201
|
Valenzuela A, Delplanque B, Tavella M. Stearic acid: a possible substitute for trans fatty acids from industrial origin. GRASAS Y ACEITES 2011. [DOI: 10.3989/gya.033910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
202
|
Gillingham LG, Harris-Janz S, Jones PJH. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011; 46:209-28. [PMID: 21308420 DOI: 10.1007/s11745-010-3524-y] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/21/2010] [Indexed: 01/12/2023]
Abstract
Over 50 years of research has sought to define the role dietary fat plays in cardiovascular disease (CVD) risk. Although optimal dietary fat quantity has been keenly pursued over past decades, attention has recently centered on the value of dietary fat quality. The purpose of the present review is to provide a critical assessment of the current body of evidence surrounding efficacy of dietary monounsaturated fatty acids (MUFA) for reduction of traditional risk factors defining metabolic syndrome (MetS) and CVD. Due to existing and emerging research on health attributes of MUFA rich diets, and to the low prevalence of chronic disease in populations consuming MUFA rich Mediterranean diets, national dietary guidelines are increasingly recommending dietary MUFA, primarily at the expense of saturated fatty acids (SFA). Consumption of dietary MUFA promotes healthy blood lipid profiles, mediates blood pressure, improves insulin sensitivity and regulates glucose levels. Moreover, provocative newer data suggest a role for preferential oxidation and metabolism of dietary MUFA, influencing body composition and ameliorating the risk of obesity. Mounting epidemiological and human clinical trial data continue to demonstrate the cardioprotective activity of the MUFA content of dietary fat. As the debate on the optimal fatty acid composition of the diet continues, the benefit of increasing MUFA intakes, particularly as a substitute for dietary SFA, deserves considerable attention.
Collapse
Affiliation(s)
- Leah G Gillingham
- Department of Human Nutritional Sciences, Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | | | | |
Collapse
|
203
|
Bendsen NT, Chabanova E, Thomsen HS, Larsen TM, Newman JW, Stender S, Dyerberg J, Haugaard SB, Astrup A. Effect of trans fatty acid intake on abdominal and liver fat deposition and blood lipids: a randomized trial in overweight postmenopausal women. Nutr Diabetes 2011; 1:e4. [PMID: 23154296 PMCID: PMC3302130 DOI: 10.1038/nutd.2010.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Intake of industrially produced trans fatty acids (TFAs) is, according to observational studies, associated with an increased risk of cardiovascular disease, but the causal mechanisms have not been fully elucidated. Besides inducing dyslipidemia, TFA intake is suspected to promote abdominal and liver fat deposition. Objective: We examined the effect of a high intake of TFA as part of an isocaloric diet on whole-body, abdominal and hepatic fat deposition, and blood lipids in postmenopausal women. Methods: In a 16-week double-blind parallel intervention study, 52 healthy overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil providing 15.7 g day−1 of TFA or a control oil with mainly oleic and palmitic acid. Before and after the intervention, body composition was assessed by dual-energy X-ray absorptiometry, abdominal fat by magnetic resonance (MR) imaging, and liver fat by 1H MR spectroscopy. Results: Compared with the control fat, TFA intake decreased plasma high-density lipoprotein (HDL)-cholesterol by 10%, increased low-density lipoprotein (LDL)-cholesterol by 18% and resulted in an increased LDL/HDL-cholesterol ratio (baseline adjusted mean (95% CI) difference between diet groups 0.41 (0.22; 0.60); P<0.001). TFA tended to increase the body fat (0.46 (−0.20; 1.17) kg; P=0.16) and waist circumference (1.1 (−0.1; 2.4) cm; P=0.08) more than the control fat, whereas neither abdominal nor liver fat deposition was affected by TFA. Conclusion: The adverse effect of dietary TFA on cardiovascular disease risk involves induction of dyslipidemia, and perhaps body fat, whereas weight gain-independent accumulation of ectopic fat could not be identified as a contributory factor during short-term intake.
Collapse
Affiliation(s)
- N T Bendsen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Ramsden CE, Hibbeln JR, Majchrzak SF, Davis JM. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br J Nutr 2010; 104:1586-600. [PMID: 21118617 PMCID: PMC9422343 DOI: 10.1017/s0007114510004010] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Randomised controlled trials (RCT) of mixed n-6 and n-3 PUFA diets, and meta-analyses of their CHD outcomes, have been considered decisive evidence in specifically advising consumption of 'at least 5-10 % of energy as n-6 PUFA'. Here we (1) performed an extensive literature search and extracted detailed dietary and outcome data enabling a critical examination of all RCT that increased PUFA and reported relevant CHD outcomes; (2) determined if dietary interventions increased n-6 PUFA with specificity, or increased both n-3 and n-6 PUFA (i.e. mixed n-3/n-6 PUFA diets); (3) compared mixed n-3/n-6 PUFA to n-6 specific PUFA diets on relevant CHD outcomes in meta-analyses; (4) evaluated the potential confounding role of trans-fatty acids (TFA). n-3 PUFA intakes were increased substantially in four of eight datasets, and the n-6 PUFA linoleic acid was raised with specificity in four datasets. n-3 and n-6 PUFA replaced a combination of TFA and SFA in all eight datasets. For non-fatal myocardial infarction (MI)+CHD death, the pooled risk reduction for mixed n-3/n-6 PUFA diets was 22 % (risk ratio (RR) 0.78; 95 % CI 0.65, 0.93) compared to an increased risk of 13 % for n-6 specific PUFA diets (RR 1.13; 95 % CI 0.84, 1.53). Risk of non-fatal MI+CHD death was significantly higher in n-6 specific PUFA diets compared to mixed n-3/n-6 PUFA diets (P = 0.02). RCT that substituted n-6 PUFA for TFA and SFA without simultaneously increasing n-3 PUFA produced an increase in risk of death that approached statistical significance (RR 1.16; 95 % CI 0.95, 1.42). Advice to specifically increase n-6 PUFA intake, based on mixed n-3/n-6 RCT data, is unlikely to provide the intended benefits, and may actually increase the risks of CHD and death.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
205
|
Thompson AK, Minihane AM, Williams CM. Trans fatty acids, insulin resistance and diabetes. Eur J Clin Nutr 2010; 65:553-64. [DOI: 10.1038/ejcn.2010.240] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
206
|
Taylor S. The bread and butter of public health. Perspect Public Health 2010. [DOI: 10.1177/17579139101300040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
207
|
Foltran F, Verduci E, Ghidina M, Campoy C, Jany KD, Widhalm K, Biasucci G, Vögele C, Halpern GM, Gregori D. Nutritional profiles in a public health perspective: a critical review. J Int Med Res 2010; 38:318-85. [PMID: 20515553 DOI: 10.1177/147323001003800202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nutritional profiling is defined as 'the science of categorizing foods according to their nutritional composition' and it is useful for food labelling and regulation of health claims. The evidence for the link between nutrients and health outcomes was reviewed. A reduced salt intake reduces blood pressure, but only a few randomized controlled trials have verified the effect of salt on overall and cardiovascular mortality. Evidence linking a reduced fat intake with cardiovascular mortality and obesity is generally non-significant. Studies that have examined the relationship between obesity and diet have produced contrasting results. A simulation exercise that demonstrated that the impact of a reduced salt and fat intake on overall mortality would be negligible in the European population was carried out. Consideration of the literature and the results of this simulation exercise suggest that the introduction of nutritional profiles in Europe would be expected to have a very limited impact on health outcomes.
Collapse
Affiliation(s)
- F Foltran
- Department of Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
|
209
|
Explaining the 25-year decline of serum cholesterol by dietary changes and use of lipid-lowering medication in Finland. Public Health Nutr 2010; 13:932-8. [DOI: 10.1017/s1368980010001126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractObjectiveTo assess to what extent the observed dietary changes and increased use of lipid-lowering medication can explain the almost 20 % decline in serum cholesterol (referring to serum total cholesterol) level observed from 1982 to 2007 in Finland.DesignPredicted changes of serum cholesterol were calculated by the Keys’ equation assuming the effect of trans fatty acids to be similar to SFA and using the dietary intake data of the national dietary surveys between 1982 and 2007. The effect of medication was estimated based on the information on use of lipid-lowering medication among survey participants. The predicted serum cholesterol levels were compared with observed changes in analysed serum cholesterol levels.SettingFour cross-sectional population surveys, in 1982, 1992, 2002 and 2007, in the provinces of North Karelia, Northern Savo and Southwestern Finland.SubjectsA total of 2325 men and 2638 women aged 26–64 years selected randomly from the national population register for the four surveys.ResultsChanges in dietary fat quality and cholesterol intake explain 0·70 mmol/l (65 %) of the decrease in men and 0·65 mmol/l (60 %) of the decrease in women in all subjects. Decline in dietary SFA intake is the main explanatory factor (47 % in men and 41 % in women) for the changes. The impact of lipid-lowering medication on observed cholesterol levels was found to be 16 % among men and 7 % among women.ConclusionsThe decrease in serum cholesterol levels in Finland can be explained mainly by dietary changes, especially changes in fat quality. The effect of lipid-lowering medication is less significant.
Collapse
|
210
|
|
211
|
Differential impact of milk fatty acid profiles on cardiovascular risk biomarkers in healthy men and women. Eur J Clin Nutr 2010; 64:752-9. [PMID: 20485306 DOI: 10.1038/ejcn.2010.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to evaluate the impact of three specific ruminant (R) milk fats resulting from modification of the cow's diet on cardiovascular risk factors in healthy volunteers. R-milk fats were characterized by increased content in total trans fatty acids (R-TFAs) and parallel decrease in saturated fatty acids (SFAs). SUBJECTS/METHODS A total of 111 healthy, normolipemic men and women have been recruited for a monocentric, randomized, double-blind and parallel intervention, 4-week controlled study. Volunteers consumed three experimental products (butter, dessert cream and cookies) made with one of the three specific milk fats (55 g fat per day). During the first week (run-in period), the subjects consumed on a daily basis dairy products containing 72% SFA/2.85% R-TFA (called 'L0'). For the next 3 weeks of the study (intervention period), the first group continued to consume L0 products. The second group received dairy products containing 63.3% SFA/4.06% R-TFA (called 'L4'), and the third group received dairy products containing 56.6% SFA/12.16% R-TFA (called 'L9'). RESULTS Plasma concentrations of high-density lipoprotein (HDL)-cholesterol were not significantly altered by either diet (P=0.38). Compared to L0 diet, L4 diet contributed to reduce low-density lipoprotein (LDL)-cholesterol (-0.14+/-0.38 mmol/l, P=0.04), total cholesterol (-0.13+/-0.50 mmol/l, P=0.04), LDL-cholesterol/HDL-cholesterol (-0.14+/-0.36, P=0.03) and total cholesterol/HDL-cholesterol (-0.18+/-0.44, P=0.02). CONCLUSIONS Different milk fat profiles can change cardiovascular plasma parameters in human healthy volunteers. A limited increase of the R-TFA/SFA ratio in dairy products is associated with an improvement in some cardiovascular risk factors. However, a further increase in R-TFA/SFA ratio has no additional benefit.
Collapse
|
212
|
Teng KT, Voon PT, Cheng HM, Nesaretnam K. Effects of partially hydrogenated, semi-saturated, and high oleate vegetable oils on inflammatory markers and lipids. Lipids 2010; 45:385-92. [PMID: 20437207 DOI: 10.1007/s11745-010-3416-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
Knowledge about the effects of dietary fats on subclinical inflammation and cardiovascular disease risk are mainly derived from studies conducted in Western populations. Little information is available on South East Asian countries. This current study investigated the chronic effects on serum inflammatory markers, lipids, and lipoproteins of three vegetable oils. Healthy, normolipidemic subjects (n = 41; 33 females, 8 males) completed a randomized, single-blind, crossover study. The subjects consumed high oleic palm olein (HOPO diet: 15% of energy 18:1n-9, 9% of energy 16:0), partially hydrogenated soybean oil (PHSO diet: 7% of energy 18:1n-9, 10% of energy 18:1 trans) and an unhydrogenated palm stearin (PST diet: 11% of energy 18:1n-9, 14% of energy 16:0). Each dietary period lasted 5 weeks with a 7 days washout period. The PHSO diet significantly increased serum concentrations of high sensitivity C-reactive protein compared to HOPO and PST diets (by 26, 23%, respectively; P < 0.05 for both) and significantly decreased interleukin-8 (IL-8) compared to PST diet (by 12%; P < 0.05). In particular PHSO diet, and also PST diet, significantly increased total:HDL cholesterol ratio compared to HOPO diet (by 23, 13%, respectively; P < 0.05), with the PST diet having a lesser effect than the PHSO diet (by 8%; P < 0.05). The use of vegetable oils in their natural state might be preferred over one that undergoes the process of hydrogenation in modulating blood lipids and inflammation.
Collapse
Affiliation(s)
- Kim-Tiu Teng
- Food Technology and Nutrition Unit, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | | | | | | |
Collapse
|
213
|
Micha R, King IB, Lemaitre RN, Rimm EB, Sacks F, Song X, Siscovick DS, Mozaffarian D. Food sources of individual plasma phospholipid trans fatty acid isomers: the Cardiovascular Health Study. Am J Clin Nutr 2010; 91:883-93. [PMID: 20219966 PMCID: PMC2844676 DOI: 10.3945/ajcn.2009.28877] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The overall consumption of trans fatty acids (TFAs) increases the risk of coronary artery disease. However, multiple TFA isomers exist, each with potentially different health effects. Different food sources of these specific TFA isomers are not well established. OBJECTIVE Our objective was to determine the major independent food sources of specific TFA isomers. DESIGN We investigated relations of major potential food sources of TFAs, as assessed by serial food-frequency questionnaires, with 10 plasma phospholipid TFA isomers [5 trans (t-) 18:1, 3 t-18:2, and 2 t-16:1] in 3330 older adults in the Cardiovascular Health Study, a community-based multicenter cohort. Stepwise regression was used to identify independent major food sources of individual plasma phospholipid TFA isomers, which were adjusted for demographic, lifestyle, and dietary factors. RESULTS All 5 t-18:1 isomers were similarly associated with foods commonly made with partially hydrogenated vegetable oils (PHVOs), including biscuits (0.51 higher SD of total 18:1 fatty acid concentrations per serving/d, P < 0.01), chips and/or popcorn (0.33 higher SD per serving/d, P = 0.02), margarine (0.32 higher SD per serving/d, P < 0.001), fried foods (0.32 higher SD per serving/d, P = 0.04), and bakery foods (0.23 higher SD per serving/d, P = 0.02). Each of the t-18:2 isomers were associated only with bakery foods (0.50 higher SD of total 18:2 fatty acid concentrations per serving/d, P < 0.001). Ruminant foods were major correlates of t-16:1n-7, including red meats (0.72 higher SD per serving/d, P < 0.001), butter (0.43 higher SD per serving/d, P < 0.001), and higher-fat dairy (0.37 higher SD per serving/d, P < 0.001). In contrast, t-16:1n-9 were derived mainly from margarine (0.31 higher SD per serving/d, P < 0.001). CONCLUSIONS t-18:1 Isomers are similarly derived from multiple PHVO-containing foods. In contrast, t-18:2 and t-16:1n-9 isomers are derived from more-specific types of PHVO-containing foods. Ruminant foods are major sources of t-16:1n-7. Different TFA isomers and dietary sources should be considered when investigating health effects and interventions to lower TFAs.
Collapse
Affiliation(s)
- Renata Micha
- Division of Cardiovascular Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 2010; 45:893-905. [PMID: 20354806 PMCID: PMC2950931 DOI: 10.1007/s11745-010-3393-4] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/27/2010] [Indexed: 12/20/2022]
Abstract
Dietary and policy recommendations frequently focus on reducing saturated fatty acid consumption for improving cardiometabolic health, based largely on ecologic and animal studies. Recent advances in nutritional science now allow assessment of critical questions about health effects of saturated fatty acids (SFA). We reviewed the evidence from randomized controlled trials (RCTs) of lipid and non-lipid risk factors, prospective cohort studies of disease endpoints, and RCTs of disease endpoints for cardiometabolic effects of SFA consumption in humans, including whether effects vary depending on specific SFA chain-length; on the replacement nutrient; or on disease outcomes evaluated. Compared with carbohydrate, the TC:HDL-C ratio is nonsignificantly affected by consumption of myristic or palmitic acid, is nonsignificantly decreased by stearic acid, and is significantly decreased by lauric acid. However, insufficient evidence exists for different chain-length-specific effects on other risk pathways or, more importantly, disease endpoints. Based on consistent evidence from human studies, replacing SFA with polyunsaturated fat modestly lowers coronary heart disease risk, with ~10% risk reduction for a 5% energy substitution; whereas replacing SFA with carbohydrate has no benefit and replacing SFA with monounsaturated fat has uncertain effects. Evidence for the effects of SFA consumption on vascular function, insulin resistance, diabetes, and stroke is mixed, with many studies showing no clear effects, highlighting a need for further investigation of these endpoints. Public health emphasis on reducing SFA consumption without considering the replacement nutrient or, more importantly, the many other food-based risk factors for cardiometabolic disease is unlikely to produce substantial intended benefits.
Collapse
Affiliation(s)
- Renata Micha
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
215
|
Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 2010; 7:e1000252. [PMID: 20351774 PMCID: PMC2843598 DOI: 10.1371/journal.pmed.1000252] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reduced saturated fat (SFA) consumption is recommended to reduce coronary heart disease (CHD), but there is an absence of strong supporting evidence from randomized controlled trials (RCTs) of clinical CHD events and few guidelines focus on any specific replacement nutrient. Additionally, some public health groups recommend lowering or limiting polyunsaturated fat (PUFA) consumption, a major potential replacement for SFA. METHODS AND FINDINGS We systematically investigated and quantified the effects of increased PUFA consumption, as a replacement for SFA, on CHD endpoints in RCTs. RCTs were identified by systematic searches of multiple online databases through June 2009, grey literature sources, hand-searching related articles and citations, and direct contacts with experts to identify potentially unpublished trials. Studies were included if they randomized participants to increased PUFA for at least 1 year without major concomitant interventions, had an appropriate control group, and reported incidence of CHD (myocardial infarction and/or cardiac death). Inclusions/exclusions were adjudicated and data were extracted independently and in duplicate by two investigators and included population characteristics, control and intervention diets, follow-up duration, types of events, risk ratios, and SEs. Pooled effects were calculated using inverse-variance-weighted random effects meta-analysis. From 346 identified abstracts, eight trials met inclusion criteria, totaling 13,614 participants with 1,042 CHD events. Average weighted PUFA consumption was 14.9% energy (range 8.0%-20.7%) in intervention groups versus 5.0% energy (range 4.0%-6.4%) in controls. The overall pooled risk reduction was 19% (RR = 0.81, 95% confidence interval [CI] 0.70-0.95, p = 0.008), corresponding to 10% reduced CHD risk (RR = 0.90, 95% CI = 0.83-0.97) for each 5% energy of increased PUFA, without evidence for statistical heterogeneity (Q-statistic p = 0.13; I(2) = 37%). Meta-regression identified study duration as an independent determinant of risk reduction (p = 0.017), with studies of longer duration showing greater benefits. CONCLUSIONS These findings provide evidence that consuming PUFA in place of SFA reduces CHD events in RCTs. This suggests that rather than trying to lower PUFA consumption, a shift toward greater population PUFA consumption in place of SFA would significantly reduce rates of CHD. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- Division of Cardiovascular Medicine and Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
216
|
Current Opinion in Clinical Nutrition and Metabolic Care. Current world literature. Curr Opin Clin Nutr Metab Care 2010; 13:215-21. [PMID: 20145440 DOI: 10.1097/mco.0b013e32833643b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
217
|
Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1461] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
218
|
Abstract
Consumption of industrially produced trans-fatty acids (TFA) is associated with substantial risk of coronary heart disease (CHD). The magnitude of this relationship, as well as emerging associations with end points such as diabetes and sudden cardiac death, cannot be fully explained by the well-established adverse effects of TFA on serum lipids. We review the evidence for effects of TFA intake on nonlipid risk factors. Based on evidence from randomized controlled trials, observational studies, animal experiments, and in vitro studies, these include effects on systemic inflammation, endothelial dysfunction, visceral adiposity, insulin resistance, and arrhythmic risk. The types and strength of evidence for each of these nonlipid effects varies, but the overall constellation of findings is qualitatively and quantitatively unique among dietary fats. The multiple adverse effects and implicated pathways are consistent with the observed strong associations of TFA consumption with CHD risk. These nonlipid effects also explain why TFA consumption may adversely impact other non-CHD diseases and end points.
Collapse
Affiliation(s)
- Sarah K Wallace
- Department of Epidemiology, Harvard School of Public Health, Division of Cardiovascular Medicine and Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Building 2-315, Boston, MA 02115, USA
| | | |
Collapse
|
219
|
Uauy R, Aro A, Clarke R, Ghafoorunissa, L'Abbé MR, Mozaffarian D, Skeaff CM, Stender S, Tavella M. WHO Scientific Update on trans fatty acids: summary and conclusions. Eur J Clin Nutr 2009. [DOI: 10.1038/ejcn.2009.15] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
220
|
Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr 2009; 63 Suppl 2:S5-21. [DOI: 10.1038/sj.ejcn.1602973] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
221
|
Abstract
In both developed and developing countries, trans fatty acids (TFA) are largely consumed from partially hydrogenated vegetable oils. This article focuses on TFA as a modifiable dietary risk factor for cardiovascular disease, reviewing the evidence for lipid and non-lipid effects; the relations of trans fat intake with clinical endpoints; and current policy and legislative issues. In both observational cohort studies and randomized clinical trials, TFA adversely affect lipid profiles (including raising LDL and triglyceride levels, and reducing HDL levels), systemic inflammation, and endothelial function. More limited but growing evidence suggests that TFA also exacerbate visceral adiposity and insulin resistance. These potent effects of TFA on a multitude of cardiovascular risk factors are consistent with the strong associations seen in prospective cohort studies between TFA consumption and risk of myocardial infarction and coronary heart disease (CHD) death. The documented harmful effects of TFA along with the feasibility of substituting partially hydrogenated vegetable oils with healthy alternatives indicate little reason for continued presence of industrially produced TFA in food preparation and manufacturing or in home cooking fats/oils. A comprehensive strategy to eliminate the use of industrial TFA in both developed and developing countries, including education, food labeling, and policy and legislative initiatives, would likely prevent tens of thousands of CHD events worldwide each year.
Collapse
Affiliation(s)
- R Micha
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|