201
|
Lee EB, Russ J, Jung H, Elman LB, Chahine LM, Kremens D, Miller BL, Coslett HB, Trojanowski JQ, Van Deerlin VM, McCluskey LF. Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U. Acta Neuropathol Commun 2013; 1:1-11. [PMID: 24027631 PMCID: PMC3767453 DOI: 10.1186/2051-5960-1-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap, certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions, and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions. Results The aFTLD-U cases demonstrated FUS inclusions in cerebral cortex, subcortical grey matter and brainstem with a predilection for anterior forebrain and rostral brainstem. In contrast, the distribution of FUS pathology in late-onset BIBD cases demonstrated a predilection for pyramidal and extrapyramidal motor regions with relative sparing of cerebral cortex and limbic regions. Conclusions The topography of FUS pathology in these cases demonstrate the diversity of sporadic FUS inclusion body diseases and raises the possibility that late-onset motor neuron disease with BIBD neuropathology may exhibit unique clinical and pathologic features.
Collapse
|
202
|
Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration - lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70. [DOI: 10.1111/febs.12287] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Eva Bentmann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| | - Christian Haass
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Dorothee Dormann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| |
Collapse
|
203
|
Modic M, Ule J, Sibley CR. CLIPing the brain: studies of protein-RNA interactions important for neurodegenerative disorders. Mol Cell Neurosci 2013; 56:429-35. [PMID: 23583633 PMCID: PMC3793874 DOI: 10.1016/j.mcn.2013.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023] Open
Abstract
The fate of an mRNA is largely determined by its interactions with RNA binding proteins (RBPs). Post-transcriptional processing, RNA stability, localisation and translation are some of the events regulated by the plethora of RBPs present within cells. Mutations in various RBPs cause several diseases of the central nervous system, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and fragile X syndrome. Here we review the studies that integrated UV-induced cross-linked immunoprecipitation (CLIP) with other genome-wide methods to comprehensively characterise the function of diverse RBPs in the brain. We discuss the technical challenges of these studies and review the strategies that can be used to reliably identify the RNAs bound and regulated by an RBP. We conclude by highlighting how CLIP and related techniques have been instrumental in addressing the role of RBPs in neurologic diseases. This article is part of a Special Issue entitled: RNA and splicing regulation in neurodegeneration.
Collapse
Affiliation(s)
- Miha Modic
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Corresponding authors at: Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. Fax: + 44 1223213556.
| | - Christopher R. Sibley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Corresponding authors at: Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. Fax: + 44 1223213556.
| |
Collapse
|
204
|
Dormann D, Haass C. Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol Cell Neurosci 2013; 56:475-86. [PMID: 23557964 DOI: 10.1016/j.mcn.2013.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is a nuclear DNA/RNA binding protein that regulates different steps of gene expression, including transcription, splicing and mRNA transport. FUS has been implicated in neurodegeneration, since mutations in FUS cause familial amyotrophic lateral sclerosis (ALS-FUS) and lead to the cytosolic deposition of FUS in the brain and spinal cord of ALS-FUS patients. Moreover, FUS and two related proteins of the same protein family (FET family) are co-deposited in cytoplasmic inclusions in a subset of patients with frontotemporal lobar degeneration (FTLD-FUS). Cytosolic deposition of these otherwise nuclear proteins most likely causes the loss of a yet unknown essential nuclear function and/or the gain of a toxic function in the cytosol. Here we summarize what is known about the physiological functions of the FET proteins in the nucleus and cytoplasm and review the distinctive pathomechanisms that lead to the deposition of only FUS in ALS-FUS, but all three FET proteins in FTLD-FUS. We suggest that ALS-FUS is caused by a selective dysfunction of FUS, while FTLD-FUS may be caused by a dysfunction of the entire FET family. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Dorothee Dormann
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Schillerstr. 44, Munich 80336, Germany.
| | | |
Collapse
|
205
|
Nakaya T, Alexiou P, Maragkakis M, Chang A, Mourelatos Z. FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns. RNA (NEW YORK, N.Y.) 2013; 19:498-509. [PMID: 23389473 PMCID: PMC3677260 DOI: 10.1261/rna.037804.112] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 05/28/2023]
Abstract
Dominant mutations and mislocalization or aggregation of Fused in Sarcoma (FUS), an RNA-binding protein (RBP), cause neuronal degeneration in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), two incurable neurological diseases. However, the function of FUS in neurons is not well understood. To uncover the impact of FUS in the neuronal transcriptome, we used high-throughput sequencing of immunoprecipitated and cross-linked RNA (HITS-CLIP) of FUS in human brains and mouse neurons differentiated from embryonic stem cells, coupled with RNA-seq and FUS knockdowns. We report conserved neuronal RNA targets and networks that are regulated by FUS. We find that FUS regulates splicing of genes coding for RBPs by binding to their highly conserved introns. Our findings have important implications for understanding the impact of FUS in neurodegenerative diseases and suggest that perturbations of FUS can impact the neuronal transcriptome via perturbations of RBP transcripts.
Collapse
Affiliation(s)
- Tadashi Nakaya
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine
| | - Alexandra Chang
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
206
|
Convertini P, Zhang J, de la Grange P, Hayward LJ, Zhu H, Stamm S. Genome wide array analysis indicates that an amyotrophic lateral sclerosis mutation of FUS causes an early increase of CAMK2N2 in vitro. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1129-35. [PMID: 23545117 DOI: 10.1016/j.bbadis.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 12/13/2022]
Abstract
Mutations in the RNA binding protein FUS (fused in sarcoma) have been linked to a subset of familial amyotrophic lateral sclerosis (ALS) cases. The mutations are clustered in the C-terminal nuclear localization sequence (NLS). Various FUS mutants accumulate in the cytoplasm whereas wild-type (WT) FUS is mainly nuclear. Here we investigate the effect of one ALS causing mutant (FUS-ΔNLS, also known as R495X) on pre-mRNA splicing and RNA expression using genome wide exon-junction arrays. Using a non-neuronal stable cell line with inducible FUS expression, we detected early changes in RNA composition. In particular, mutant FUS-ΔNLS increased calcium/calmodulin-dependent protein kinase II inhibitor 2 (CAMK2N2) at both mRNA and protein levels, whereas WT-FUS had no effect. Chromatin immunoprecipitation experiments showed that FUS-ΔNLS accumulated at the CAMK2N2 promoter region, whereas promoter occupation by WT-FUS remained constant. Given the loss of FUS-ΔNLS in the nucleus through the mutation-induced translocation, this increase of promoter occupancy is surprising. It indicates that, despite the obvious cytoplasmic accumulation, FUS-ΔNLS can act through a nuclear gain of function mechanism.
Collapse
Affiliation(s)
- Paolo Convertini
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone, Lexington, KY 40536-0509, USA
| | | | | | | | | | | |
Collapse
|
207
|
Freeberg MA, Han T, Moresco JJ, Kong A, Yang YC, Lu ZJ, Yates JR, Kim JK. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 2013; 14:R13. [PMID: 23409723 PMCID: PMC4053964 DOI: 10.1186/gb-2013-14-2-r13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/14/2013] [Indexed: 01/31/2023] Open
Abstract
Background Protein-RNA interactions are integral components of nearly every aspect of biology, including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Results Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the untranslated, polyadenylated transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTRs) covering 72% of protein-coding transcripts encoded in the genome, confirming 3' UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3' UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Conclusions Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo.
Collapse
|
208
|
|
209
|
Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C, Wancewicz E, Kim AS, Watt A, Freier S, Hicks GG, Donohue JP, Shiue L, Bennett CF, Ravits J, Cleveland DW, Yeo GW. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 2012; 15:1488-97. [PMID: 23023293 DOI: 10.1038/nn.3230] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023]
Abstract
FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.
Collapse
Affiliation(s)
- Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|