201
|
Tofoleanu F, Brooks BR, Buchete NV. Modulation of Alzheimer's Aβ protofilament-membrane interactions by lipid headgroups. ACS Chem Neurosci 2015; 6:446-55. [PMID: 25581460 DOI: 10.1021/cn500277f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular pathogenesis of Alzheimer's disease (AD) is complex and sparsely understood. The relationship between AD's amyloid β (Aβ) peptides and neuronal membranes is central to Aβ's cytotoxicity and is directly modulated by the composition of the lipid headgroups. Molecular studies of the insertion of model Aβ40 protofilaments in lipid bilayers revealed strong interactions that affect the structural integrity of both the membranes and the ordered amyloid aggregates. In particular, electrostatics plays a crucial role in the interaction between Aβ protofilaments and palmytoil-oleoyl-phosphatidylethanolamine (POPE) lipids, a common component of neuronal plasma membranes. Here, we use all-atom molecular dynamics and steered molecular dynamics simulations to systematically compare the effects that POPE and palmytoil-oleoyl-phosphatidylcholine (POPC) headgroups have on the Aβ-lipid interactions. We find that Aβ protofilaments exhibit weaker electrostatic interactions with POPC headgroups and establish significantly shorter-lived contacts with the POPC bilayer. This illustrates the crucial yet complex role of electrostatic and hydrogen bonding interactions in modulating the anchoring and insertion of Aβ peptides into lipid bilayers. Our study reveals the atomistic details behind the barrier created by the lipid headgroup region in impeding solution-aggregated fibrillar oligomers to spontaneously insert into POPC bilayers, in contrast to the POPE case. While the biological reality is notoriously more complex (e.g., including other factors such as cholesterol), our results evidence a simple experimentally and computationally testable case for probing the factors that control the insertion of Aβ oligomeric aggregates in neuronal cell membranes--a process central to their neurotoxicity.
Collapse
Affiliation(s)
- Florentina Tofoleanu
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicolae-Viorel Buchete
- School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
202
|
Henry S, Vignaud H, Bobo C, Decossas M, Lambert O, Harte E, Alves ID, Cullin C, Lecomte S. Interaction of Aβ(1-42) amyloids with lipids promotes "off-pathway" oligomerization and membrane damage. Biomacromolecules 2015; 16:944-50. [PMID: 25689632 DOI: 10.1021/bm501837w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The toxicity of amyloids, as Aβ(1-42) involved in Alzheimer disease, is a subject under intense scrutiny. Many studies link their toxicity to the existence of various intermediate structures prior to fiber formation and/or their specific interaction with membranes. In this study we focused on the interaction between membrane models and Aβ(1-42) peptides and variants (L34T, mG37C) produced in E. coli and purified in monomeric form. We evaluated the interaction of a toxic stable oligomeric form (oG37C) with membranes as comparison. Using various biophysical techniques as fluorescence and plasmon waveguide resonance, we clearly established that the oG37C interacts strongly with membranes leading to its disruption. All the studied peptides destabilized liposomes and accumulated slowly on the membrane (rate constant 0.02 min(-1)). Only the oG37C exhibited a particular pattern of interaction, comprising two steps: the initial binding followed by membrane reorganization. Cryo-TEM was used to visualize the peptide effect on liposome morphologies. Both oG37C and mG37C lead to PG membrane fragmentation. The PG membrane promotes peptide oligomerization, implicated in membrane disruption. WT (Aβ(1-42)) also perturbs liposome organization with membrane deformation rather than disruption. For all the peptides studied, their interaction with the membranes changes their fibrillization process, with less fibers and more small aggregates being formed. These studies allowed to establish, a correlation between toxicity, fiber formation, and membrane disruption.
Collapse
Affiliation(s)
- Sarah Henry
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux , Allée Geoffroy de Saint Hilaire, 33600 Pessac, France
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Yang L, Lv J, Wang X, Zhang J, Li Q, Zhang T, Zhang Z, Zhang L. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin. J Mol Recognit 2015; 28:459-66. [DOI: 10.1002/jmr.2463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/29/2014] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lijun Yang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Junna Lv
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Xin Wang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Jing Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Qi Li
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Tingting Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Zhenzhen Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| | - Lei Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 China
| |
Collapse
|
204
|
Andreasen M, Lorenzen N, Otzen D. Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1897-907. [PMID: 25666871 DOI: 10.1016/j.bbamem.2015.01.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 11/19/2022]
Abstract
The deposition of amyloid material has been associated with many different diseases. Although these diseases are very diverse the amyloid material share many common features such as cross-β-sheet structure of the backbone of the proteins deposited. Another common feature of the aggregation process for a wide variety of proteins is the presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the oligomer and the lipids. Anionic lipids are often required for interaction with the lipid membrane while increased exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotoxicity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Maria Andreasen
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark
| | - Nikolai Lorenzen
- Department of Protein Biophysics and Formulation, Biopharmaceuticals Research Unit, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark.
| |
Collapse
|
205
|
Chaudhary H, Stefanovic AND, Subramaniam V, Claessens MMAE. Membrane interactions and fibrillization of α-synuclein play an essential role in membrane disruption. FEBS Lett 2015; 588:4457-63. [PMID: 25448986 DOI: 10.1016/j.febslet.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
Abstract
We studied α-synuclein (αS) aggregation in giant vesicles, and observed dramatic membrane disintegration, as well as lipid incorporation into micrometer-sized suprafibrillar aggregates. In the presence of dye-filled vesicles, dye leakage and fibrillization happen concurrently. However, growing fibrils do not impair the integrity of phospholipid vesicles that have a low affinity for αS. Seeding αS aggregation accelerates dye leakage, indicating that oligomeric species are not required to explain the observed effect. The evolving picture suggests that fibrils that appear in solution bind membranes and recruit membrane-bound monomers, resulting in lipid extraction, membrane destabilization and the formation of lipid-containing suprafibrillar aggregates.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University Twente, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
206
|
Wang Q, Zhou S, Wei W, Yao X, Liu H, Hu Z. Computational insights into the inhibition and destabilization of morin on the oligomer of full-length human islet amyloid polypeptide. Phys Chem Chem Phys 2015; 17:29103-12. [DOI: 10.1039/c5cp03991f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we simulated the full-length human islet amyloid peptide (hIAPP) pentamer with and without morins to investigate the mechanism of inhibition and destabilization of this inhibitor on hIAPP oligomer, and identify its possible binding sites on hIAPP.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Shuangyan Zhou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Wei Wei
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
| | - Zhide Hu
- The Separating Scientific Institute of Lanzhou
- Lanzhou
- China
| |
Collapse
|
207
|
Gao M, Winter R. The Effects of Lipid Membranes, Crowding and Osmolytes on the Aggregation, and Fibrillation Propensity of Human IAPP. J Diabetes Res 2015; 2015:849017. [PMID: 26582333 PMCID: PMC4637101 DOI: 10.1155/2015/849017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related and metabolic disease. Its development is hallmarked, among others, by the dysfunction and degeneration of β-cells of the pancreatic islets of Langerhans. The major pathological characteristic thereby is the formation of extracellular amyloid deposits consisting of the islet amyloid polypeptide (IAPP). The process of human IAPP (hIAPP) self-association, and the intermediate structures formed as well as the interaction of hIAPP with membrane systems seem to be, at least to a major extent, responsible for the cytotoxicity. Here we present a summary and comparison of the amyloidogenic propensities of hIAPP in bulk solution and in the presence of various neutral and charged lipid bilayer systems as well as biological membranes. We also discuss the cellular effects of macromolecular crowding and osmolytes on the aggregation pathway of hIAPP. Understanding the influence of different cellular factors on hIAPP aggregation will provide more insight into the onset of T2DM and help to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
- *Roland Winter:
| |
Collapse
|
208
|
Interactions of Lipid Membranes with Fibrillar Protein Aggregates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:135-55. [PMID: 26149929 DOI: 10.1007/978-3-319-17344-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid fibrils are an intriguing class of protein aggregates with distinct physicochemical, structural and morphological properties. They display peculiar membrane-binding behavior, thus adding complexity to the problem of protein-lipid interactions. The consensus that emerged during the past decade is that amyloid cytotoxicity arises from a continuum of cross-β-sheet assemblies including mature fibrils. Based on literature survey and our own data, in this chapter we address several aspects of fibril-lipid interactions, including (i) the effects of amyloid assemblies on molecular organization of lipid bilayer; (ii) competition between fibrillar and monomeric membrane-associating proteins for binding to the lipid surface; and (iii) the effects of lipids on the structural morphology of fibrillar aggregates. To illustrate some of the processes occurring in fibril-lipid systems, we present and analyze fluorescence data reporting on lipid bilayer interactions with fibrillar lysozyme and with the N-terminal 83-residue fragment of amyloidogenic mutant apolipoprotein A-I, 1-83/G26R/W@8. The results help understand possible mechanisms of interaction and mutual remodeling of amyloid fibers and lipid membranes, which may contribute to amyloid cytotoxicity.
Collapse
|
209
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
210
|
Patil SM, Alexandrescu AT. Charge-Based Inhibitors of Amylin Fibrillization and Toxicity. J Diabetes Res 2015; 2015:946037. [PMID: 26576438 PMCID: PMC4630399 DOI: 10.1155/2015/946037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 02/01/2023] Open
Abstract
To test the hypothesis that electrostatic repulsion is an important force opposing amyloid fibril assembly, we designed peptides that substitute strings of positively or negatively charged residues into the sequence of the amyloidogenic hormone amylin, which contributes to type 2 diabetes pathology. Arg-1 and Arg-2 substitute four positively charged arginines for segments that in structural models of amylin fibrils form the end of strand β1 and the beginning of strand β2, respectively. Mem-T substitutes negatively charged aspartates for the peptide segment with the largest avidity for membranes. All three charge-loaded peptides fibrillize poorly on their own and inhibit fibril elongation of WT-amylin at physiological ionic strength. The inhibition of WT-amylin fibril elongation rates is salt-dependent indicating that the analogs act through electrostatic interactions. Arg-1 protects against WT-amylin cytotoxicity towards a MIN6 mouse model of pancreatic β-cells, and Arg-2 protects at higher concentrations, whereas Mem-T has no effect. The most effective variant, Arg-1, inhibits WT-amylin fibril elongation rates with an IC50 of ~1 µM and cytotoxicity with an IC50 of ~50 µM, comparable to other types of fibrillization inhibitors reported in the literature. Taken together, these results suggest that electrostatic interactions can be exploited to develop new types of inhibitors of amyloid fibrillization and toxicity.
Collapse
Affiliation(s)
- Sharadrao M. Patil
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269-3125, USA
- *Andrei T. Alexandrescu:
| |
Collapse
|
211
|
Fibrillation of β amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:266-76. [DOI: 10.1016/j.bbamem.2014.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/24/2014] [Accepted: 04/13/2014] [Indexed: 01/27/2023]
|
212
|
Singh S, Trikha S, Bhowmick DC, Sarkar AA, Jeremic AM. Role of Cholesterol and Phospholipids in Amylin Misfolding, Aggregation and Etiology of Islet Amyloidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:95-116. [PMID: 26149927 DOI: 10.1007/978-3-319-17344-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amyloidosis is a biological event in which proteins undergo structural transitions from soluble monomers and oligomers to insoluble fibrillar aggregates that are often toxic to cells. Exactly how amyloid proteins, such as the pancreatic hormone amylin, aggregate and kill cells is still unclear. Islet amyloid polypeptide, or amylin, is a recently discovered hormone that is stored and co-released with insulin from pancreatic islet β-cells. The pathology of type 2 diabetes mellitus (T2DM) is characterized by an excessive extracellular and intracellular accumulation of toxic amylin species, soluble oligomers and insoluble fibrils, in islets, eventually leading to β-cell loss. Obesity and elevated serum cholesterol levels are additional risk factors implicated in the development of T2DM. Because the homeostatic balance between cholesterol synthesis and uptake is lost in diabetics, and amylin aggregation is a hallmark of T2DM, this chapter focuses on the biophysical and cell biology studies exploring molecular mechanisms by which cholesterol and phospholipids modulate secondary structure, folding and aggregation of human amylin and other amyloid proteins on membranes and in cells. Amylin turnover and toxicity in pancreatic cells and the regulatory role of cholesterol in these processes are also discussed.
Collapse
Affiliation(s)
- Sanghamitra Singh
- Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC, 20052, USA
| | | | | | | | | |
Collapse
|
213
|
Fonseca-Ornelas L, Eisbach SE, Paulat M, Giller K, Fernández CO, Outeiro TF, Becker S, Zweckstetter M. Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun 2014; 5:5857. [PMID: 25524885 DOI: 10.1038/ncomms6857] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/13/2014] [Indexed: 01/13/2023] Open
Abstract
α-synuclein is an abundant presynaptic protein that is important for regulation of synaptic vesicle trafficking, and whose misfolding plays a key role in Parkinson's disease. While α-synuclein is disordered in solution, it folds into a helical conformation when bound to synaptic vesicles. Stabilization of helical, folded α-synuclein might therefore interfere with α-synuclein-induced neurotoxicity. Here we show that several small molecules, which delay aggregation of α-synuclein in solution, including the Parkinson's disease drug selegiline, fail to interfere with misfolding of vesicle-bound α-synuclein. In contrast, the porphyrin phtalocyanine tetrasulfonate directly binds to vesicle-bound α-synuclein, stabilizes its helical conformation and thereby delays pathogenic misfolding and aggregation. Our study suggests that small-molecule-mediated stabilization of helical vesicle-bound α-synuclein opens new possibilities to target Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Luis Fonseca-Ornelas
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sybille E Eisbach
- Department of Neurodegeneration and Restorative Research, University Medicine, Waldweg 33, 37073 Göttingen, Germany
| | - Maria Paulat
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Claudio O Fernández
- 1] Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK- Rosario, Argentina [2] Instituto de Investigaciones para el Descubrimiento de Farmacos de Rosario-IIDEFAR, (CONICET-UNR), 27 de Febrero 210 bis, S2002LRK- Rosario, Argentina
| | - Tiago F Outeiro
- 1] Department of Neurodegeneration and Restorative Research, University Medicine, Waldweg 33, 37073 Göttingen, Germany [2] DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, 37073 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany [2] DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, 37073 Göttingen, Germany [3] German Center for Neurodegenerative Diseases (DZNE), Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
214
|
Caillon L, Duma L, Lequin O, Khemtemourian L. Cholesterol modulates the interaction of the islet amyloid polypeptide with membranes. Mol Membr Biol 2014; 31:239-49. [PMID: 25495656 DOI: 10.3109/09687688.2014.987182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10-30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using (1)H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.
Collapse
Affiliation(s)
- Lucie Caillon
- Sorbonne Universités , UPMC Univ Paris 06, Laboratoire des Biomolécules , Paris, France
| | | | | | | |
Collapse
|
215
|
Schlamadinger DE, Miranker AD. Fiber-dependent and -independent toxicity of islet amyloid polypeptide. Biophys J 2014; 107:2559-66. [PMID: 25468335 DOI: 10.1016/j.bpj.2014.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023] Open
Abstract
The 37-residue peptide hormone islet amyloid polypeptide (IAPP) plays a central role in diabetes pathology. Although its amyloid fiber aggregation kinetics and cytotoxicity to β-cells are well documented, few reports have directly assessed the role of fibers in cell-based toxicity experiments. Here, we report that amyloid formation of IAPP can be strongly inhibited by the extracellular environment of live cells. For example, fiber formation is more strongly suppressed in cell culture medium than in aqueous buffer. The serum component of the medium is responsible for this inhibition. Although amyloid formation was previously shown to be catalyzed by both synthetic and chloroform-extracted phospholipid surfaces, it is instead inhibited by membrane surfaces prepared directly from the plasma membranes of an immortal β-cell line. This disparity is reconciled by direct assessment of fibers in cell-culture-based toxicity experiments. We discovered that fibers are nontoxic if they are washed free of adsorbed nonfibrillar components. Moreover, toxicity is not only rescued when monomers are added back to fibers but is greater than what is observed from the precursor alone. Our results are interpreted in light of the capacity of the fiber surface to template amyloid nucleation.
Collapse
Affiliation(s)
- Diana E Schlamadinger
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
216
|
Choi B, Yoon G, Lee SW, Eom K. Mechanical deformation mechanisms and properties of amyloid fibrils. Phys Chem Chem Phys 2014; 17:1379-89. [PMID: 25426573 DOI: 10.1039/c4cp03804e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of <10 nm. However, we found that the deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.
Collapse
Affiliation(s)
- Bumjoon Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | | | | | | |
Collapse
|
217
|
Kaur M, Healy J, Vasudevamurthy M, Lassé M, Puskar L, Tobin MJ, Valery C, Gerrard JA, Sasso L. Stability and cytotoxicity of crystallin amyloid nanofibrils. NANOSCALE 2014; 6:13169-78. [PMID: 25255060 DOI: 10.1039/c4nr04624b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.
Collapse
Affiliation(s)
- Manmeet Kaur
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
219
|
Yagi H, Abe Y, Takayanagi N, Goto Y. Elongation of amyloid fibrils through lateral binding of monomers revealed by total internal reflection fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1881-8. [DOI: 10.1016/j.bbapap.2014.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022]
|
220
|
The effects of organic solvents on the membrane-induced fibrillation of human islet amyloid polypeptide and on the inhibition of the fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3162-70. [PMID: 25218343 DOI: 10.1016/j.bbamem.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/23/2022]
Abstract
The organic solvent dimethylsulphoxide (DMSO) and 1,1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) have been widely used as a pre-treating agent of amyloid peptides and as a vehicle for water-insoluble inhibitors. These solvents are left in many cases as a trace quantity in bulk and membrane environments with treated amyloid peptides or inhibitors. In the present work, we studied the effects of the two organic solvents on the aggregation behaviors of human islet amyloid polypeptide (hIAPP) and the performances of an all-D-amino-acid inhibitor D-NFGAIL in preventing hIAPP fibrillation both in bulk solution and at phospholipid membrane. We showed that the presence of 1% v/v DMSO or HFIP decreases the rate of fibril formation of hIAPP at the lipid membrane rather than accelerates the fibril formation as what happened in bulk solution. We also showed that the presence of 1% v/v DMSO or HFIP impairs the activity of the inhibitor at the lipid membrane surface dramatically, while it affects the efficiency of the inhibitor in bulk solution slightly. We found that the inhibitor inserts into the lipid membrane more deeply or with more proportion in the presence of the organic solvents than it does in the absence of the organic solvents, which may hinder the binding of the inhibitor to hIAPP at the lipid membrane. Our results suggest that the organic solvents should be used with caution in studying membrane-induced fibrillogenesis of amyloid peptides and in testing amyloid inhibitors under membrane environments to avoid incorrect evaluation to the fibrillation process of amyloid peptides and the activity of inhibitors.
Collapse
|
221
|
Zhao J, Hu R, Sciacca MFM, Brender JR, Chen H, Ramamoorthy A, Zheng J. Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Phys Chem Chem Phys 2014; 16:2368-77. [PMID: 24352606 DOI: 10.1039/c3cp53345j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fundamental understanding of ion channel formation by amyloid peptides, which is strongly linked to cell toxicity, is very critical for (pre)clinical treatment of neurodegenerative diseases. Here, we combine atomistic simulations and experiments to demonstrate a broad range of conformational states of hIAPP double channels in lipid membranes. All individual channels display high selectivity for Cl(-) ions over cations, but the co-existence of polymorphic double channels of different conformations and orientations with different populations determines the non-ionic selectivity nature of the channels, which is different from the typical amyloid-β channels that exhibit Ca(2+) selective ion-permeable characteristics. This work provides a more complete physicochemical mechanism of amyloid-channel-induced toxicity.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| | | | | | | | | | | | | |
Collapse
|
222
|
Despa S, Sharma S, Harris TR, Dong H, Li N, Chiamvimonvat N, Taegtmeyer H, Margulies KB, Hammock BD, Despa F. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. J Am Heart Assoc 2014; 3:jah3658. [PMID: 25146704 PMCID: PMC4310392 DOI: 10.1161/jaha.114.001015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. METHODS AND RESULTS By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. CONCLUSIONS The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (S.D., S.S., F.D.) Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY (S.D., F.D.)
| | - Savita Sharma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (S.D., S.S., F.D.)
| | - Todd R Harris
- Department of Entomology, University of California, Davis, CA (T.R.H., H.D., B.D.H.)
| | - Hua Dong
- Department of Entomology, University of California, Davis, CA (T.R.H., H.D., B.D.H.)
| | - Ning Li
- Department of Internal Medicine, University of California, Davis, CA (N.L., N.C.)
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, CA (N.L., N.C.) Department of Veterans Affairs, Northern California Health Care System, Mather, CA (N.C.)
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, The University of Texas School of Medicine at Houston, Houston, TX (H.T.)
| | - Kenneth B Margulies
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (K.B.M.)
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, CA (T.R.H., H.D., B.D.H.)
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (S.D., S.S., F.D.) Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY (S.D., F.D.)
| |
Collapse
|
223
|
Matsuzaki K. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47:2397-404. [PMID: 25029558 DOI: 10.1021/ar500127z] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disorder, causes more than half of dementia cases. According to the popular "Aβ hypothesis" to explain the mechanism of this disease, amyloid β-peptides (Aβ) of 39-43 amino acid residues aggregate and deposit onto neurons, igniting the neurotoxic cascade of the disease. Therefore, researchers studying AD would like to elucidate the mechanisms by which essentially water-soluble but hydrophobic Aβ aggregates under pathological conditions. Most researchers have investigated the aggregation of Aβ in aqueous solution, and they concluded that the final aggregation product, the amyloid fibrils, were less toxic than the component peptide oligomers. They consequently shifted their interests to more toxic "soluble oligomers", structures that form as intermediates or off-pathway products during the aggregation process. Some researchers have also investigated artificial oligomers prepared under nonphysiological conditions. In contrast to these "in solution" studies, we have focused on "membrane-mediated" amyloidogenesis. In an earlier study, other researchers identified a specific form of Aβ that was bound to monosialoganglioside GM1, a sugar lipid, in brains of patients who exhibited the early pathological changes associated with AD. This Account summarizes 15 years of our research on this topic. We have found that Aβ specifically binds to GM1 that occurs in clusters, but not when it is uniformly distributed. Clustering is facilitated by cholesterol. Upon binding, Aβ changes its conformation from a random coil to an α-helix-rich structure. A CH-π interaction between the aromatic side chains of Aβ and carbohydrate moieties appended to GM1 appears to be important for binding. In addition, as Aβ accumulates and reaches its first threshold concentration (Aβ/GM1 = ∼0.013), aggregated β-sheets of ∼15 molecules appear and coexist with the helical form. However, this β-structure is stable and does not form larger aggregates. When the disease progresses further and the Aβ/GM1 ratio exceeds ∼0.044, the β-structure converts to a second β-structure that can seed aggregates. The seed recruits monomers from the aqueous phase to form toxic amyloid fibrils that have larger surface hydrophobicity and can contain antiparallel β-sheets. In contrast, amyloid fibrils formed in aqueous solution are less toxic and have parallel β-sheets. The less polar environments of GM1 clusters play an important role in the formation of these toxic fibrils. Membranes that contain GM1 clusters not only accelerate the aggregation of Aβ by locally concentrating Aβ molecules but also generate amyloid fibrils with unique structures and significant cytotoxicity. The inhibition of this aggregation cascade could be a promising strategy for the development of AD-modulating therapies.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29
Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
224
|
Hebda JA, Magzoub M, Miranker AD. Small molecule screening in context: lipid-catalyzed amyloid formation. Protein Sci 2014; 23:1341-8. [PMID: 25043951 DOI: 10.1002/pro.2518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 12/20/2022]
Abstract
Islet Amyloid Polypeptide (IAPP) is a 37-residue hormone cosecreted with insulin by the β-cells of the pancreas. Amyloid fiber aggregation of IAPP has been correlated with the dysfunction and death of these cells in type II diabetics. The likely mechanisms by which IAPP gains toxic function include energy independent cell membrane penetration and induction of membrane depolarization. These processes have been correlated with solution biophysical observations of lipid bilayer catalyzed acceleration of amyloid formation. Although the relationship between amyloid formation and toxicity is poorly understood, the fact that conditions promoting one also favor the other suggests related membrane active structural states. Here, a novel high throughput screening protocol is described that capitalizes on this correlation to identify compounds that target membrane active species. Applied to a small library of 960 known bioactive compounds, we are able to report identification of 37 compounds of which 36 were not previously reported as active toward IAPP fiber formation. Several compounds tested in secondary cell viability assays also demonstrate cytoprotective effects. It is a general observation that peptide induced toxicity in several amyloid diseases (such as Alzhiemer's and Parkinson's) involves a membrane bound, preamyloid oligomeric species. Our data here suggest that a screening protocol based on lipid-catalyzed assembly will find mechanistically informative small molecule hits in this subclass of amyloid diseases.
Collapse
Affiliation(s)
- James A Hebda
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8114
| | | | | |
Collapse
|
225
|
Phan HTT, Yoda T, Chahal B, Morita M, Takagi M, Vestergaard MC. Structure-dependent interactions of polyphenols with a biomimetic membrane system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2670-7. [PMID: 25016053 DOI: 10.1016/j.bbamem.2014.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 02/05/2023]
Abstract
Polyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols. Two distinct membrane dynamics, corresponding to the two classes of polyphenols used, were observed. Flavonoids (epi-gallocatechin-3-gallate, gallocatechin, theaflavin and theaflavin-3-gallate) caused lipid membrane aggregation and rigidification. As simple structural modification through opening of the aromatic C-ring into an olefin bond, present in trans-stilbenes (resveratrol and picead), completely changed the membrane properties, increasing fluidity and inducing fluctuation. There were differences in the membrane transformations within the same class of polyphenols. Structure-dependent classification of membrane dynamics may contribute to a better understanding of the physicochemical mechanism involved in the bioactivity of polyphenols. In general, an increase in the number of hydrophilic side chains (galloyl, hydroxyl, glucoside, gallate) increased the reactivity of the polyphenols. Most notable was the difference observed through a simple addition of the gallate group. Unraveling the importance of these polyphenols, at a functional group level further opens the key to tailored design of bioactive compounds as potential drug candidates.
Collapse
Affiliation(s)
- Huong T T Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Tsuyoshi Yoda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Bindu Chahal
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan; M. Tech. Chemical Synthesis and Process Technologies, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Masamune Morita
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Mun'delanji C Vestergaard
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
| |
Collapse
|
226
|
Morriss-Andrews A, Shea JE. Simulations of Protein Aggregation: Insights from Atomistic and Coarse-Grained Models. J Phys Chem Lett 2014; 5:1899-908. [PMID: 26273871 DOI: 10.1021/jz5006847] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This Perspective highlights recent computational approaches to protein aggregation, from coarse-grained models to atomistic simulations, using the islet amyloid polypeptide (IAPP) as a case study. We review salient open questions where simulations can make an impact, discuss the successes and challenges met by simulations, and explore new directions.
Collapse
Affiliation(s)
- Alex Morriss-Andrews
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
227
|
The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2014; 2:56. [PMID: 24887264 PMCID: PMC4231072 DOI: 10.1186/2051-5960-2-56] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
Pathological aggregation of the microtubule-associated protein tau and subsequent accumulation of neurofibrillary tangles (NFTs) or other tau-containing inclusions are defining histopathological features of many neurodegenerative diseases, which are collectively known as tauopathies. Due to conflicting results regarding a correlation between the presence of NFTs and disease progression, the mechanism linking pathological tau aggregation with cell death is poorly understood. An emerging view is that NFTs are not the toxic entity in tauopathies; rather, tau intermediates between monomers and NFTs are pathogenic. Several proteins associated with neurodegenerative diseases, such as β-amyloid (Aβ) and α-synuclein, have the tendency to form pore-like amyloid structures (annular protofibrils, APFs) that mimic the membrane-disrupting properties of pore-forming protein toxins. The present study examined the similarities of tau APFs with other tau amyloid species and showed for the first time the presence of tau APFs in brain tissue from patients with progressive supranuclear palsy (PSP) and dementia with Lewy bodies (DLB), as well as in the P301L mouse model, which overexpresses mutated tau. Furthermore, we found that APFs are preceded by tau oligomers and do not go on to form NFTs, evading fibrillar fate. Collectively, our results demonstrate that in vivo APF formation depends on mutations in tau, phosphorylation levels, and cell type. These findings establish the pathological significance of tau APFs in vivo and highlight their suitability as therapeutic targets for several neurodegenerative tauopathies.
Collapse
|
228
|
Tomasello MF, Sinopoli A, Attanasio F, Giuffrida ML, Campagna T, Milardi D, Pappalardo G. Molecular and cytotoxic properties of hIAPP17-29 and rIAPP17-29 fragments: a comparative study with the respective full-length parent polypeptides. Eur J Med Chem 2014; 81:442-55. [PMID: 24859763 DOI: 10.1016/j.ejmech.2014.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/11/2014] [Accepted: 05/11/2014] [Indexed: 12/20/2022]
Abstract
The human islet polypeptide (hIAPP) or amylin is a 37-residue peptide hormone secreted by β-cells of the islet of Langerhans in the pancreas. Unlike the rat variant of IAPP (rIAPP), human amylin is highly amyloidogenic and is found as amyloid deposits in nearly 95% of patients afflicted with type 2 diabetes mellitus (T2DM). Human and rat IAPP have nearly identical primary sequence differing at only six positions which are encompassed within the 17-29 aminoacid region. Using Circular Dichroism (CD), Dynamic Light Scattering (DLS) and ThT-fluorescence (Th-T), we examined the aggregation properties of both full-length hIAPP1-37 and the related peptide fragment hIAPP17-29. For the sake of comparison, similar experiments were carried out on the respective rat variants rIAPP1-37 and rIAPP17-29. These studies were conducted at physiological pH in buffered solution not containing fluorinated co-solvents as well as in the presence of model membranes (LUV). In addition, the cytotoxic activity of the investigated peptides was determined toward different pancreatic β-cell lines. All the peptide studied in this work resulted cytotoxic despite β-sheet structure being observed, in vitro, for the hIAPP1-37 only. This suggests that β-sheet conformational transition that generally precedes the fibril formation, is not a prerequisite for toxicity towards β-cells. Interestingly, confocal microscopy indicated that the IAPP peptides can enter the cell and might exert their toxic action at an intracellular level.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- International PhD Program in Translational Biomedicine, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- CNR-Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
| | - Maria Laura Giuffrida
- CNR-Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
| | - Tiziana Campagna
- CNR-Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
| | - Danilo Milardi
- CNR-Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Pappalardo
- CNR-Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
229
|
Morriss-Andrews A, Brown FLH, Shea JE. A coarse-grained model for peptide aggregation on a membrane surface. J Phys Chem B 2014; 118:8420-32. [PMID: 24791936 DOI: 10.1021/jp502871m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aggregation of peptides on a lipid bilayer is studied using coarse-grained molecular dynamics in implicit solvent. Peptides bind to and self-assemble on the membrane surface into β-rich fibrillar aggregates, even under conditions where only disordered oligomers form in bulk solution. Relative to a solid surface, the membrane surface facilitates peptide mobility and a more complex network of morphology transitions as aggregation proceeds. Additionally, final aggregate structures realized on the membrane surface are distinct from those observed on a comparable solid surface. The aggregated fibrils alter the local structure and material properties of the lipid bilayer in their immediate vicinity but have only a modest effect on the overall bending rigidity of the bilayer.
Collapse
Affiliation(s)
- Alex Morriss-Andrews
- Department of Physics, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
230
|
Niu Z, Zhao W, Zhang Z, Xiao F, Tang X, Yang J. The Molecular Structure of Alzheimer β-Amyloid Fibrils Formed in the Presence of Phospholipid Vesicles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
231
|
Niu Z, Zhao W, Zhang Z, Xiao F, Tang X, Yang J. The molecular structure of Alzheimer β-amyloid fibrils formed in the presence of phospholipid vesicles. Angew Chem Int Ed Engl 2014; 53:9294-7. [PMID: 24810551 DOI: 10.1002/anie.201311106] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Indexed: 11/06/2022]
Abstract
β-amyloid (Aβ) fibrils are the major species involved in Alzheimer's disease (AD). An atomic-resolution molecular structure of Aβ40 fibrils formed in the presence of lipid vesicles was obtained by using magic angle spinning (MAS) solid-state NMR spectroscopy. The fibril structures formed in the presence of the lipid vesicles are remarkably different from those formed in solution. These results provide insights into the molecular mechanism of Aβ aggregation in the presence of lipid vesicles.
Collapse
Affiliation(s)
- Zheng Niu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | | | | | | | | | | |
Collapse
|
232
|
Crawford NF, Leblanc RM. Serum albumin in 2D: a Langmuir monolayer approach. Adv Colloid Interface Sci 2014; 207:131-8. [PMID: 24267981 DOI: 10.1016/j.cis.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/24/2022]
Abstract
Understanding of protein interaction at the molecular level raises certain difficulties which is the reason a model membrane system such as the Langmuir monolayer technique was developed. Ubiquitous proteins such as serum albumin comprise 50% of human blood plasma protein content and are involved in many biological functions. The important nature of this class of protein demands that it be studied in detail while modifying the experimental conditions in two dimensions to observe it in all types of environments. While different from bulk colloidal solution work, the two dimensional approach allows for the observation of the interaction between molecules and subphase at the air-water interface. Compiled in this review are studies which highlight the characterization of this protein using various surroundings and also observing the types of interactions it would have when at the biomembrane interface. Free-energy changes between molecules, packing status of the bulk analyte at the interface as well as phase transitions as the monolayer forms a more organized or aggregated state are just some of the characteristics which are observed through the Langmuir technique. This unique methodology demonstrates the chemical behavior and physical behavior of this protein at the phase boundary throughout the compression of the monolayer.
Collapse
|
233
|
Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Adv Colloid Interface Sci 2014; 207:81-92. [PMID: 24200086 DOI: 10.1016/j.cis.2013.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022]
Abstract
Many degenerative diseases such as Alzheimer's and Parkinson's involve proteins that have a tendency to misfold and aggregate eventually forming amyloid fibers. This review describes the use of monolayers, bilayers, supported membranes, and vesicles as model systems that have helped elucidate the mechanisms and consequences of the interactions between amyloidogenic proteins and membranes. These are twofold: membranes favor the formation of amyloid structures and these induce damage in those membranes. We describe studies that show how interfaces, especially charged ones, favor amyloidogenic protein aggregation by several means. First, surfaces increase the effective protein concentration reducing a three-dimensional system to a two-dimensional one. Second, charged surfaces allow electrostatic interactions with the protein. Anionic lipids as well as rafts, rich in cholesterol and gangliosides, prove to play an especially important role. Finally, these amphipathic systems also offer a hydrophobic environment favoring conformational changes, oligomerization, and eventual formation of mature fibers. In addition, we examine several models for membrane permeabilization: protein pores, leakage induced by extraction of lipids, chaotic pores, and membrane tension, presenting illustrative examples of experimental evidence in support of these models. The picture that emerges from recent work is one where more than one mechanism is in play. Which mechanism prevails depends on the protein, its aggregation state, and the lipid environment in which the interactions occur.
Collapse
|
234
|
Sasahara K, Morigaki K, Shinya K. Amyloid aggregation and deposition of human islet amyloid polypeptide at membrane interfaces. FEBS J 2014; 281:2597-612. [PMID: 24702784 DOI: 10.1111/febs.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) within the islets of Langerhans is a pathological feature of type 2 diabetes mellitus. Substantial evidence indicates that the membrane-mediated aggregation and subsequent deposition of hIAPP are linked to dysfunction and death of pancreatic β-cells, but the molecular processes of hIAPP deposition are poorly understood. In this study, we examined the membrane-mediated aggregation and deposition of hIAPP at supported planar lipid bilayers with and without raft components (i.e. cholesterol and sphingomyelin) to provide insight into hIAPP-induced membrane dysfunction. The adsorption of hIAPP onto the bilayers was studied using a quartz crystal microbalance with dissipation monitoring, which showed enhanced accumulation of the peptide onto the bilayer containing raft components. Microscope observations demonstrated the growth of the aggregates formed from the membrane-adsorbed hIAPP. The examination of the membrane interfaces revealed that hIAPP aggregates retained the ability to associate with the membranes during the aggregation process, resulting in insertion of the aggregates into the bilayers. We also report the inhibitory effect of insulin on the hIAPP deposition. These findings demonstrate the aggregation of hIAPP at the membrane interfaces leading to amyloid deposits associated with the membrane and suggest a role for insulin in hIAPP deposition. A presumed mechanism regulating hIAPP deposition at the membrane interfaces is discussed.
Collapse
Affiliation(s)
- Kenji Sasahara
- Department of Microbiology and Infectious Diseases, Graduate School of Medicine, Kobe University, Japan
| | | | | |
Collapse
|
235
|
Landreh M, Johansson J, Jörnvall H. Separate molecular determinants in amyloidogenic and antimicrobial peptides. J Mol Biol 2014; 426:2159-66. [PMID: 24650898 DOI: 10.1016/j.jmb.2014.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Several amyloid-forming and antimicrobial peptides (AMYs and AMPs) have the ability to bind to and damage cell membranes. In addition, some AMYs possess antimicrobial activity and some AMPs form amyloid-like fibrils, relating the two peptide types and their properties. However, a comparison of their sequence characteristics reveals important differences. The high β-strand and aggregation propensities typical of AMYs are largely absent in α-helix-forming AMPs, which are instead marked by a strong amphipathic moment not generally found in AMYs. Although a few peptides, for example, islet amyloid polypeptide and dermaseptin S9, combine some determinants of both groups, the structural distinctions suggest that antimicrobial activity and amyloid formation are separate features not generally associated.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jan Johansson
- KI Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
236
|
A hIAPP-derived all-d-amino-acid inhibits hIAPP fibrillation efficiently at membrane surface by targeting α-helical oligomeric intermediates. FEBS Lett 2014; 588:884-91. [DOI: 10.1016/j.febslet.2014.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
|
237
|
Lee EC, Ha E, Singh S, Legesse L, Ahmad S, Karnaukhova E, Donaldson RP, Jeremic AM. Copper(II)-human amylin complex protects pancreatic cells from amylin toxicity. Phys Chem Chem Phys 2014; 15:12558-71. [PMID: 23793354 DOI: 10.1039/c3cp44542a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human amylin-derived oligomers and aggregates are believed to play an important role in the pathogenesis of type II diabetes mellitus (T2DM). In addition to amylin-evoked cell attrition, T2DM is often accompanied by elevated serum copper levels. Although previous studies have shown that human amylin, in the course of its aggregation, produces hydrogen peroxide (H2O2) in solution, and that this process is exacerbated in the presence of copper(ii) ions (Cu(2+)), very little is known about the mechanism of interaction between Cu(2+) and amylin in pancreatic β-cells, including its pathological significance. Hence, in this study we investigated the mechanism by which Cu(2+) and human amylin catalyze formation of reactive oxygen species (ROS) in cells and in vitro, and examined the modulatory effect of Cu(2+) on amylin aggregation and toxicity in pancreatic rat insulinoma (RIN-m5F) β-cells. Our results indicate that Cu(2+) interacts with human and rat amylin to form metalo-peptide complexes with low aggregative and oxidative properties. Human and non-amyloidogenic rat amylin produced minute (nM) amounts of H2O2, the accumulation of which was slightly enhanced in the presence of Cu(2+). In a marked contrast to human and rat amylin, and in the presence of the reducing agents glutathione and ascorbate, Cu(2+) produced μM concentrations of H2O2 surpassing the amylin effect by several fold. The current study shows that human and rat amylin not only produce but also quench H2O2, and that human but not rat amylin significantly decreases the amount of H2O2 in solution produced by Cu(2+) and glutathione. Similarly, human amylin was found to also decrease hydroxyl radical formation elicited by Cu(2+) and glutathione. Furthermore, Cu(2+) mitigated the toxic effect of human amylin by inhibiting activation of pro-apoptotic caspase-3 and stress-kinase signaling pathways in rat pancreatic insulinoma cells in part by stabilizing human amylin in its native conformational state. This sacrificial quenching of metal-catalyzed ROS by human amylin and copper's anti-aggregative and anti-apoptotic properties suggest a novel and protective role for the copper-amylin complex.
Collapse
Affiliation(s)
- Elizabeth C Lee
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Bucciantini M, Rigacci S, Stefani M. Amyloid Aggregation: Role of Biological Membranes and the Aggregate-Membrane System. J Phys Chem Lett 2014; 5:517-27. [PMID: 26276603 DOI: 10.1021/jz4024354] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several human degenerative diseases involve amyloidogenic peptides/proteins with high conformational plasticity and propensity to self-aggregate into polymeric fibrillar assemblies sharing the cross-β structure and endowed with cytotoxic potential. Although the mechanisms of amyloid growth and toxicity are not fully understood, a common property of amyloids is their ability to interact with lipid bilayers disturbing membrane integrity. Lipid bilayers can also act as conformational catalysts, favoring protein misfolding and inducing the growth of aggregation nuclei, early oligomers, and mature fibrils with specific biophysical, structural, and toxicity features. This Perspective will highlight these effects in the context of a membrane-oligomer system where the conformational/biophysical features of either component affect those of the other. In this context, we will highlight the modulation of the protein-cell surface interaction by the content of membrane cholesterol and gangliosides, notably GM1. In particular, we will discuss data that indicate how these interactions affect the structural and stability properties of both protein and bilayers as well as the final cytotoxic effect. Our goal is to propose shared membrane-based mechanisms that could apply to any amyloidogenic peptide/protein, providing a biochemical background for amyloid growth and toxicity.
Collapse
Affiliation(s)
- Monica Bucciantini
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Stefania Rigacci
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
- ‡National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
239
|
Mocanu MM, Ganea C, Siposova K, Filippi A, Demjen E, Marek J, Bednarikova Z, Antosova A, Baran I, Gazova Z. Polymorphism of hen egg white lysozyme amyloid fibrils influences the cytotoxicity in LLC-PK1 epithelial kidney cells. Int J Biol Macromol 2014; 65:176-87. [PMID: 24444882 DOI: 10.1016/j.ijbiomac.2014.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/10/2023]
Abstract
The polymorphism of amyloid fibrils is potentially crucial as it may underlie the natural variability of amyloid diseases and could be important in developing a fuller understanding of the molecular basis of protein deposition disorders. This study examines morphological differences in lysozyme fibrils and the implications of these differences in terms of cytotoxicity. The structural characteristics of amyloid fibrils formed under two different experimental conditions (acidic and neutral) were evaluated using spectroscopic methods, atomic force microscopy and image analysis. Growth curves and apoptotic/necrotic assays were used to determine the cytotoxic effect of fibrils on the LLC-PK1 renal cells. The results reveal that both types of mature lysozyme amyloid fibrils are actively involved in the cytotoxic process, however each exhibit different levels of cytotoxicity. Fibrils formed at acidic pH affect cell growth in a dose-dependent manner, but a threshold-dependent inhibition of cell growth was observed in the case of lysozyme fibrils prepared at neutral pH. Experiments examining the mechanism of the cell death suggest that both types of mature lysozyme fibrils trigger late apoptosis/necrosis at different fibril concentrations. Our findings clearly indicate that the intrinsic differences between amyloid fibrils due to their polymorphism result in different degrees of cytotoxicity.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Alexandru Filippi
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Erna Demjen
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia; Department of Biochemistry, Faculty of Science, Safarik University, Kosice, Slovakia
| | - Andrea Antosova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Irina Baran
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia; Department of Medical and Clinical Biochemistry and LABMED, Faculty of Medicine, Safarik University, Kosice, Slovakia.
| |
Collapse
|
240
|
Jha S, Snell JM, Sheftic SR, Patil SM, Daniels SB, Kolling FW, Alexandrescu AT. pH dependence of amylin fibrillization. Biochemistry 2014; 53:300-10. [PMID: 24377660 DOI: 10.1021/bi401164k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In type 2 diabetics, the hormone amylin misfolds into amyloid plaques implicated in the destruction of the pancreatic β-cells that make insulin and amylin. The aggregative misfolding of amylin is pH-dependent, and exposure of the hormone to acidic and basic environments could be physiologically important. Amylin has two ionizable residues between pH 3 and 9: the α-amino group and His18. Our approach to measuring the pKa values for these sites has been to look at the pH dependence of fibrillization in amylin variants that have only one of the two groups. The α-amino group at the unstructured N-terminus of amylin has a pKa near 8.0, similar to the value in random coil models. By contrast, His18, which is involved in the intermolecular β-sheet structure of the fibrils, has a pKa that is lowered to 5.0 in the fibrils compared to the random coil value of 6.5. The lowered pKa of His18 is due to the hydrophobic environment of the residue, and electrostatic repulsion between positively charged His18 residues on neighboring amylin molecules in the fibril. His18 acts as an electrostatic switch inhibiting fibrillization in its charged state. The presence of a charged side chain at position 18 also affects fibril morphology and lowers amylin cytotoxicity toward a MIN6 mouse model of pancreatic β-cells. In addition to the two expected pKa values, we detected an apparent pKa of ~4.0 for the amylin-derived peptide NAc-SNNFGAILSS-NH2, which has no titratable groups. This pKa is due to the pH-induced ionization of the dye thioflavin T. By using alternative methods to follow fibrillization such as the dye Nile Red or turbidimetry, we were able to distinguish between the titration of the dye and groups on the peptide. Large differences in reaction kinetics were observed between the different methods at acidic pH, because of charges on the ThT dye, which hinder fibril formation much like the charges on the protein.
Collapse
Affiliation(s)
- Suman Jha
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | | | | | | | | | | | | |
Collapse
|
241
|
Relini A, Marano N, Gliozzi A. Misfolding of amyloidogenic proteins and their interactions with membranes. Biomolecules 2013; 4:20-55. [PMID: 24970204 PMCID: PMC4030986 DOI: 10.3390/biom4010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
In this paper, we discuss amyloidogenic proteins, their misfolding, resulting structures, and interactions with membranes, which lead to membrane damage and subsequent cell death. Many of these proteins are implicated in serious illnesses such as Alzheimer’s disease and Parkinson’s disease. Misfolding of amyloidogenic proteins leads to the formation of polymorphic oligomers and fibrils. Oligomeric aggregates are widely thought to be the toxic species, however, fibrils also play a role in membrane damage. We focus on the structure of these aggregates and their interactions with model membranes. Study of interactions of amlyoidogenic proteins with model and natural membranes has shown the importance of the lipid bilayer in protein misfolding and aggregation and has led to the development of several models for membrane permeabilization by the resulting amyloid aggregates. We discuss several of these models: formation of structured pores by misfolded amyloidogenic proteins, extraction of lipids, interactions with receptors in biological membranes, and membrane destabilization by amyloid aggregates perhaps analogous to that caused by antimicrobial peptides.
Collapse
Affiliation(s)
- Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | - Nadia Marano
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | | |
Collapse
|
242
|
Cai Z, Li J, Yin C, Yang Z, Wu J, Zhou R. Effect of urea concentration on aggregation of amyloidogenic hexapeptides (NFGAIL). J Phys Chem B 2013; 118:48-57. [PMID: 24328094 DOI: 10.1021/jp407776e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have performed large-scale all-atom molecular dynamics (MD) simulations to study the aggregation behavior of four NFGAIL hexapeptides in the aqueous urea solution, with a urea concentration ranging from 0 to 5 M. We find that urea in general suppresses the peptide aggregation, but suppression slows down in the intermediation concentration regime around 3 M. Two competing mechanisms of urea are determined: urea molecules accumulated near the first solvation shell (FSS) tend to unfold the hexapeptide, which favors aggregation; on the other hand, the tight hydrogen bonds formed between urea and peptide mainchains hinder the association of peptides which disfavors the formation of the β-sheet. Furthermore, the different nonlinear urea concentration dependences of the urea-peptide and peptide-peptide hydrogen bonds lead to a nonmonotonic behavior, with a weak enhancement in the peptide aggregation around 3 M.
Collapse
Affiliation(s)
- Zhuowei Cai
- Department of Physics, Zhejiang University , Hangzhou, 310027, China
| | | | | | | | | | | |
Collapse
|
243
|
Borchi E, Bargelli V, Guidotti V, Berti A, Stefani M, Nediani C, Rigacci S. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: an hormetic stimulus. Redox Biol 2013; 2:114-22. [PMID: 24416718 PMCID: PMC3887275 DOI: 10.1016/j.redox.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/09/2023] Open
Abstract
The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP), a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS) generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE) by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage. Short time exposure of pancreatic β-cells to low hIAPP aggregate amounts is studied. NADPH oxidase activity is increased after 3 h treatment with 60 nM hIAPP aggregates. RAGE engagement by aggregates increases Nox1 expression. Reduced lipoperoxidation and increased antioxidant enzymes were observed. A protective hormetic response via RAGE-Nox1 is proposed.
Collapse
Key Words
- AGE, advanced glycation end products
- ATZ, 3-amino-1,2,4-triazole
- Antioxidant enzyme
- CAT, catalase
- DPI, diphenyleneiodonium
- GPx, glutathione peroxidase
- Hormesis
- MDA, malonyldialdehyde
- MS, mercaptosuccinic acid
- NADPH oxidase
- RAGE
- RAGE, receptor for advanced glycation end-products
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Type 2 diabetes
- hIAPP
- hIAPP, human islet amyloid polypeptide
- rIAPP, rat islet amyloid polypeptide
Collapse
Affiliation(s)
- Elisabetta Borchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Valentina Bargelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Valentina Guidotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy ; Research Centre on the Molecular Basis of Neurodegeneration (CIMN), Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy ; Research Centre on the Molecular Basis of Neurodegeneration (CIMN), Viale Morgagni 50, 50134 Florence, Italy ; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
244
|
Rotzetter ACC, Schumacher CM, Zako T, Stark WJ, Maeda M. Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14117-14123. [PMID: 24151962 DOI: 10.1021/la4026427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen.
Collapse
Affiliation(s)
- Aline C C Rotzetter
- ETH Zurich, Institute for Chemical and Bioengineering , Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
245
|
Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis. PLoS One 2013; 8:e79104. [PMID: 24236094 PMCID: PMC3827313 DOI: 10.1371/journal.pone.0079104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM), marginal zone macrophages (MZM), metallophilic marginal zone macrophages (MMZM). MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.
Collapse
|
246
|
Abstract
Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP-membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration-approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.
Collapse
|
247
|
Liu GCH, Chen BPW, Ye NTJ, Wang CH, Chen W, Lee HM, Chan SI, Huang JJT. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem Commun (Camb) 2013; 49:11212-4. [PMID: 24154814 DOI: 10.1039/c3cc46762g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The amyloidogenic core in the TAR DNA-binding protein (TDP-43) C-terminal fragment has been characterized with its chemical, biochemical, and structural properties delineated. Various properties of the core sequence, including membrane impairment ability and the seeding effect, have also been studied.
Collapse
Affiliation(s)
- Gerard Chun-Hao Liu
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Caillon L, Killian JA, Lequin O, Khemtémourian L. Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9. PLoS One 2013; 8:e75528. [PMID: 24146759 PMCID: PMC3795727 DOI: 10.1371/journal.pone.0075528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 12/16/2022] Open
Abstract
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.
Collapse
Affiliation(s)
- Lucie Caillon
- UPMC Univ Paris 06, UMR 7203 CNRS-UPMC-ENS, Laboratoire des Biomolécules, Paris, France
| | - J. Antoinette Killian
- Research Group Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Olivier Lequin
- UPMC Univ Paris 06, UMR 7203 CNRS-UPMC-ENS, Laboratoire des Biomolécules, Paris, France
- * E-mail: (LK); (OL)
| | - Lucie Khemtémourian
- UPMC Univ Paris 06, UMR 7203 CNRS-UPMC-ENS, Laboratoire des Biomolécules, Paris, France
- * E-mail: (LK); (OL)
| |
Collapse
|
249
|
ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2328-38. [DOI: 10.1016/j.bbamem.2013.04.012] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
|
250
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|