG, Padmanabhan P, Götz J. Ultrasound-Mediated Bioeffects in Senescent Mice and Alzheimer's Mouse Models. Brain Sci 2022; 12:775. [PMID: 35741660 PMCID: PMC9221310 DOI: 10.3390/brainsci12060775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Ultrasound is routinely used for a wide range of diagnostic imaging applications. However, given that ultrasound can operate over a wide range of parameters that can all be modulated, its applicability extends far beyond the bioimaging field. In fact, the modality has emerged as a hybrid technology that effectively assists drug delivery by transiently opening the blood-brain barrier (BBB) when combined with intravenously injected microbubbles, and facilitates neuromodulation. Studies in aged mice contributed to an insight into how low-intensity ultrasound brings about its neuromodulatory effects, including increased synaptic plasticity and improved cognitive functions, with a potential role for neurogenesis and the modulation of NMDA receptor-mediated neuronal signalling. This work is complemented by studies in mouse models of Alzheimer's disease (AD), a form of pathological ageing. Here, ultrasound was mainly employed as a BBB-opening tool that clears protein aggregates via microglial activation and neuronal autophagy, thereby restoring cognition. We discuss the currently available ultrasound approaches and how studies in senescent mice are relevant for AD and can accelerate the application of low-intensity ultrasound in the clinic.
Collapse
Affiliation(s)
- Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
| | - Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (M.B.); (D.G.B.); (P.P.)
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
223
|
Hoffman BU, Baba Y, Lee SA, Tong CK, Konofagou EE, Lumpkin EA. Focused ultrasound excites action potentials in mammalian peripheral neurons in part through the mechanically gated ion channel PIEZO2. Proc Natl Acad Sci U S A 2022; 119:e2115821119. [PMID: 35580186 PMCID: PMC9173751 DOI: 10.1073/pnas.2115821119] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Neurons of the peripheral nervous system (PNS) are tasked with diverse roles, from encoding touch, pain, and itch to interoceptive control of inflammation and organ physiology. Thus, technologies that allow precise control of peripheral nerve activity have the potential to regulate a wide range of biological processes. Noninvasive modulation of neuronal activity is an important translational application of focused ultrasound (FUS). Recent studies have identified effective strategies to modulate brain circuits; however, reliable parameters to control the activity of the PNS are lacking. To develop robust noninvasive technologies for peripheral nerve modulation, we employed targeted FUS stimulation and electrophysiology in mouse ex vivo skin-saphenous nerve preparations to record the activity of individual mechanosensory neurons. Parameter space exploration showed that stimulating neuronal receptive fields with high-intensity, millisecond FUS pulses reliably and repeatedly evoked one-to-one action potentials in all peripheral neurons recorded. Interestingly, when neurons were classified based on neurophysiological properties, we identified a discrete range of FUS parameters capable of exciting all neuronal classes, including myelinated A fibers and unmyelinated C fibers. Peripheral neurons were excited by FUS stimulation targeted to either cutaneous receptive fields or peripheral nerves, a key finding that increases the therapeutic range of FUS-based peripheral neuromodulation. FUS elicited action potentials with millisecond latencies compared with electrical stimulation, suggesting ion channel–mediated mechanisms. Indeed, FUS thresholds were elevated in neurons lacking the mechanically gated channel PIEZO2. Together, these results demonstrate that transcutaneous FUS drives peripheral nerve activity by engaging intrinsic mechanotransduction mechanisms in neurons [B. U. Hoffman, PhD thesis, (2019)].
Collapse
Affiliation(s)
- Benjamin U. Hoffman
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032
- Program in Neurobiology & Behavior, Columbia University, New York, NY 10032
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Yoshichika Baba
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Stephen A. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10032
| | - Chi-Kun Tong
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10032
| | - Ellen A. Lumpkin
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032
- Program in Neurobiology & Behavior, Columbia University, New York, NY 10032
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
224
|
Mechanistic insights into ultrasonic neurostimulation of disconnected neurons using single short pulses. Brain Stimul 2022; 15:769-779. [PMID: 35561960 DOI: 10.1016/j.brs.2022.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Ultrasonic neurostimulation is a potentially potent noninvasive therapy, whose mechanism has yet to be elucidated. We designed a system capable of applying ultrasound with minimal reflections to neuronal cultures. Synaptic transmission was pharmacologically controlled, eliminating network effects, enabling examination of single-cell processes. Short single pulses of low-intensity ultrasound were applied, and time-locked responses were examined using calcium imaging. Low-pressure (0.35MPa) ultrasound directly stimulated ∼20% of pharmacologically disconnected neurons, regardless of membrane poration. Stimulation was resistant to the blockade of several purinergic receptor and mechanosensitive ion channel types. Stimulation was blocked, however, by suppression of action potentials. Surprisingly, even extremely short (4μs) pulses were effective, stimulating ∼8% of the neurons. Lower-pressure pulses (0.35MPa) were less effective than higher-pressure ones (0.65MPa). Attrition effects dominated, with no indication of compromised viability. Our results detract from theories implicating cavitation, heating, non-transient membrane pores >1.5nm, pre-synaptic release, or gradual effects. They implicate a post-synaptic mechanism upstream of the action potential, and narrow down the list of possible targets involved.
Collapse
|
225
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
226
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
227
|
|
228
|
Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS NANO 2022; 16:2292-2305. [PMID: 35098714 DOI: 10.1021/acsnano.1c08491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neural interfaces using biocompatible scaffolds provide crucial properties, such as cell adhesion, structural support, and mass transport, for the functional repair of nerve injuries and neurodegenerative diseases. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a generalized strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable nongenetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation, and 94% of photoacoustic-stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light-illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a rat dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that promoted neurite outgrowth by photoacoustic stimulation is associated with an increased concentration of neurotrophic factor (BDNF). As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated nongenetic PA neural stimulation functions and promoted neurite outgrowth, providing an additional method for nonpharmacological neural regeneration.
Collapse
Affiliation(s)
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
229
|
Lee KS, Clennell B, Steward TGJ, Gialeli A, Cordero-Llana O, Whitcomb DJ. Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson's Disease: A Scoping Review. Brain Sci 2022; 12:289. [PMID: 35204052 PMCID: PMC8869888 DOI: 10.3390/brainsci12020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Non-invasive focused ultrasound stimulation (FUS) is a non-ionising neuromodulatory technique that employs acoustic energy to acutely and reversibly modulate brain activity of deep-brain structures. It is currently being investigated as a potential novel treatment for Parkinson's disease (PD). This scoping review was carried out to map available evidence pertaining to the provision of FUS as a PD neuromodulatory tool. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews, a search was applied to Ovid MEDLINE, Embase, Web of Science and Cochrane Central Register of Controlled Trials on 13 January 2022, with no limits applied. In total, 11 studies were included: 8 were from China and 1 each from Belgium, South Korea and Taiwan. All 11 studies were preclinical (6 in vivo, 2 in vitro, 2 mix of in vivo and in vitro and 1 in silico). The preclinical evidence indicates that FUS is safe and has beneficial neuromodulatory effects on motor behaviour in PD. FUS appears to have a therapeutic role in influencing the disease processes of PD, and therefore holds great promise as an attractive and powerful neuromodulatory tool for PD. Though these initial studies are encouraging, further study to understand the underlying cellular and molecular mechanisms is required before FUS can be routinely used in PD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Tom G. J. Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Andriana Gialeli
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Oscar Cordero-Llana
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Daniel J. Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
230
|
Duque M, Lee-Kubli CA, Tufail Y, Magaram U, Patel J, Chakraborty A, Mendoza Lopez J, Edsinger E, Vasan A, Shiao R, Weiss C, Friend J, Chalasani SH. Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels. Nat Commun 2022; 13:600. [PMID: 35140203 PMCID: PMC8828769 DOI: 10.1038/s41467-022-28205-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ultrasound has been used to non-invasively manipulate neuronal functions in humans and other animals. However, this approach is limited as it has been challenging to target specific cells within the brain or body. Here, we identify human Transient Receptor Potential A1 (hsTRPA1) as a candidate that confers ultrasound sensitivity to mammalian cells. Ultrasound-evoked gating of hsTRPA1 specifically requires its N-terminal tip region and cholesterol interactions; and target cells with an intact actin cytoskeleton, revealing elements of the sonogenetic mechanism. Next, we use calcium imaging and electrophysiology to show that hsTRPA1 potentiates ultrasound-evoked responses in primary neurons. Furthermore, unilateral expression of hsTRPA1 in mouse layer V motor cortical neurons leads to c-fos expression and contralateral limb responses in response to ultrasound delivered through an intact skull. Collectively, we demonstrate that hsTRPA1-based sonogenetics can effectively manipulate neurons within the intact mammalian brain, a method that could be used across species. Ultrasound can be used to non-invasively control neuronal functions. Here the authors report the use of human Transient receptor potential ankyrin 1 (hsTRPA1) to achieve ultrasound sensitivity in mammalian cells, and show that it can be used to manipulate neurons in the mammalian brain.
Collapse
Affiliation(s)
- Marc Duque
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yusuf Tufail
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Uri Magaram
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Janki Patel
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ahana Chakraborty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jose Mendoza Lopez
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Connor Weiss
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA. .,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
231
|
Ultrasound does not activate but can inhibit in vivo mammalian nerves across a wide range of parameters. Sci Rep 2022; 12:2182. [PMID: 35140238 PMCID: PMC8828880 DOI: 10.1038/s41598-022-05226-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
Ultrasound (US) has been shown to stimulate brain circuits, however, the ability to excite peripheral nerves with US remains controversial. To the best of our knowledge, there is still no in vivo neural recording study that has applied US stimulation to a nerve isolated from surrounding tissue to confirm direct activation effects. Here, we show that US cannot excite an isolated mammalian sciatic nerve in an in vivo preparation, even at high pressures (relative to levels recommended in the FDA guidance for diagnostic ultrasound) and for a wide range of parameters, including different pulse patterns and center frequencies. US can, however, reliably inhibit nerve activity whereby greater suppression is correlated with increases in nerve temperature. By prohibiting the nerve temperature from increasing during US application, we did not observe suppressive effects. Overall, these findings demonstrate that US can reliably inhibit nerve activity through a thermal mechanism that has potential for various health disorders, though future studies are needed to evaluate the long-term safety of therapeutic ultrasound applications.
Collapse
|