201
|
Abstract
In molecular photochemistry, charge-transfer emission is well understood and widely exploited. In contrast, luminescent metal-centered transitions only came into focus in recent years. This gave rise to strongly phosphorescent CrIII complexes with a d3 electronic configuration featuring luminescent metal-centered excited states which are characterized by the flip of a single spin. These so-called spin-flip emitters possess unique properties and require different design strategies than traditional charge-transfer phosphors. In this review, we give a brief introduction to ligand field theory as a framework to understand this phenomenon and outline prerequisites for efficient spin-flip emission including ligand field strength, symmetry, intersystem crossing and common deactivation pathways using CrIII complexes as instructive examples. The recent progress and associated challenges of tuning the energies of emissive excited states and of emerging applications of the unique photophysical properties of spin-flip emitters are discussed. Finally, we summarize the current state-of-the-art and challenges of spin-flip emitters beyond CrIII with d2, d3, d4 and d8 electronic configuration, where we mainly cover pseudooctahedral molecular complexes of V, Mo, W, Mn, Re and Ni, and highlight possible future research opportunities.
Collapse
|
202
|
Clegg JK, Li F, Lindoy LF. Oligo-β-diketones as versatile ligands for use in metallo-supramolecular chemistry: Recent progress and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
203
|
Advances in circularly polarized luminescent materials based on axially chiral compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
204
|
Zhang Y, Li H, Geng Z, Zheng WH, Quan Y, Cheng Y. Inverted Circularly Polarized Luminescence Behavior Induced by Helical Nanofibers through Chiral Co-Assembly from Achiral Liquid Crystal Polymers and Chiral Inducers. ACS NANO 2022; 16:3173-3181. [PMID: 35142484 DOI: 10.1021/acsnano.1c11011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral supramolecular assembly can provide a powerful strategy for developing circularly polarized luminescence (CPL)-active materials by forming helices or superhelices into single or multiple components. Herein, we chose three achiral liquid crystal polymers (LC-P1/P2/P3) and chiral binaphthyl-based inducers (R/S-M) with anchored dihedral angles to construct chiral co-assemblies and explore the induced CPL behavior from pyrenyl (Py) emitters in achiral LC polymers through the regulation of helical nanofibers during the supramolecular co-assembly process. Most interestingly, chiral co-assembly (R/S-M)0.1-(P3)0.9 emitted an inverted blue-colored CPL signal during thermal annealing treatment at the glass transition temperature due to the flexible main chain of the LC polymer (LC-P3). The strongest blue-colored CPL emission for the (R/S-M)0.1-(P3)0.9 spin-coated film (λem = 455 nm, |gem| = 6.47 × 10-2, ΦF = 48.5%) could be detected by using thermal annealing treatment at 105 °C.
Collapse
Affiliation(s)
- Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongxing Geng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen-Hua Zheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
205
|
Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E, Freire F. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022; 61:e202115070. [DOI: 10.1002/anie.202115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Juan José Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Berta Fernández
- Departamento de Química Física Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
206
|
Lou D, Sun Y, Li J, Zheng Y, Zhou Z, Yang J, Pan C, Zheng Z, Chen X, Liu W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Lou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Chuxuan Pan
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| |
Collapse
|
207
|
Stachelek P, MacKenzie L, Parker D, Pal R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat Commun 2022; 13:553. [PMID: 35087047 PMCID: PMC8795401 DOI: 10.1038/s41467-022-28220-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light.
Collapse
Affiliation(s)
- Patrycja Stachelek
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Lewis MacKenzie
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
208
|
Li H, Gu J, Wang Z, Wang J, He F, Li P, Tao Y, Li H, Xie G, Huang W, Zheng C, Chen R. Single-component color-tunable circularly polarized organic afterglow through chiral clusterization. Nat Commun 2022; 13:429. [PMID: 35058447 PMCID: PMC8776763 DOI: 10.1038/s41467-022-28070-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence (RTP) and circularly polarized luminescence (CPL) is currently attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains a formidable challenge. Here, we report an efficient strategy to achieve multicolor CPOA molecules through chiral clusterization by implanting chirality center into non-conjugated organic cluster. Owing to excitation-dependent emission of clusters, highly efficient and significantly tuned CPOA emissions from blue to yellowish-green with dissymmetry factor over 2.3 × 10-3 and lifetime up to 587 ms are observed under different excitation wavelengths. With the distinguished color-tunable CPOA, the multicolor CPL displays and visual RTP detection of ultraviolent light wavelength are successfully constructed. These results not only provide a new paradigm for realization of multicolor-tunable CPOA materials in single-component molecular systems, but also offer new opportunities for expanding the applicability of CPL and RTP materials for diversified applications.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Gu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Juan Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Fei He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.
| | - Chao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
209
|
Freire F, Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Freire
- Universidade de Santiago de Compostela Centre for Research in Biological Chemistry and Molecular Materials Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| | - Juan José Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Rafael Rodríguez
- Kanazawa University - Kakuma Campus: Kanazawa Daigaku Organic Chemsitry JAPAN
| | - Berta Fernández
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela Physical Chemistry RWANDA
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| |
Collapse
|
210
|
Teng JM, Zhang DW, Wang YF, Chen CF. Chiral Conjugated Thermally Activated Delayed Fluorescent Polymers for Highly Efficient Circularly Polarized Polymer Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1578-1586. [PMID: 34962755 DOI: 10.1021/acsami.1c20244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two novel chiral conjugated polymers R-P and S-P designed and synthesized from a pair of circularly polarized thermally activated delayed fluorescence (CP-TADF) enantiomers are presented in this work. The two polymers exhibited excellent TADF properties with small singlet-triplet energy gaps (ΔEST) of 0.045 and 0.061 eV and relatively high photoluminescence quantum yields (PLQYs) of 72 and 76%, respectively. Besides, intense mirror-image circularly polarized luminescence signals were detected from R-P and S-P in both solution and film states with dissymmetry factors (|glum|) of up to 1.9 × 10-3. Furthermore, solution-processed circularly polarized polymer light-emitting diodes (CP-PLEDs) fabricated with R-P and S-P achieved high maximum external quantum efficiencies of 14.9 and 15.8% and high maximum brightness (Lmax) of 8940 and 12,180 cd/m2 with yellowish-green emission peaks at 546 and 544 nm, respectively. Moreover, intense circularly polarized electroluminescence signals with electroluminescence dissymmetry factors (gEL) of -1.5 × 10-3 and +1.6 × 10-3 were detected from the CP-PLED devices fabricated with R-P and S-P, respectively.
Collapse
Affiliation(s)
- Jin-Ming Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
211
|
Li H, Wang Y, Zhou Y, Yao Z, Huang W, Gao T, Yan P. Asymmetric induction in quadruple-stranded europium(III) helicates and circularly polarized luminescence. Dalton Trans 2022; 51:10973-10982. [DOI: 10.1039/d2dt01379g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral supramolecular lanthanide-helicates are regarded as promising chiroptical materials due to their combination of ground and excited state chirality and special luminescence property from Ln3+, named as circularly polarized luminescence...
Collapse
|
212
|
Li S, Dong XY, Qi KS, Zang SQ, Mak TCW. Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. J Am Chem Soc 2021; 143:20574-20578. [PMID: 34855382 DOI: 10.1021/jacs.1c09245] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four pairs of defective crystals exhibiting full-color emission and circularly polarized luminescence (CPL) with high luminescence dissymmetry factor (glum) values (∼3 × 10-3) were successfully obtained by doping dye molecules into the chiral crystalline metal cluster-based matrixes. The dye molecules function as defect inducers and confer fluorescence on the crystals. Studies reveal that electrostatic interactions provide the main impetus in generating defective crystals, and the restricted effect of chiral space and the weak interactions in defect crystal enable the efficient chiral transfer from the intrinsically chiral host silver(I) clusters to achiral luminescent dopants and finally induce them to emit bright CPL. This defect engineering strategy opens a new way to versatile functions for crystalline cluster-based materials.
Collapse
Affiliation(s)
- Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Kong-Sheng Qi
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
213
|
Li T, Guo H, Wang Y, Ouyang G, Wang QQ, Liu M. Chiral macrocycle-induced circularly polarized luminescence of a twisted intramolecular charge transfer dye. Chem Commun (Camb) 2021; 57:13554-13557. [PMID: 34842859 DOI: 10.1039/d1cc05902e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The host-guest binding between a chiral macrocycle and an achiral dye could suppress the twisted intramolecular charge transfer (TICT) process, leading to enhanced emission and bright circularly polarized luminescence (CPL) from the originally achiral TICT-dye.
Collapse
Affiliation(s)
- Tiejun Li
- Beijing National Laboratory for Molecular Science (BNLMS) and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Guo
- University of Chinese Academy of Sciences, Beijing, 100049, China.,BNLMS and CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS) and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS) and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Qi-Qiang Wang
- BNLMS and CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
214
|
Wei L, Ma X, Xu Y. A Double Layer Laminated Film of Cellulose Nanocrystals and Dye Displaying Vibrant Circularly Polarized Light. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
215
|
Takaishi K, Nakatsuka Y, Asano H, Yamada Y, Ema T. Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry 2021; 28:e202104212. [PMID: 34837262 DOI: 10.1002/chem.202104212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/21/2022]
Abstract
RutheniumII complexes bearing three axially chiral bipyridyl ligands were synthesized as a new family of chiral complex dyes, and Δ-(S)- and Λ-(S)-diastereomers were obtained. The X-ray crystal structure analyses, spectroscopy, and DFT calculations suggested that all the bipyridyls maintained chirality in both the ground and excited states, and the Δ-(S)- and Λ-(S)-isomers are the matched (more relaxed) and mismatched (more constrained) pairs, respectively. The mismatched Λ-(S)-isomer exhibited red circularly polarized phosphorescence (CPP) both in solution and in the solid state. The solution state CPP is the most intense of ruthenium complexes, while the solid state CPP is the first example of them. It is supposed that, for the Λ-(S)-isomer, the six cumulative CH/π interactions suppress further distortion in the T1 state.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yusuke Nakatsuka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Hitomi Asano
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yuya Yamada
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
216
|
Sumsalee P, Abella L, Kasemthaveechok S, Vanthuyne N, Cordier M, Pieters G, Autschbach J, Crassous J, Favereau L. Luminescent Chiral Exciplexes with Sky-Blue and Green Circularly Polarized-Thermally Activated Delayed Fluorescence. Chemistry 2021; 27:16505-16511. [PMID: 34599776 DOI: 10.1002/chem.202102765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10-3 , one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10-4 ). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284, Marseille, France
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR - UMR 6226, 35000, Rennes, France
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | | |
Collapse
|
217
|
Zheng D, Guo S, Zheng L, Xu Q, Wang Y, Jiang H. Red circularly polarized luminescence from intramolecular excimers restricted by chiral aromatic foldamers. Chem Commun (Camb) 2021; 57:12016-12019. [PMID: 34713879 DOI: 10.1039/d1cc05163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic oligoamide foldamers are highlighted as a verstile paltform for developing single-handed foldamers with two aromatic acetenyl groups at the same side. The foldamers with pyrene acetenyl units exhibit red excimer emissions, which were circularly polarized and show interesting circularly polarized luminescence properties with high CPL brightness BCPL up to 109.8 M-1.cm-1. The red excimer CPL was attributed to the extended conjugations and the spatial restriction of pyrene units at the same side of foldamers.
Collapse
Affiliation(s)
- Dan Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shengzhu Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Lu Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Qi Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
218
|
Takaishi K, Murakami S, Iwachido K, Ema T. Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule. Chem Sci 2021; 12:14570-14576. [PMID: 34881009 PMCID: PMC8580037 DOI: 10.1039/d1sc04403f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (-)- and (+)-CPL, respectively.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Kazuhiro Iwachido
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
219
|
Mouchel Dit Leguerrier D, Barré R, Molloy J, Thomas F. Lanthanide complexes as redox and ROS/RNS probes: A new paradigm that makes use of redox-reactive and redox non-innocent ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
220
|
Ji L, Liu Y, Li Z, Ouyang G, Liu M. Solvent-regulated chiral exciton coupling and CPL sign inversion of an amphiphilic glutamide-cyanostilbene. Chem Commun (Camb) 2021; 57:11314-11317. [PMID: 34635884 DOI: 10.1039/d1cc04471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chiral exciton couplings within a Y-shaped amphiphilic glutamide-cyanostilbene (GCS) could be significantly biased by solvent polarity and hydration effects, which led to sign inversion of both the circular dichroism and circularly polarized luminescence of the GCS assemblies.
Collapse
Affiliation(s)
- Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
221
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113979. [PMID: 34693602 DOI: 10.1002/anie.202113979] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Chiral covalent organic frameworks (COFs) with circularly polarized luminescence (CPL) are intriguing as advanced chiroptical materials but have not been reported to date. We constructed chiroptical COF materials with CPL activity through the convenient Knoevenagel condensation of formyl-functionalized axially chiral linkers and C3-symmetric 1,3,5-benzenetriacetonitrile. Remarkably, the as-prepared chiral COFs showed high absorption and luminescent dissymmetric factors up to 0.02 (gabs ) and 0.04 (glum ), respectively. In contrast, the branched chiral polymers from the same starting monomers were CPL silent. Structural and spectral characterization revealed that the reticular frame was indispensable for CPL generation via confined chirality transfer. Moreover, reticular stacking boosted the CPL performance significantly due to the interlayer restriction of frame. This work demonstrates the first example of a CPL-active COF and provides insight into CPL generation through covalent reticular chemistry, which will play a constructive role in the future design of high-performance CPL materials.
Collapse
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
222
|
Liu Y, Zhang Y. Perovskite Nanocrystals with Tunable Fluorescent Intensity during Anion Exchange for Dynamic Optical Encryption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47072-47080. [PMID: 34581182 DOI: 10.1021/acsami.1c14071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskite nanocrystals (PNCs) have demonstrated their potential use in many applications such as optical encryption because of their excellent optical properties. However, the optical encryption using PNCs is mainly based on the formation of static patterns with luminescence on/off switching. In this work, we demonstrated that the capping ligands play an important role in tuning the luminescence intensity of the PNCs during ion exchange. The surfactant, oleylamine (OAm), is essential in shifting the luminescence color of the PNCs from green to yellow during the ion exchange. In the absence of OAm, the luminescence in the green and yellow regions is quenched during the ion exchange and the luminescence is recovered in the red region by adding trioctylphosphine (TOP) into the ion-exchange solution. On the basis of these findings, we proposed a dynamic optical encryption strategy using PNCs with different capping ligands by tuning the luminescence intensity. The encoded message is hidden in the green pattern at the beginning, shown during the ion exchange, and erased when the pattern is completely converted from a green color to a red color after the ion exchange ends. This dynamic encryption strategy enhances the security level and is compatible with human eye-perceivable patterns and binary coding algorithms.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| |
Collapse
|
223
|
Vázquez-Domínguez P, Journaud O, Vanthuyne N, Jacquemin D, Favereau L, Crassous J, Ros A. Helical donor-acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence. Dalton Trans 2021; 50:13220-13226. [PMID: 34533555 DOI: 10.1039/d1dt02184b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of chiral platina[5]helicenes displaying dual luminescence, i.e., fluorescence between 450 and 600 nm and red/NIR phosphorescence between 700 and 900 nm, has been synthesised, characterised and studied by first-principle calculations. This unusual behavior has been attributed to limited electronic interactions between the d orbitals of the metal and the π-orbitals of the organic ligand on the excited-state. Accordingly, the electron richness of the donor group on the helical ligand does not affect the energy of the phosphorescence process but does play a role on its efficiency. Interestingly, near-infrared circularly polarized luminescence can be obtained for the three complexes with dissymmetry factors up to 3 × 10-3 at 750 nm.
Collapse
Affiliation(s)
| | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR 6230, CNRS, Université de Nantes, Nantes, France.
| | | | | | - Abel Ros
- Institute for Chemical Research (CSIC-US), C/Américo Vespucio 49, E-41092 Seville, Spain.
| |
Collapse
|
224
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|
225
|
Liao P, Zang S, Wu T, Jin H, Wang W, Huang J, Tang BZ, Yan Y. Generating circularly polarized luminescence from clusterization-triggered emission using solid phase molecular self-assembly. Nat Commun 2021; 12:5496. [PMID: 34535652 PMCID: PMC8448880 DOI: 10.1038/s41467-021-25789-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Purely-organic clusterization-triggered emission (CTE) has displayed promising abilities in bioimaging, chemical sensing, and multicolor luminescence. However, it remains absent in the field of circularly polarized luminescence (CPL) due to the difficulties in well-aligning the nonconventional luminogens. We report a case of CPL generated with CTE using the solid phase molecular self-assembly (SPMSA) of poly-L-lysine (PLL) and oleate ion (OL), that is, the macroscopic CPL supramolecular film self-assembled by the electrostatic complex of PLL/OL under mechanical pressure. Well-defined interface charge distribution, given by lamellar mesophases of OL ions, forces the PLL chains to fold regularly as a requirement of optimal electrostatic interactions. Further facilitated by hydrogen bonding, the through-space conjugation (TSC) of orderly aligned electron-rich O and N atoms leads to CTE-based CPL, which is capable of transferring energy to an acceptor via a Förster resonance energy transfer (FRET) process, making it possible to develop environmentally friendly and economic CPL from sustainable and renewable materials.
Collapse
Affiliation(s)
- Peilong Liao
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongjun Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong, 518172, China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
226
|
Poncet M, Benchohra A, Jiménez J, Piguet C. Chiral Chromium(III) Complexes as Promising Candidates for Circularly Polarized Luminescence. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Amina Benchohra
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
- Department of Inorganic Chemistry University of Granada Unidad de Excelencia en Química (UEQ) Avda. Fuentenueva S/N 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
227
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
228
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V-shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021; 60:19451-19457. [PMID: 34196488 DOI: 10.1002/anie.202107842] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Here, we designed symmetric and dissymmetric chiral V-shaped pyrenes by linking achiral pyrenes to trans-1,2-cyclohexane diamine scaffolds with varied spacers to investigate their circular dichroism (CD) and circularly polarized excimer emission (CPEE). In molecular solution, the symmetric V-shaped molecules (P1, P2, P3) displayed spacer-dependent CD and CPEE originating from the intramolecular excimers while the dissymmetric V-shaped B was silent in CD and CPEE. Upon self-assembly, the chiral V-shaped conformation guided a helical hexagonal packing. Notably, P1 self-assembled into delicate superhelices with optimum chiroptical activities and the largest gCD for pyrene derivatives to date. The dissymmetric B formed two distinct hexagonal aggregates as twists and rectangular nanotubes with greatly amplified CPEE. This work demonstrates unprecedented hexagonal superhelices from chiral V-shaped scaffolds and provides a deep insight into the relationship between molecular conformation, supramolecular architectures, and their chiroptical performance.
Collapse
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
229
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V‐shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
230
|
Greenfield JL, Wade J, Brandt JR, Shi X, Penfold TJ, Fuchter MJ. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem Sci 2021; 12:8589-8602. [PMID: 34257860 PMCID: PMC8246297 DOI: 10.1039/d1sc02335g] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
The dissymmetric interaction between circularly polarised (CP) light and chiral molecules is central to a range of areas, from spectroscopy and imaging to next-generation photonic devices. However, the selectivity in absorption or emission of left-handed versus right-handed CP light is low for many molecular systems. In this perspective, we assess the magnitude of the measured chiroptical response for a variety of chiral systems, ranging from small molecules to large supramolecular assemblies, and highlight the challenges towards enhancing chiroptical activity. We explain the origins of low CP dissymmetry and showcase recent examples in which molecular design, and the modification of light itself, enable larger responses. Our discussion spans spatial extension of the chiral chromophore, manipulation of transition dipole moments, exploitation of forbidden transitions and creation of macroscopic chiral structures; all of which can increase the dissymmetry. Whilst the specific strategy taken to enhance the dissymmetric interaction will depend on the application of interest, these approaches offer hope for the development and advancement of all research fields that involve interactions of chiral molecules and light.
Collapse
Affiliation(s)
- Jake L Greenfield
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus 82 Wood Lane London W12 0BZ UK
| | - Jessica Wade
- Department of Materials, Imperial College London Exhibition Road SW7 2AZ UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Jochen R Brandt
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus 82 Wood Lane London W12 0BZ UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Xingyuan Shi
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus 82 Wood Lane London W12 0BZ UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Matthew J Fuchter
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus 82 Wood Lane London W12 0BZ UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
231
|
Parker D, Fradgley JD, Wong KL. The design of responsive luminescent lanthanide probes and sensors. Chem Soc Rev 2021; 50:8193-8213. [PMID: 34075982 DOI: 10.1039/d1cs00310k] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The principles of the design of responsive luminescent probes and sensors based on lanthanide emission are summarised, based on a mechanistic understanding of their mode of action. Competing kinetic pathways for deactivation of the excited states that occur are described, highlighting the need to consider each of the salient quenching processes. Such an analysis dictates the choice of both the ligand and its integral sensitising moiety for the particular application. The key aspects of quenching involving electron transfer and vibrational and electronic energy transfer are highlighted and exemplified. Responsive systems for pH, pM, pX and pO2 and selected biochemical analytes are distinguished, according to the nature of the optical signal observed. Signal changes include both simple and ratiometric intensity measurements, emission lifetime variations and the unique features associated with the observation of circularly polarised luminescence (CPL) for chiral systems. A classification of responsive lanthanide probes is introduced. Examples of the operation of probes for reactive oxygen species, citrate, bicarbonate, α1-AGP and pH are used to illustrate reversible and irreversible transformations of the ligand constitution, as well as the reversible changes to the metal primary and secondary coordination sphere that sensitively perturb the ligand field. Finally, systems that function by modulation of dynamic quenching of the ligand or metal excited states are described, including real time observation of endosomal acidification in living cells, rapid urate analysis in serum, accurate temperature assessment in confined compartments and high throughput screening of drug binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
232
|
Islam MJ, Kitagawa Y, Tsurui M, Hasegawa Y. Strong circularly polarized luminescence of mixed lanthanide coordination polymers with control of 4f electronic structures. Dalton Trans 2021; 50:5433-5436. [PMID: 33908960 DOI: 10.1039/d1dt00519g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper reports chiral mixed Eu(iii)-Ln(iii) coordination polymers (Ln = Gd and Sm) with a high dissymmetry factor of circularly polarized luminescence (gCPL = 0.15) for the enhancement of the emission quantum yield (Φtot ≥ 50%), achieved via control of 4f electronic structures.
Collapse
Affiliation(s)
- Md Jahidul Islam
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan.
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan. and Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Makoto Tsurui
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan. and Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
233
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021; 60:10095-10102. [DOI: 10.1002/anie.202101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
234
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
235
|
Jiménez J, Moreno F, Arbeloa T, Cabreros TA, Muller G, Bañuelos J, García-Moreno I, Maroto BL, de la Moya S. Isopinocampheyl-based C-BODIPYs: a model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Org Chem Front 2021. [DOI: 10.1039/d1qo00717c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Use of building blocks coming from Nature (Chiral Pool) as a new strategy towards cheap and efficient CPL emitters based on boron chelates.
Collapse
Affiliation(s)
- Josué Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Teresa Arbeloa
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain
| | - Trevor A. Cabreros
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Beatriz L. Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|