201
|
Horton JD, Shimano H, Hamilton RL, Brown MS, Goldstein JL. Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J Clin Invest 1999; 103:1067-76. [PMID: 10194480 PMCID: PMC408267 DOI: 10.1172/jci6246] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transgenic mice that overexpress the nuclear form of sterol regulatory element binding protein-1a (SREBP-1a) in liver (TgBP-1a mice) were shown previously to overproduce cholesterol and fatty acids and to accumulate massive amounts of cholesterol and triglycerides in hepatocytes. Despite the hepatic overproduction of lipids, the plasma levels of cholesterol ( approximately 45 mg/dl) and triglycerides ( approximately 55 mg/dl) were not elevated, perhaps owing to degradation of lipid-enriched particles by low-density lipoprotein (LDL) receptors. To test this hypothesis, in the current studies we bred TgBP-1a mice with LDL receptor knockout mice. As reported previously, LDLR-/- mice manifested a moderate elevation in plasma cholesterol ( approximately 215 mg/dl) and triglycerides ( approximately 155 mg/dl). In contrast, the doubly mutant TgBP-1a;LDLR-/- mice exhibited marked increases in plasma cholesterol ( approximately 1,050 mg/dl) and triglycerides ( approximately 900 mg/dl). These lipids were contained predominantly within large very-low-density lipoprotein (VLDL) particles that were relatively enriched in cholesterol and apolipoprotein E. Freshly isolated hepatocytes from TgBP-1a and TgBP-1a;LDLR-/- mice overproduced cholesterol and fatty acids and secreted increased amounts of these lipids into the medium. Electron micrographs of livers from TgBP-1a mice showed large amounts of enlarged lipoproteins within the secretory pathway. We conclude that the TgBP-1a mice produce large lipid-rich lipoproteins, but these particles do not accumulate in plasma because they are degraded through the action of LDL receptors.
Collapse
Affiliation(s)
- J D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
202
|
Worgall TS, Deckelbaum RJ. Fatty acids: links between genes involved in fatty acid and cholesterol metabolism. Curr Opin Clin Nutr Metab Care 1999; 2:127-33. [PMID: 10453343 DOI: 10.1097/00075197-199903000-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fatty acids are a major constituent of dietary fats and form an integral part of the cellular membrane and lipoproteins. The gene regulatory potential of fatty acids has long been recognized, but the precise regulatory mechanisms are unknown. The regulatory ability of fatty acids on the expression of a number of genes together with potential mechanisms and pathways of regulation are reviewed. In this review, we emphasize a key aspect of regulation mediated by the sterol regulatory element binding-protein, and its effects on sterol regulatory elements.
Collapse
Affiliation(s)
- T S Worgall
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | | |
Collapse
|
203
|
Casado M, Vallet VS, Kahn A, Vaulont S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem 1999; 274:2009-13. [PMID: 9890958 DOI: 10.1074/jbc.274.4.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the liver, transcription of several genes encoding lipogenic and glycolytic enzymes, in particular the gene for fatty acid synthase (FAS), is known to be stimulated by dietary carbohydrates. The molecular dissection of the FAS promoter pointed out the critical role of an E box motif, located at position -65 with respect to the start site of transcription, in mediating the glucose- and insulin-dependent regulation of the gene. Upstream stimulatory factors (USF1 and USF2) and sterol response element binding protein 1 (SREBP1) were shown to be able to interact in vitro with this E box. However, to date, the relative contributions of USFs and SREBP1 ex vivo remain controversial. To gain insight into the specific roles of these factors in vivo, we have analyzed the glucose responsiveness of hepatic FAS gene expression in USF1 and USF2 knock-out mice. In both types of mouse lines, defective in either USF1 or USF2, induction of the FAS gene by refeeding a carbohydrate-rich diet was severely delayed, whereas expression of SREBP1 was almost normal and insulin response unchanged. Therefore, USF transactivators, and especially USF1/USF2 heterodimers, seem to be essential to sustain the dietary induction of the FAS gene in the liver.
Collapse
Affiliation(s)
- M Casado
- Institut Cochin de Génétique Moléculaire, U.129 INSERM Unité de Recherches en Physiologie et Pathologie Génétiques et Moléculaires, 75014 Paris, France
| | | | | | | |
Collapse
|
204
|
Kawabe Y, Suzuki T, Hayashi M, Hamakubo T, Sato R, Kodama T. The physiological role of sterol regulatory element-binding protein-2 in cultured human cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:307-18. [PMID: 9989262 DOI: 10.1016/s0005-2760(98)00119-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To clarify the role of the sterol regulatory element-binding protein-2 (SREBP-2), we established cell lines in which human SREBP-2(1-481) could be induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The range of IPTG-induced changes in SREBP-2(1-481) levels in '23-11' cells, one of these cell lines, was almost the same as that of sterol-induced changes in the levels of mature SREBP-2, indicating that IPTG was able to regulate the expression of SREBP-2(1-481) within the normal physiological range in this cell line. Sterols regulate the expression of the LDL receptor, HMG-CoA reductase, squalene synthase and fatty acid synthase in 23-11 cells as they also do in the parental cell line HeLa S3. IPTG increased mRNA levels of the LDL receptor and HMG-CoA reductase but not squalene synthase both in the presence or absence of excess sterols. Fatty acid synthase mRNA was increased 2 h after the IPTG addition in the absence of excess sterol (10% FBS), but was slightly increased 6 h after the IPTG addition in the presence of excess sterols. In the absence of excess sterols, both SREBP-2(1-481) and endogenous mature SREBP-2 exist in the nucleus. This suggests that an increased amount of SREBP-2 over the normal physiological range is required for the regulation of fatty acid synthase. IPTG increased both the surface binding of 125I-LDL and cholesterol biosynthesis from [14C]acetate significantly in a similar time course. In contrast, fatty acid biosynthesis from [14C]acetate was almost unchanged by IPTG during the same incubation period. These results suggest that physiological amounts of SREBP-2 play a key role in the regulation of cholesterol but not fatty acid metabolism.
Collapse
Affiliation(s)
- Y Kawabe
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
205
|
Korn BS, Shimomura I, Bashmakov Y, Hammer RE, Horton JD, Goldstein JL, Brown MS. Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N). J Clin Invest 1998; 102:2050-60. [PMID: 9854040 PMCID: PMC509159 DOI: 10.1172/jci5341] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Feedback regulation of cholesterol biosynthesis is mediated by membrane-bound transcription factors designated sterol regulatory element-binding proteins (SREBP)-1 and -2. In sterol-deprived cultured cells, SREBPs are released from membranes by a proteolytic process that is stimulated by SREBP cleavage-activating protein (SCAP), a membrane protein containing a sterol-sensing domain. Sterols suppress SREBP cleavage by blocking the action of SCAP, thereby decreasing cholesterol synthesis. A point mutation in SCAP(D443N) causes resistance to sterol suppression. In this article, we produced transgenic mice that express mutant SCAP(D443N) in liver. In these livers the nuclear content of SREBP-1 and -2 was increased, mRNAs encoding proteins involved in uptake and synthesis of cholesterol and fatty acids were elevated, and the livers were engorged with cholesteryl esters and triglycerides enriched in monounsaturated fatty acids. When the mice were challenged with a high cholesterol diet, cleavage of SREBP-1 and -2 was reduced in wild-type livers and less so in transgenic livers. We conclude that SCAP(D443N) stimulates proteolytic processing of native SREBPs in liver and decreases the normal sterol-mediated feedback regulation of SREBP cleavage, suggesting a central role for SCAP as a sterol sensor in liver.
Collapse
Affiliation(s)
- B S Korn
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Boizard M, Le Liepvre X, Lemarchand P, Foufelle F, Ferré P, Dugail I. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J Biol Chem 1998; 273:29164-71. [PMID: 9786926 DOI: 10.1074/jbc.273.44.29164] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated lipogenesis is a key determinant of exaggerated fat deposition in adipose tissue of obese Zucker rats. We previously delineated a region in the fatty-acid synthase promoter, which was responsible for obesity-related overexpression of the fatty-acid synthase (FAS) gene, by negatively regulating the activity of the downstream promoter in lean but not obese rat fat cells. The present study aimed to identify the transcriptional factors acting on this target region. First, functional analysis of mutated FAS promoter constructs in transiently transfected lean and obese rat adipocytes showed that the activity of the obesity-related region relied on the presence of a transcriptionally inactive sterol regulatory element at -150, which counteracted activation through the downstream E-box. Adenovirus-mediated overexpression of a dominant negative form of adipocyte determination and differentiation factor 1 (ADD1) was used to neutralize endogenous ADD1/ sterol regulatory element-binding protein (SREBP) transcriptional activity in fat cells, by producing inactive dimers unable to bind target DNA. With this system, we observed that overexpression of FAS in obese rat adipocytes was ADD1/SREBP-dependent. SREBP isoforms expression was assessed in lean and obese rat fat cells and showed no differences in the level of ADD1/SREBP1 mRNA. In addition, equivalent amounts of immunoreactive ADD1/SREBP1 were found in nuclear extracts from lean and obese rat fat cells. In contrast, immunoreactive SREBP2, which was very low in nuclear extracts from lean rats, was induced in obese rat fat cells. Finally, using in vitro binding studies, we showed that SREBP2 was able to displace ADD1/SREBP1 binding from the sterol regulatory element (SRE) site. Thus, we propose a mechanism for obesity-related overexpression of FAS gene in rat adipocyte. ADD1/SREBP1-activated transcription proceeding from the E-box motif is counterbalanced by a negative SRE site acting by limiting the availability of ADD1/SREBP1 in normal fat cells. The negative effect of this site is abolished in obese rat adipocyte nuclei where SREBP2 is induced and can substitute for ADD1/SREBP1 binding to the inactive SRE. These results provide evidence for the implication of SREBPs in the dysregulation of adipocyte metabolism characteristic of the obese state.
Collapse
Affiliation(s)
- M Boizard
- INSERM U465, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
207
|
Pai JT, Guryev O, Brown MS, Goldstein JL. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 1998; 273:26138-48. [PMID: 9748295 DOI: 10.1074/jbc.273.40.26138] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three sterol regulatory element-binding proteins (SREBP-1a, -1c, and -2) stimulate transcription of genes involved in synthesis and receptor-mediated uptake of cholesterol and fatty acids. Here, we explore the individual roles of each SREBP by preparing lines of Chinese hamster ovary (CHO) cells that express graded amounts of nuclear forms of each SREBP (designated nSREBPs) under control of a muristerone-inducible nuclear receptor system. The parental hamster cell line (M19 cells) lacks its own nSREBPs, owing to a deletion in the gene encoding the Site-2 protease, which releases nSREBPs from cell membranes. By varying the concentration of muristerone, we obtained graded expression of individual nSREBPs in the range that restored lipid synthesis to near physiologic levels. The results show that nSREBP-2 produces a higher ratio of synthesis of cholesterol over fatty acids than does nSREBP-1a. This is due in part to a selective ability of low levels of nSREBP-2, but not nSREBP-1a, to activate the promoter for squalene synthase. nSREBP-1a and -2 both activate transcription of the genes encoding stearoyl-CoA desaturase-1 and -2, thereby markedly enhancing the production of monounsaturated fatty acids. nSREBP-1c was inactive in stimulating any transcription at the concentrations achieved in these studies. The current data support the emerging view that the nSREBPs act in complementary ways to modulate the lipid composition of cell membranes.
Collapse
Affiliation(s)
- J T Pai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
208
|
Edwards PA, Ericsson J. Signaling molecules derived from the cholesterol biosynthetic pathway: mechanisms of action and possible roles in human disease. Curr Opin Lipidol 1998; 9:433-40. [PMID: 9812197 DOI: 10.1097/00041433-199810000-00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The association of high plasma cholesterol levels with the development of atherosclerosis is well known. The metabolic pathways that are regulated by cholesterol and the mechanisms involved are less well understood. Recent studies have identified not only cholesterol, but also oxysterols and isoprenoids, derived from the cholesterol biosynthetic pathway, as new signaling molecules. The transcriptional and post-transcriptional regulation of specific genes and metabolic pathways by these newly discovered signaling molecules may be important in the development of human disease and forms the topic of this review.
Collapse
Affiliation(s)
- P A Edwards
- Department of Biological Chemistry, University of California, Los Angeles 90095-1769, USA.
| | | |
Collapse
|
209
|
Chouinard RA, Luo Y, Osborne TF, Walsh A, Tall AR. Sterol regulatory element binding protein-1 activates the cholesteryl ester transfer protein gene in vivo but is not required for sterol up-regulation of gene expression. J Biol Chem 1998; 273:22409-14. [PMID: 9712863 DOI: 10.1074/jbc.273.35.22409] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma cholesteryl ester transfer protein (CETP) plays a central role in high density lipoprotein metabolism and reverse cholesterol transport. Plasma CETP levels are increased in response to dietary or endogenous hypercholesterolemia as a result of increased gene transcription in liver and periphery. Deletional analysis in human CETP transgenic mice localized this response to a region of the proximal promoter which contains a tandem repeat of the sterol regulatory element (SRE) of the 3-hydroxy-3-methylglutaryl-CoA reductase gene. The purpose of the present study was to evaluate the role of the SRE-like element in CETP promoter activity. Gel shift assays using CETP promoter fragments containing these elements showed binding of the transcription factors, sterol regulatory element-binding protein-1 (SREBP-1) and Yin Yang-1 (YY-1). Point mutations in the SRE-like element, designated MUT1 and MUT2, resulted in decreased binding of SREBP-1 (MUT1) or SREBP-1 and YY-1 (MUT2). To determine the in vivo significance of this binding activity, CETP transgenic mice were prepared containing these promoter point mutations. MUT1 and MUT2 transgenic mice expressed CETP activity and mass in plasma. In response to high fat, high cholesterol diets, both MUT1-CETP and MUT2-CETP transgenic mice displayed induction of plasma CETP activity similar to that observed in natural flanking region (NFR) CETP transgenic mice. Moreover, in stably transfected adipocyte cell lines, MUT1 and MUT2 CETP promoter-reporter genes showed significant induction of reporter activity in response to sterols. To evaluate transactivation by SREBP-1, NFR- and MUT1-CETP transgenic mice were crossed with SREBP-1 transgenic mice. Induction of the SREBP transgene in the liver with a low carbohydrate diet resulted in a 3-fold increase in plasma CETP activity in NFR-CETP/SREBP transgenic mice, but there was no significant change in activity in MUT1-CETP/SREBP transgenic mice. Thus, SREBP-1 transactivates the NFR-CETP transgene in vivo, as a result of interaction with the CETP promoter SREs. However, this interaction is not required for positive sterol induction of CETP gene transcription. The results suggest independent regulation of the CETP gene by SREBP-1 and a distinct positive sterol response factor.
Collapse
Affiliation(s)
- R A Chouinard
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
210
|
Schäffler A, Langmann T, Palitzsch KD, Schölmerich J, Schmitz G. Identification and characterization of the human adipocyte apM-1 promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:187-97. [PMID: 9765595 DOI: 10.1016/s0167-4781(98)00106-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human adipocyte-specific apM-1 gene encodes a secretory protein of the adipose tissue and seems to play a role in the pathogenesis of obesity. A 1.3 kb amount of the proximal promoter region has been cloned and analyzed for the presence of putative transcription factor binding sites. Several binding sites known to be involved in adipogenesis and regulation of adipocyte-specific genes (C/EBP, SREBP) are present. No TATA box, but a classical CCAAT box could be identified. To confirm functionality and cell specificity of the 1.3 kb promoter, a series of 5'-deleted fragments were ligated in front of the luciferase gene and the constructs were transfected into 3T3-L1 adipocytes. The reporter gene was effectively transcribed, as demonstrated by the expression of enzyme activity. The 5'-end of the human cDNA was completed by 5'-RACE-PCR. Several alternative transcription start sites were detected by RNase protection assay and primer extension analysis. In addition, an exon/intron boundary was mapped at the extreme 5'-end of the cDNA sequence. Genomic Southern blotting suggests that the human apM-1 gene is a single copy gene.
Collapse
Affiliation(s)
- A Schäffler
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg, Germany
| | | | | | | | | |
Collapse
|
211
|
Sterol-independent, sterol response element-dependent, regulation of low density lipoprotein receptor gene expression. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32194-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
212
|
Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 1998; 101:2331-9. [PMID: 9616204 PMCID: PMC508822 DOI: 10.1172/jci2961] [Citation(s) in RCA: 544] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We produced transgenic mice that express a dominant-positive truncated form of sterol regulatory element-binding protein-2 (SREBP-2) in liver and adipose tissue. The encoded protein lacks the membrane-binding and COOH-terminal regulatory domains, and it is therefore not susceptible to negative regulation by cholesterol. Livers from the transgenic mice showed increases in mRNAs encoding multiple enzymes of cholesterol biosynthesis, the LDL receptor, and fatty acid biosynthesis. The elevations in mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase were especially marked (13-fold and 75-fold, respectively). As a result, the transgenic livers showed a 28-fold increase in the rate of cholesterol synthesis and a lesser fourfold increase in fatty acid synthesis, as measured by intraperitoneal injection of [3H]water. These results contrast with previously reported effects of dominant-positive SREBP-1a, which activated fatty acid synthesis more than cholesterol synthesis. In adipose tissue of the SREBP-2 transgenics, the mRNAs for cholesterol biosynthetic enzymes were elevated, but the mRNAs for fatty acid biosynthetic enzymes were not. We conclude that SREBP-2 is a relatively selective activator of cholesterol synthesis, as opposed to fatty acid synthesis, in liver and adipose tissue of mice.
Collapse
Affiliation(s)
- J D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
213
|
Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998; 95:5987-92. [PMID: 9600904 PMCID: PMC27572 DOI: 10.1073/pnas.95.11.5987] [Citation(s) in RCA: 517] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in cholesterol and fatty acid synthesis. Here, we show that fasting markedly reduces the amounts of SREBP-1 and -2 in mouse liver nuclei, with corresponding decreases in the mRNAs for SREBP-activated target genes. Refeeding a high carbohydrate/low fat diet resulted in a 4- to 5-fold increase of nuclear SREBP-1 above nonfasted levels, whereas nuclear SREBP-2 protein returned only to the nonfasted level. The hepatic mRNAs for fatty acid biosynthetic enzymes increased 5- to 10-fold above nonfasted levels, a pattern that paralleled the changes in nuclear SREBP-1. The hepatic mRNAs for enzymes involved in cholesterol synthesis returned to the nonfasted level, closely following the pattern of nuclear SREBP-2 regulation. Transgenic mice that overproduce nuclear SREBP-1c failed to show the normal decrease in hepatic mRNA levels for cholesterol and fatty acid synthetic enzymes upon fasting. We conclude that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- J D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Room L5-238, Dallas, TX 75235-9046, USA.
| | | | | | | |
Collapse
|
214
|
Guan G, Dai P, Shechter I. Differential transcriptional regulation of the human squalene synthase gene by sterol regulatory element-binding proteins (SREBP) 1a and 2 and involvement of 5' DNA sequence elements in the regulation. J Biol Chem 1998; 273:12526-35. [PMID: 9575211 DOI: 10.1074/jbc.273.20.12526] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription of the human squalene synthase (HSS) gene is regulated by variations in the level of cellular cholesterol. Three regulatory elements in the HSS promoter region are known to be involved in the regulation: 1) a modified sterol regulatory element (SRE) 1 (HSS-SRE-1), 2) an inverted SRE-3 (Inv-SRE-3), 3) an inverted Y box (Inv-Y-Box). We report here the regulatory role of distinct cis-elements in the HSS promoter by using mutants of an HSS-luciferase promoter reporter. The activity of a wild-type promoter reporter transiently transfected into HepG-2 cells is increased by sterol depletion of the cells or by coexpression of mature forms of the SRE-binding proteins (SREBP) 1a and SREBP-2. Differential activation by SREBP-1a and SREBP-2 of the reporter gene mutated at various regions of the promoter is observed. Mutation of either the HSS-SRE-1 or the Inv-SRE-3 sequence diminished the activation by SREBP-1a and by sterol depletion but did not affect the activation by SREBP-2. Simultaneous mutations of both of these sequences almost completely abolished activation of the promoter by SREBP-1a or by sterol depletion, but activation by SREBP-2 was retained at 70%. Mutation of the Inv-Y-Box sequence element decreased the activity of the promoter by 50% or more, and if mutated together with both SREs, the activation was almost completely abolished. Mutation of any single GC box of the two located at -40 to -57 did not affect activity, whereas simultaneous mutation of the two decreased activation by SREBP-2 by 60%, by lipid depletion by 20%, and had no effect on the activation by SREBP-1a. A Y box motif at -159 to -166 and an SRE-like sequence element (SRE-1(8/10)) at position -101 to -108 are also involved in the sterol regulation. These results indicate that the complex sterol-mediated transcriptional regulation of the HSS gene is due to the presence of multiple copies of diverse cis elements in the HSS promoter. The differential activation of the HSS promoter may point to specific role of the SREBPs in cholesterogenesis.
Collapse
Affiliation(s)
- G Guan
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
215
|
|
216
|
Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci U S A 1998; 95:4333-7. [PMID: 9539737 PMCID: PMC22489 DOI: 10.1073/pnas.95.8.4333] [Citation(s) in RCA: 527] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipose differentiation is an important part of the energy homeostasis system of higher organisms. Recent data have suggested that this process is controlled by an interplay of transcription factors including PPARgamma, the C/EBPs, and ADD1/SREBP1. Although these factors interact functionally to initiate the program of differentiation, there are no data concerning specific mechanisms of interaction. We show here that the expression of ADD1/SREBP1 specifically increases the activity of PPARgamma but not other isoforms, PPARalpha, or PPARdelta. This activation occurs through the ligand-binding domain of PPARgamma when it is fused to the DNA-binding domain of Gal4. The stimulation of PPARgamma by ADD1/SREBP1 does not require coexpression in the same cells; supernatants from cultures that express ADD1/SREBP1 augment the transcriptional activity of PPARgamma. Finally, we demonstrate directly that cells expressing ADD1/SREBP1 produce and secrete lipid molecule(s) that bind directly to PPARgamma, displacing the binding of radioactive thiazolidinedione ligands. These data establish that ADD1/SREBP1 can control the production of endogenous ligand(s) for PPARgamma and suggest a mechanism for coordinating the actions of these adipogenic factors.
Collapse
Affiliation(s)
- J B Kim
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
217
|
Lopez D, Chambers CM, Keller RK, Ness GC. Compensatory responses to inhibition of hepatic squalene synthase. Arch Biochem Biophys 1998; 351:159-66. [PMID: 9514656 DOI: 10.1006/abbi.1997.0556] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which depletion of hepatic cholesterol levels, achieved by inhibition of squalene synthase, alters hepatic LDL receptor, HMG-CoA reductase, and cholesterol 7alpha-hydroxylase gene expression was investigated by measuring transcription rates, mRNA stability, rates of translation, translational efficiency, and levels of sterol response element binding proteins. It was found that the transcription of both hepatic LDL receptor and HMG-CoA reductase were increased about twofold. The increase in LDL receptor transcription occurred within 2 h after giving 2 mg/kg zaragozic acid A, a potent inhibitor of squalene synthase. This preceded the increase in transcription of HMG-CoA reductase that occurred at 4 h. Increases in the stability of both of these mRNAs were also observed. These changes account for the increases in LDL receptor and HMG-CoA reductase mRNA levels previously observed. The rate of transcription of hepatic cholesterol 7alpha-hydroxylase was decreased to about 25% of control within 3 h after administration of zaragozic acid A, which correlates with the decrease in this mRNA. The rates of translation, as determined by pulse labeling, of both hepatic HMG-CoA reductase and LDL receptor were increased two- to threefold. The translational efficiency of these two mRNAs was also increased as judged by polysome profile analysis. There was an increase in mRNA associated with the heaviest polysome fraction and a decrease in that associated with monosomes. No significant change was observed in the levels of sterol response element binding protein 2, the form that mediates induced transcription, in response to zaragozic acid A treatment, indicating that this protein might not be involved in mediating the observed transcriptional changes. An increase in sterol response element binding protein -1 was observed 30 min after giving zaragozic acid A. The results suggest that compensatory responses to depletion of squalene-derived products involve alterations in the rates of transcription, mRNA stability, and translational of key proteins involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- D Lopez
- College of Medicine and the Institute for Biomolecular Science, University of South Florida, Tampa, Florida, 33612-4799, USA
| | | | | | | |
Collapse
|
218
|
Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101:1-9. [PMID: 9421459 PMCID: PMC508533 DOI: 10.1172/jci1411] [Citation(s) in RCA: 555] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.
Collapse
Affiliation(s)
- J B Kim
- Dana-Farber Cancer Institute, and Department of Cell Biology, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Shimomura I, Bashmakov Y, Shimano H, Horton JD, Goldstein JL, Brown MS. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc Natl Acad Sci U S A 1997; 94:12354-9. [PMID: 9356453 PMCID: PMC24942 DOI: 10.1073/pnas.94.23.12354] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70-90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.
Collapse
Affiliation(s)
- I Shimomura
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Room L5.238, Dallas, TX 75235-9046, USA
| | | | | | | | | | | |
Collapse
|
220
|
Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, Horton JD. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 1997; 100:2115-24. [PMID: 9329978 PMCID: PMC508404 DOI: 10.1172/jci119746] [Citation(s) in RCA: 357] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The synthesis of cholesterol and its uptake from plasma LDL are regulated by two membrane-bound transcription factors, designated sterol regulatory element binding protein-1 and -2 (SREBP-1 and SREBP-2). Here, we used the technique of homologous recombination to generate mice with disruptions in the gene encoding the two isoforms of SREBP-1, termed SREBP-1a and SREBP-1c. Heterozygous gene-disrupted mice were phenotypically normal, but 50- 85% of the homozygous (-/-) mice died in utero at embryonic day 11. The surviving -/- mice appeared normal at birth and throughout life. Their livers expressed no functional SREBP-1. There was a 1.5-fold upregulation of SREBP-2 at the level of mRNA and a two- to threefold increase in the amount of mature SREBP-2 in liver nuclei. Previous studies showed that SREBP-2 is much more potent than SREBP-1c, the predominant hepatic isoform of SREBP-1, in activating transcription of genes encoding enzymes of cholesterol synthesis. Consistent with this observation, the SREBP-1 -/- animals manifested elevated levels of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase, farnesyl diphosphate synthase, and squalene synthase. Cholesterol synthesis, as measured by the incorporation of [3H]water, was elevated threefold in livers of the -/- mice, and hepatic cholesterol content was increased by 50%. Fatty acid synthesis was decreased in livers of the -/- mice. The amount of white adipose tissue was not significantly decreased, and the levels of mRNAs for lipogenic enzymes, adipocyte lipid binding protein, lipoprotein lipase, and leptin were normal in the -/- mice. We conclude from these studies that SREBP-2 can replace SREBP-1 in regulating cholesterol synthesis in livers of mice and that the higher potency of SREBP-2 relative to SREBP-1c leads to excessive hepatic cholesterol synthesis in these animals.
Collapse
Affiliation(s)
- H Shimano
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Bist A, Fielding PE, Fielding CJ. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A 1997; 94:10693-8. [PMID: 9380697 PMCID: PMC23450 DOI: 10.1073/pnas.94.20.10693] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolae form the terminus for a major pathway of intracellular free cholesterol (FC) transport. Caveolin mRNA levels in confluent human skin fibroblasts were up-regulated following increased uptake of low density lipoprotein (LDL) FC. The increase induced by FC was not associated with detectable change in mRNA stability, indicating that caveolin mRNA levels were mediated at the level of gene transcription. A total of 924 bp of 5' flanking region of the caveolin gene were cloned and sequenced. The promoter sequence included three G+C-rich potential sterol regulatory elements (SREs), a CAAT sequence and a Sp1 consensus sequence. Deletional mutagenesis of individual SRE-like sequences indicated that of these two (at -646 and -395 bp) were essential for the increased transcription rates mediated by LDL-FC, whereas the third was inconsequential. Gel shift analysis of protein binding from nuclear extracts to these caveolin promoter DNA sequences, together with DNase I footprinting, confirmed nucleoprotein binding to the SRE-like elements as part of the transcriptional response to LDL-FC. A supershift obtained with antibody to SRE-binding protein 1 (SPEBP-1) indicated that this protein binds at -395 bp. There was no reaction at -395 bp with anti-Sp1 antibody nor with either antibody at -646 bp. The cysteine protease inhibitor N-acetyl-leu-leu-norleucinal (ALLN), which inhibits SREBP catabolism, superinhibited caveolin mRNA levels regardless of LDL-FC. This finding suggests that SREBP inhibits caveolin gene transcription in contrast to its stimulating effect on other promoters. The findings of this study are consistent with the postulated role for caveolin as a regulator of cellular FC homeostasis in quiescent peripheral cells, and the coordinate regulation by SREBP of FC influx and efflux.
Collapse
Affiliation(s)
- A Bist
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
222
|
Athanikar JN, Sanchez HB, Osborne TF. Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1. Mol Cell Biol 1997; 17:5193-200. [PMID: 9271397 PMCID: PMC232370 DOI: 10.1128/mcb.17.9.5193] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cellular cholesterol and fatty acid levels are coordinately regulated by a family of transcriptional regulatory proteins designated sterol regulatory element binding proteins (SREBPs). SREBP-dependent transcriptional activation from all promoters examined thus far is dependent on the presence of an additional binding site for a ubiquitous coactivator. In the low-density lipoprotein (LDL) receptor, acetyl coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) promoters, which are all regulated by SREBP, the coactivator is the transcription factor Sp1. In this report, we demonstrate that Sp3, another member of the Sp1 family, is capable of substituting for Sp1 in coactivating transcription from all three of these promoters. Results of an earlier study showed that efficient activation of transcription from the LDL receptor promoter required domain C of Sp1; however, this domain is not crucial for activation of the simian virus 40 promoter, where synergistic activation occurs through multiple Sp1 binding sites and does not require SREBP. Also in the present report, we further localize the critical determinant of the C domain required for activation of the LDL receptor to a small region that is highly conserved between Sp1 and Sp3. This crucial domain encompasses the buttonhead box, which is a 10-amino-acid stretch that is present in several Sp1 family members, including the Drosophila buttonhead gene product. Interestingly, neither the buttonhead box nor the entire C domain is required for the activation of the FAS and ACC promoters even though both SREBP and Sp1 are critical players. ACC and FAS each contain two critical SREBP sites, whereas there is only one in the LDL receptor promoter. This finding suggested that buttonhead-dependent activation by SREBP and Sp1 may be limited to promoters that naturally contain a single SREBP recognition site. Consistent with this model, a synthetic construct containing three tandem copies of the native LDL receptor SREBP site linked to a single Sp1 site was also significantly activated in a buttonhead-independent fashion. Taken together, these studies indicate that transcriptional activation through the concerted action of SREBP and Sp1 can occur by at least two different mechanisms, and promoters that are activated by each one can potentially be identified by the number of critical SREBP binding sites that they contain.
Collapse
Affiliation(s)
- J N Athanikar
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697-3900, USA
| | | | | |
Collapse
|
223
|
Wang SL, Du EZ, Martin TD, Davis RA. Coordinate regulation of lipogenesis, the assembly and secretion of apolipoprotein B-containing lipoproteins by sterol response element binding protein 1. J Biol Chem 1997; 272:19351-8. [PMID: 9235933 DOI: 10.1074/jbc.272.31.19351] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stable plasmid-driven expression of the liver-specific gene product cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) was used to alter the cellular content of transcriptionally active sterol response element binding protein 1 (SREBP1). As a result of stable expression of 7alpha-hydroxylase, individual single cell clones expressed varying amounts of mature SREBP1 protein. These single cell clones provided an opportunity to identify SREBP1-regulated genes that may influence the assembly and secretion of apoB-containing lipoproteins. Our results show that in McArdle rat hepatoma cells, which normally do not express 7alpha-hydroxylase, plasmid-driven expression of 7alpha-hydroxylase results in the following: 1) a linear relationship between (i) the cellular content of mature SREBP1 and 7alpha-hydroxylase protein, (ii) the relative expression of 7alpha-hydroxylase mRNA and the mRNA's encoding the enzymes regulating fatty acid, i.e. acetyl-CoA carboxylase and sterol synthesis, i.e. HMG-CoA reductase, (iii) the relative expression of 7alpha-hydroxylase mRNA and microsomal triglyceride transfer protein mRNA, a gene product that is essential for the assembly and secretion of apoB-containing lipoproteins; 2) increased synthesis of all lipoprotein lipids (cholesterol, cholesterol esters, triglycerides, and phospholipids); and 3) increased secretion of apoB100 without any change in apoB mRNA. Cells expressing 7alpha-hydroxylase contained significantly less cholesterol (both free and esterified). The increased cellular content of mature SREBP1 and increased secretion of apoB100 were concomitantly reversed by 25-hydroxycholesterol, suggesting that the content of mature SREBP1, known to be decreased by 25-hydroxycholesterol, mediates the changes in the lipoprotein assembly and secretion pathway that are caused by 7alpha-hydroxylase. These data suggest that several steps in the assembly and secretion of apoB-containing lipoproteins by McArdle hepatoma cells may be coordinately linked through the cellular content of mature SREBP1.
Collapse
Affiliation(s)
- S L Wang
- Mammalian Cell and Molecular Biology Laboratory, Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-0057, USA
| | | | | | | |
Collapse
|
224
|
Lopez D, Ness GC. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase unmask transcriptional regulation of hepatic low-density lipoprotein receptor gene expression by dietary cholesterol. Arch Biochem Biophys 1997; 344:215-9. [PMID: 9244400 DOI: 10.1006/abbi.1997.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism by which dietary cholesterol regulates expression of the hepatic low-density lipoprotein (LDL) receptor was investigated. In a previous study (Arch. Biochem. Biophys. 325, 242-248, 1996), we demonstrated that dietary cholesterol reduces the rate of LDL receptor protein degradation without affecting steady-state levels of receptor protein. In view of these findings, it was expected that dietary cholesterol would decrease the rate of transcription of the hepatic LDL receptor gene, resulting in lower mRNA levels and lower rates of synthesis of LDL receptor protein. Surprisingly, neither the rate of transcription nor the level of LDL receptor mRNA was reduced in response to dietary cholesterol, even though hepatic cholesterol levels were increased twofold. This suggests that under normal conditions, dietary cholesterol does not affect LDL receptor gene expression at the level of transcription. In contrast, feeding 2% cholesterol to rats fed a diet supplemented with 0.04% lovastatin significantly decreased hepatic LDL receptor mRNA levels and transcription rates. These results suggest that lovastatin unmasks transcriptional regulation of the hepatic LDL receptor by dietary cholesterol. The levels of the mature nuclear forms of sterol response element binding proteins-1 and -2 were unaffected despite significant changes in hepatic cholesterol levels, mRNA levels, and transcription rates caused by lovastatin treatment. This suggests that the observed changes in transcription rates may not be mediated by these proteins in rat liver.
Collapse
Affiliation(s)
- D Lopez
- Department of Biochemistry and Molecular Biology, College of Medicine and the Institute for Biomolecular Science, University of South Florida, Tampa 33612, USA
| | | |
Collapse
|
225
|
Zhang J, Xue Y, Jondal M, Sjövall J. 7alpha-Hydroxylation and 3-dehydrogenation abolish the ability of 25-hydroxycholesterol and 27-hydroxycholesterol to induce apoptosis in thymocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:129-35. [PMID: 9249018 DOI: 10.1111/j.1432-1033.1997.00129.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxygenated derivatives of sterols (oxysterols), including 25-hydroxycholesterol and 27-hydroxycholesterol, have immunosuppressive effects. Oxysterols can directly induce apoptosis in immature thymocytes, cells which are inherently sensitive to induction of programmed cell death. For that reason, the metabolism of 25-hydroxycholesterol and 27-hydroxycholesterol in mouse thymus has been studied. When incubated with thymic tissue, both oxysterols were found to be 7alpha-hydroxylated with subsequent oxidation to 7alpha-hydroxy-3-oxo-delta4 steroids. A minor fraction of 27-hydroxycholesterol was also metabolised to 3beta-hydroxy-5-cholestenoic, 3beta,7alpha-dihydroxy-5-cholestenoic and 7alpha-hydroxy-3-oxo-4-cholestenoic acids. The 7alpha-hydroxylase was found to be localised to the thymic epithelial cells and the reaction was stimulated by interleukin-1beta and inhibited by metyrapone and RU486. In contrast to 25-hydroxycholesterol and 27-hydroxycholesterol, the 7alpha-hydroxylated metabolites, 7alpha,25-dihydroxycholesterol, 7alpha,25-dihydroxy-4-cholesten-3-one and 7alpha,27-dihydroxy-4-cholesten-3-one did not induce thymocyte apoptosis. The results suggest that 7alpha-hydroxylation may be of regulatory importance, possibly by protecting the developing thymocytes against toxic effects by oxysterols.
Collapse
Affiliation(s)
- J Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
226
|
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-40. [PMID: 9150132 DOI: 10.1016/s0092-8674(00)80213-5] [Citation(s) in RCA: 2887] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
227
|
Martin KO, Reiss AB, Lathe R, Javitt NB. 7 alpha-hydroxylation of 27-hydroxycholesterol: biologic role in the regulation of cholesterol synthesis. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37229-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
228
|
Guan G, Dai PH, Osborne TF, Kim JB, Shechter I. Multiple sequence elements are involved in the transcriptional regulation of the human squalene synthase gene. J Biol Chem 1997; 272:10295-302. [PMID: 9092581 DOI: 10.1074/jbc.272.15.10295] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of human squalene synthase (HSS) gene is transcriptionally regulated in HepG-2 cells, up to 10-fold, by variations in cellular cholesterol homeostasis. An earlier deletion analysis of the 5'-flanking region of the HSS gene demonstrated that most of the HSS promoter activity is detected within a 69-base pair sequence located between nucleotides -131 and -200. ADD1/SREBP-1c, a rat homologue of sterol regulatory element-binding protein (SREBP)-1c binds to sterol regulatory element (SRE)-1-like sequence (HSS-SRE-1) present in this region (Guan, G., Jiang, G., Koch, R. L. and Shechter, I. (1995) J. Biol. Chem. 270, 21958-21965). In our present study, we demonstrate that mutation of this HSS-SRE-1 element significantly reduced, but did not abolish, the response of HSS promoter to change in sterol concentration. Mutation scanning indicates that two additional DNA promoter sequences are involved in sterol-mediated regulation. The first sequence contains an inverted SRE-3 element (Inv-SRE-3) and the second contains an inverted Y-box (Inv-Y-box) sequence. A single mutation in any of these sequences reduced, but did not completely remove, the response to sterols. Combination mutation studies showed that the HSS promoter activity was abolished only when all three elements were mutated simultaneously. Co-expression of SRE-1- or SRE-2-binding proteins (SREBP-1 or SREBP-2) with HSS promoter-luciferase reporter resulted in a dramatic increase of HSS promoter activity. Gel mobility shift studies indicate differential binding of the SREBPs to regulatory sequences in the HSS promoter. These results indicate that the transcription of the HSS gene is regulated by multiple regulatory elements in the promoter.
Collapse
Affiliation(s)
- G Guan
- Department of Biochemistry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
229
|
Ericsson J, Jackson SM, Kim JB, Spiegelman BM, Edwards PA. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene. J Biol Chem 1997; 272:7298-305. [PMID: 9054427 DOI: 10.1074/jbc.272.11.7298] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that the mRNA levels of glycerol-3-phosphate acyltransferase (GPAT), a mitochondrial enzyme catalyzing the initial step in glycerolipid synthesis, are induced during the differentiation of 3T3-L1 preadipocytes to adipocytes and following ectopic expression of rat adipocyte determination and differentiation factor 1 (ADD1), a protein with high homology to the human sterol regulatory element-binding protein-1 (SREBP-1). The increase in GPAT mRNA levels that occurs during differentiation is partially prevented by ectopic expression of a dominant negative form of ADD1. Nucleotide sequences corresponding to the proximal promoter of the murine mitochondrial GPAT gene (Jerkins, A. A., Liu, W. R., Lee, S., and Sul, H. S. (1995) J. Biol. Chem. 270, 1416-1421) bound SREBP-1a and NF-Y in electromobility shift assays. In addition, GPAT promoter-luciferase reporter genes were stimulated by co-expression of SREBP-1a. This increase was attenuated when either a dominant negative form of NF-Y was co-transfected into the cells or when the GPAT promoter contained mutations in the putative binding sites for SREBP-1a or NF-Y. These studies demonstrate that the regulated expression of the mitochondrial GPAT gene requires both NF-Y and ADD1/SREBPs. Thus, SREBPs/ADD1 regulate not only genes involved in cholesterol homeostasis and fatty acid synthesis but also a key enzyme in glycerolipid synthesis.
Collapse
Affiliation(s)
- J Ericsson
- Department of Biological Chemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
230
|
Abstract
SREBPs are transcriptional activators central to cholesterol homeostasis. Recent work has shown that a two-step cleavage of membrane-bound SREBPs frees them to enter the nucleus. An activator of the first, sterol-regulated proteolysis step has also been identified.
Collapse
Affiliation(s)
- T F Osborne
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| |
Collapse
|
231
|
Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997; 99:838-45. [PMID: 9062340 PMCID: PMC507890 DOI: 10.1172/jci119247] [Citation(s) in RCA: 609] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 5' end of the mRNA-encoding sterol regulatory element binding protein-1 (SREBP-1) exists in two forms, designated 1a and 1c. The divergence results from the use of two transcription start sites that produce two separate 5' exons, each of which is spliced to a common exon 2. Here we show that the ratio of SREBP-1c to 1a transcripts varies markedly among organs of the adult mouse. At one extreme is the liver, in which the 1c transcript predominates by a 9:1 ratio. High 1c:1a ratios are also found in mouse adrenal gland and adipose tissue and in human liver and adrenal gland. At the other extreme is the spleen, which shows a reversed 1c:1a ratio (1:10). In five different lines of cultured cells, including the HepG2 line derived from human hepatocytes, the 1a transcript predominated (1c:1a ratio < 1:2). In mouse 3T3-L1 preadipocytes, the 1a transcript was present, but the 1c transcript was not detectable. When these cells were differentiated into adipocytes by hormone treatment in culture, the amount of 1a transcript rose markedly (8.2-fold), and the 1c transcript remained virtually undetectable. We conclude that the SREBP-1a and 1c transcripts are controlled independently by regulatory regions that respond differentially to organ-specific and metabolic factors.
Collapse
Affiliation(s)
- I Shimomura
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | |
Collapse
|
232
|
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997; 99:846-54. [PMID: 9062341 PMCID: PMC507891 DOI: 10.1172/jci119248] [Citation(s) in RCA: 676] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have produced transgenic mice whose livers express a dominant positive NH2-terminal fragment of sterol regulatory element binding protein-1c (SREBP-1c). Unlike full-length SREBP-1c, the NH2-terminal fragment enters the nucleus without a requirement for proteolytic release from cell membranes, and hence it is immune to downregulation by sterols. We compared SREBP-1c transgenic mice with a line of transgenic mice that produces an equal amount of the NH2-terminal fragment of SREBP-1a. SREBP-1a and -1c are alternate transcripts from a single gene that differ in the first exon, which encodes part of an acidic activation domain. The 1a protein contains a long activation domain with 12 negatively charged amino acids, whereas the 1c protein contains a short activation domain with only 6 such amino acids. As previously reported, livers of the SREBP-1a transgenic mice were massively enlarged, owing to accumulation of triglycerides and cholesterol. SREBP-1c transgenic livers were only slightly enlarged with only a moderate increase in triglycerides, but not cholesterol. The mRNAs for the LDL receptor and several cholesterol biosynthetic enzymes were elevated in SREBP-la transgenic mice, but not in 1c transgenic mice. The mRNAs for fatty acid synthase and acetyl CoA carboxylase were elevated 9- and 16-fold in la animals, but only 2- and 4-fold in 1c animals. Experiments with transfected cells confirmed that SREBP-1c is a much weaker activator of transcription than SREBP-1a when both are expressed at levels approximating those found in nontransfected cells. SREBP-1c became a strong activator only when expressed at supraphysiologic levels. We conclude that SREBP-1a is the most active form of SREBP-1 and that SREBP-1c may be produced when cells require a lower rate of transcription of genes regulating cholesterol and fatty acid metabolism.
Collapse
MESH Headings
- Acetyl-CoA Carboxylase/genetics
- Acetyl-CoA Carboxylase/metabolism
- Alternative Splicing
- Animals
- Biological Transport
- Blotting, Northern
- Body Weight
- CCAAT-Enhancer-Binding Proteins
- Cell Nucleus/metabolism
- Cells, Cultured
- Cholesterol/metabolism
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Exons
- Fatty Acid Synthases/genetics
- Fatty Acid Synthases/metabolism
- Gene Expression Regulation
- Glyceraldehyde-3-Phosphate Dehydrogenases/analysis
- Humans
- Immunoblotting
- Isomerism
- Liver/metabolism
- Liver/pathology
- Luciferases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Nucleic Acid Hybridization
- Plasmids
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribonucleases/metabolism
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors
- Transcription, Genetic
- Transfection
- Triglycerides/metabolism
Collapse
Affiliation(s)
- H Shimano
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
233
|
Zhang J, Dricu A, Sjövall J. Studies on the relationships between 7 alpha-hydroxylation and the ability of 25- and 27-hydroxycholesterol to suppress the activity of HMG-CoA reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1344:241-9. [PMID: 9059514 DOI: 10.1016/s0005-2760(96)00148-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The metabolism of 25-hydroxycholesterol in different cell types was studied and the role of 7 alpha-hydroxylation for the effect of 25-hydroxycholesterol on the activity of HMG-CoA reductase was determined. Human diploid fibroblasts (HDF) and the human melanoma cell line SK-MEL-2 converted 25-hydroxycholesterol into 7 alpha,25-dihydroxycholesterol and 7 alpha,25-dihydroxy-4-cholesten-3-one while the virus-transformed fibroblast line 90VA-VI, the colon carcinoma cell line WiDr and the breast cancer cell line MDA-231 did not express 7 alpha-hydroxylase activity. The 7 alpha-hydroxylation of 25-hydroxycholesterol in HDF could be stimulated by dexamethasone and cortisol and inhibited by metyrapone. An unidentified, possibly 4-hydroxylated, metabolite was formed by 90VA-VI cells and a polar, probably conjugated, metabolite was formed by WiDr cells. The 7 alpha-hydroxylated metabolites of 25-hydroxycholesterol suppressed the activity of HMG-CoA reductase to a similar extent as 25-hydroxycholesterol in HDF but not in 90VA-VI cells, while the 7 alpha-hydroxylated metabolites of 27-hydroxycholesterol suppressed the activity of HMG-CoA reductase also in 90VA-VI cells. The suppression of HMG-CoA reductase activity by 25- and 27-hydroxycholesterol was decreased or abolished by dehydroepiandrosterone or pregnenolone which have little or no effect on the 7 alpha-hydroxylation. The results indicate that 7 alpha-hydroxylation is not directly involved, positively or negatively, in the action of 25- or 27-hydroxycholesterol as suppressors of HMG-CoA reductase activity.
Collapse
Affiliation(s)
- J Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
234
|
Miserez AR, Cao G, Probst LC, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 1997; 40:31-40. [PMID: 9070916 DOI: 10.1006/geno.1996.4525] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sterol-regulatory element binding protein (SREBP) 1 and SREBP2 are ubiquitously expressed transcription factors that play key roles in the regulation of cholesterol and fatty acid metabolism. SREBP1 and SREBP2 share approximately 47% sequence identity and map to chromosomes 17 and 22, respectively. The gene encoding SREBP1 (SREBF1) has been cloned and characterized. In this paper we describe the gene structure and 5'-flanking sequence of SREBF2. SREBF2 spans 72 kb and is composed of 19 exons and 18 introns. The locations of the exon/intron boundaries of SREBF2 are remarkably similar to those of SREBF1, but SREBF2 is approximately 2.8 times larger in size. The 5'-flanking regions of SREBF2 and of two alternatively spliced forms of SREBF1, SREBF1a and SREBF1c, were sequenced, and the SREBF2 transcription start site was determined. A perfect 10-bp sterol regulatory element (SRE)-1 sequence was present in the promoter region of SREBF2. No SRE-1 was identified in the 5'-flanking sequences of either SREBF1a or SREBF1c, but several E-box sequences were present in SREBP1c. Thus, analysis of the 5'-flanking regions provides support that these two transcription factors, though similar in their coding sequence and overall gene structure, have different physiological roles. Finally, evidence is presented for the presence of another expressed gene of unknown function located 500 bp upstream of SREBF2.
Collapse
Affiliation(s)
- A R Miserez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
235
|
Yagi Y, Bevis DJ, Hart KL, Hess GF, Dinh DM, Keiser BJ, Larsen SD, Spilman CH. Screening for inhibitors of the HMG-CoA reductase promoter in HepG2 cells: Identification of four non-oxysterol inhibitors. Drug Dev Res 1997. [DOI: 10.1002/(sici)1098-2299(199701)40:1<41::aid-ddr4>3.0.co;2-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
236
|
Mehta KD, Chang R, Underwood J, Wise J, Kumar A. Identification of a novel cis-acting element participating in maximal induction of the human low density lipoprotein receptor gene transcription in response to low cellular cholesterol levels. J Biol Chem 1996; 271:33616-22. [PMID: 8969230 DOI: 10.1074/jbc.271.52.33616] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this paper, we present both in vivo and in vitro evidence for the presence of a novel cis-acting regulatory element that is required for maximal induction of the human low density lipoprotein (LDL) receptor gene following depletion of cellular sterols in HepG2 cells. First, in vivo dimethyl sulfate footprinting of the human LDL receptor promoter before and after transcriptional induction in HepG2 cells revealed protection from -145 to -126, 5'-GAGCTTCACGGGTTAAAAAG-3' (referred to as FP1 site). Second, transient transfections of HepG2 cells with promoter luciferase reporter constructs containing the FP1 site resulted in significant enhancement (approximately 375%) of reporter gene expression in response to low levels of sterols compared with parallel plasmid without the FP1 site. In addition, this response was markedly attenuated on nucleotide substitutions within the FP1 site. Third, by electrophoretic mobility shift assays, the FP1 sequence was found to bind protein(s) from HepG2 nuclear extracts in a sequence-specific manner. In vitro binding of the FP1 mutants paralleled the results obtained for their in vivo transcription. On the basis of competition profiles, the FP1-binding factor is different from the known transcription factors binding to the AT-rich CArG and GArC motifs. Furthermore, the FP1-binding protein is not specific to HepG2 cells because nuclear factor(s) with the same specificity was observed in nuclear extracts of non-hepatic HeLa cells. We conclude that transcriptional induction of the LDL receptor gene in response to sterol depletion is mediated, in part, by an highly conserved novel cis-acting element through the binding of specific nuclear protein(s).
Collapse
Affiliation(s)
- K D Mehta
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
237
|
Magaña MM, Osborne TF. Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 1996; 271:32689-94. [PMID: 8955100 DOI: 10.1074/jbc.271.51.32689] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously reported that sterol regulation of the rat fatty-acid synthase was lost when the DNA sequence between -73 and -43 of the promoter was deleted from a luciferase reporter construct (Bennett, M. K., Lopez, J. M., Sanchez, H. B., and Osborne, T. F. (1995) J. Biol. Chem. 270, 25578-25583). We also showed that there was a binding site for sterol regulatory element binding protein-1 (SREBP-1) in this region that contains a palindromic E-box motif (5'-CANNTG-3'). This is the consensus recognition element for basic-helix-loop-helix leucine zipper containing proteins such as the SREBPs. However, the SREBPs are unique basic-helix-loop-helix leucine zipper proteins that not only bind to a subset of E-boxes but also to the direct repeat SRE-1 element of the low density lipoprotein receptor promoter as well as to variant sites present in the promoters for key enzymes of both cholesterol and fatty acid biosynthesis. Based on the sequence of the variant SREBP recognition sites in these other promoters, we noted there was more than one potential recognition site for SREBP within the -73 to -43 interval of the fatty-acid synthase promoter. In the present studies we have systematically mutated these potential SREBP sites and have analyzed the consequences on sterol regulation, activation by exogenously supplied SREBPs, and binding by SREBPs in vitro. The results clearly show that the E-box element is not the SREBP recognition site in this region. Rather, there are two independent SREBP binding sites that flank the E-box, and both are required for maximal sterol regulation and activation by transfected SREBP protein.
Collapse
Affiliation(s)
- M M Magaña
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
238
|
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adipose Tissue/physiology
- Agouti Signaling Protein
- Animals
- CCAAT-Enhancer-Binding Proteins
- Carboxypeptidase H
- Carboxypeptidases/genetics
- Carboxypeptidases/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Differentiation
- DNA-Binding Proteins/physiology
- Feeding Behavior/physiology
- Gene Expression Regulation/physiology
- Homeostasis/physiology
- Hormones/physiology
- Humans
- Hypothalamus/physiopathology
- Insulin Resistance/genetics
- Intercellular Signaling Peptides and Proteins
- Leptin
- Mice
- Mice, Mutant Strains
- Models, Biological
- Neuropeptide Y/physiology
- Nuclear Proteins/physiology
- Obesity/genetics
- Obesity/physiopathology
- Proteins/genetics
- Proteins/physiology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta-3
- Receptors, Cell Surface
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Leptin
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors/physiology
Collapse
Affiliation(s)
- B M Spiegelman
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
239
|
Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 1996; 271:26461-4. [PMID: 8900111 DOI: 10.1074/jbc.271.43.26461] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We show in this manuscript that expression of the mRNA for sterol regulatory element-binding protein-2 (SREBP-2) is regulated by the cellular sterol level in cultured HeLa cells. We have cloned the 5'-flanking region of the gene encoding human SREBP-2. Characterization of this region shows the minimum 50-base pair segment, which contains a 10-base pair sterol regulatory element 1 (SRE-1) identical to the one in the human LDL receptor promoter, confers sterol responsiveness when fused to the luciferase reporter gene. Enforced expression of the truncated SREBP-2 protein (amino acid residues 1-481) also shows that this upstream segment contains the information required for transcriptional activation. The luciferase assays using mutant versions of the reporter genes reveal that the sterol-dependent transcriptional regulation is mediated by two nearby motifs, the SRE-1 and the NF-Y binding site (the inverted CCAAT box, ATTGGC); the latter is reported to play a critical role in sterol-dependent regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase and farnesyl diphosphate synthase genes (Jackson, S. M., Ericsson, J., Osborne, T. F., and Edwards, P. A. (1995) J. Biol. Chem. 270, 21445-21448). Gel mobility shift assays demonstrate that the transcription factor NF-Y truly binds to the ATTGGC sequence. These findings suggest that the activity of SREBP-2 is controlled not only post-translationally by proteolytic activation of the precursor protein but also transcriptionally by itself together with NF-Y.
Collapse
Affiliation(s)
- R Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565
| | | | | | | | | | | |
Collapse
|
240
|
Sorensen PG, Lutkenhaus J, Young K, Eveland SS, Anderson MS, Raetz CR. Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase in Escherichia coli. The second enzymatic step of lipid a biosynthesis. J Biol Chem 1996; 271:25898-905. [PMID: 8824222 DOI: 10.1074/jbc.271.42.25898] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The first enzyme of lipid A assembly in Escherichia coli is an acyltransferase that attaches an R-3-hydroxymyristoyl moiety to UDP-GlcNAc at the GlcNAc 3-OH. This reaction is reversible and thermodynamically unfavorable. The subsequent deacetylation of the product, UDP-3-O-[R-3-hydroxymyristoyl]-GlcNAc, is therefore the first committed step of lipid A biosynthesis. We now demonstrate that inhibition of either the acyltransferase or the deacetylase in living cells results in a 5-10-fold increase in the specific activity of the deacetylase in extracts prepared from such cells. Five other enzymes of the lipid A pathway are not affected. The elevated specific activity of deacetylase observed in extracts of lipid A-depleted cells is not accompanied by a significant change in the Km for the substrate, but is mainly an effect on Vmax. Western blots demonstrate that more deacetylase protein is indeed made. However, deacetylase messenger RNA levels are not significantly altered. Inhibition of lipid A biosynthesis must either stimulate the translation of available mRNA or slow the turnover of pre-existing deacetylase. In contrast, inhibition of 3-deoxy-D-manno-octulosonic acid (Kdo) biosynthesis has no effect on deacetylase specific activity. The underacylated lipid A-like disaccharide precursors that accumulate during inhibition of Kdo formation may be sufficient to exert normal feedback control.
Collapse
Affiliation(s)
- P G Sorensen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
241
|
Smith SJ, Crowley JH, Parks LW. Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:5427-32. [PMID: 8816455 PMCID: PMC231542 DOI: 10.1128/mcb.16.10.5427] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sterol biosynthesis in the yeast Saccharomyces cerevisiae is an energy-expensive, aerobic process, requiring heme and molecular oxygen. Heme, also synthesized exclusively during aerobic growth, not only acts as an enzymatic cofactor but also is directly and indirectly responsible for the transcriptional control of several yeast genes. Because of their biosynthetic similarities, we hypothesized that ergosterol, like heme, may have a regulatory function. Sterols are known to play a structural role in membrane integrity, but regulatory roles have not been characterized. To test possible regulatory roles of sterol, the promoter for the ERG3 gene, encoding the sterol C-5 desaturase, was fused to the bacterial lacZ reporter gene. This construct was placed in strains making aberrant sterols, and the effect of altered sterol composition on gene expression was monitored by beta-galactosidase activity. The absence of ergosterol resulted in a 35-fold increase in the expression of ERG3 as measured by beta-galactosidase activity. The level of ERG3 mRNA was increased as much as ninefold in erg mutant strains or wild-type strains inhibited in ergosterol biosynthesis by antifungal agents. The observed regulatory effects of ergosterol on ERG3 are specific for ergosterol, as several ergosterol derivatives failed to elicit the same controlling effect. These results demonstrate for the first time that ergosterol exerts a regulatory effect on gene transcription in S. cerevisiae.
Collapse
Affiliation(s)
- S J Smith
- Department of Microbiology, North Carolina State University, Raleigh 27695-7615, USA
| | | | | |
Collapse
|
242
|
Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 1996; 98:1575-84. [PMID: 8833906 PMCID: PMC507590 DOI: 10.1172/jci118951] [Citation(s) in RCA: 647] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The NH2-terminal domain of sterol-regulatory element binding protein-1a (SREBP-1a) activates transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis in cultured cells. This domain is synthesized as part of a membrane-bound precursor that is attached to the nuclear envelope and endoplasmic reticulum. In sterol-depleted cells a two-step proteolytic process releases this NH2-terminal domain, which enters the nucleus and activates transcription. Proteolysis is suppressed by sterols, thereby suppressing transcription. In the current experiments we produce transgenic mice that overexpress a truncated version of human SREBP-1a that includes the NH2-terminal domain but lacks the membrane attachment site. This protein enters the nucleus without a requirement for proteolysis, and therefore it cannot be down-regulated. Expression was driven by the phosphoenolpyruvate carboxykinase (PEPCK) promoter, which gives high level expression in liver. When placed on a low carbohydrate/high protein diet to induce the PEPCK promoter, the transgenic mice developed progressive and massive enlargement of the liver, owing to the engorgement of hepatocytes with cholesterol and triglycerides. The mRNAs encoding 3-hydroxy-3-methylglutaryl CoA (HMG CoA) synthase, HMG CoA reductase, squalene synthase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 were all elevated markedly, as was the LDL receptor mRNA. The rates of cholesterol and fatty acid synthesis in liver were elevated 5- and 25-fold, respectively. Remarkably, plasma lipid levels were not elevated. The amount of white adipose tissue decreased progressively as the liver enlarged. These studies indicate that the NH2-terminal domain of SREBP-1a can produce major effects on lipid synthesis and storage in the liver.
Collapse
Affiliation(s)
- H Shimano
- Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
243
|
Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 1996; 85:1037-46. [PMID: 8674110 DOI: 10.1016/s0092-8674(00)81304-5] [Citation(s) in RCA: 432] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are transcription factors attached to the endoplasmic reticulum. The NH2-segment, which activates transcription, is connected to membranes by a hairpin anchor formed by two transmembrane sequences and a short lumenal loop. Using H-Ras-SREBP-2 fusion proteins, we show that the NH2-segment is released from membranes by two sequential cleavages. The first, regulated by sterols, occurs in the lumenal loop. The second, not regulated by sterols, occurs within the first transmembrane domain. The liberated NH2-segment enters the nucleus and activates genes controlling cholesterol synthesis and uptake. Certain mutant Chinese hamster ovary cells are auxotrophic for cholesterol because they fail to carry out the second cleavage; the NH2-segment remains membrane-bound and transcription is not activated.
Collapse
Affiliation(s)
- J Sakai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
244
|
Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF. A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J Biol Chem 1996; 271:12247-53. [PMID: 8647822 DOI: 10.1074/jbc.271.21.12247] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In earlier studies the DNA site required for sterol regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase was shown to be distinct from the classic sterol regulatory element (SRE-1) of the low density lipoprotein receptor gene (Osborne, T. F. (1991) J. Biol. Chem 266, 13947-13951). However, oxysterol-resistant cells that continuously overproduce one of the sterol regulatory element binding proteins in the nucleus result in high unregulated expression of both genes (Yang, J., Brown, M. S., Ho, Y. K., and Goldstein, J. L. (1995) J. Biol. Chem. 270, 12152-12161) suggesting a direct role for the SREBPs in the activation of the reductase gene. In the present studies we demonstrate that SREBP-1 binds to two adjacent sites within the previously identified sterol regulatory element of the reductase gene even though there is only limited homology with the SRE-1 of the receptor. We also show that SREBP-1 specifically activates the reductase promoter in transient DNA transfection studies in HepG2 cells and that mutations which eliminate sterol regulation and SREBP-1 binding also abolish transient activation by SREBP-1. Although specific, the magnitude of the activation observed is considerably lower than for the low density lipoprotein (LDL) receptor analyzed in parallel, suggesting there is an additional protein required for activation of the reductase promoter that is limiting in the transient assay. SREBP also binds to two additional sites in the reductase promoter which probably plan an auxiliary role in expression. When the DNA sequence within the sites are aligned with each other and with the LDL receptor SRE-1, a consensus half-site is revealed 5'-PyCAPy-3'. The LDL receptor element contains two half-sites oriented as a direct repeat spaced by one nucleotide. The SREBP proteins are special members of the basic-helix-loop-helix-zipper (bHLHZip) family of DNA binding proteins since they bind the classic palindromic E-box site as well as the direct repeat SRE-1 element. The SREBP binding sites in both the reductase and those recently identified in other sterol regulated promoters appear to contain a half-site with considerable divergence in the flanking residues. Here we also show that a 22-amino acid domain located immediately adjacent to the basic domain of the bHLHZip region is required for SREBP to efficiently recognize divergent sites in the reductase and 3-hydroxy-3-methylglutaryl-CoA synthase promoters but, interestingly, this domain is not required for efficient binding to the LDL direct repeat SRE-1 or to a palindromic high-affinity E-box element.
Collapse
Affiliation(s)
- S M Vallett
- Dept. of Molecular Biology & Biochemistre, University of California, Irvine 92717-3900, USA
| | | | | | | |
Collapse
|
245
|
Pak YK, Kanuck MP, Berrios D, Briggs MR, Cooper AD, Ellsworth JL. Activation of LDL receptor gene expression in HepG2 cells by hepatocyte growth factor. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42009-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
246
|
Hua X, Sakai J, Brown MS, Goldstein JL. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J Biol Chem 1996; 271:10379-84. [PMID: 8626610 DOI: 10.1074/jbc.271.17.10379] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sterol regulatory element binding proteins (SREBP-1 and SREBP-2) are attached to the endoplasmic reticulum (ER) and nuclear envelope by a hairpin domain consisting of two transmembrane regions connected by a short lumenal loop of approximately 30 hydrophilic amino acids. In sterol-depleted cells, a protease cleaves the protein in the region of the first transmembrane domain, releasing an NH2-terminal fragment of approximately 500 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. In sterol-overloaded cells, proteolysis does not occur, and transcription is repressed. Through mutational analysis in transfected cells, we identify two segments of SREBPs that are required for proteolysis, one on either side of the ER membrane. An arginine in the lumenal loop is essential. A tetrapeptide sequence (DRSR) on the cytosolic face adjacent to the first transmembrane domain is also required for maximal cleavage. Both of these elements are conserved in the human and hamster versions of SREBP-1 and SREBP-2. Sterol-mediated suppression of cleavage of SREBP-1 was found to be dependent on the extreme COOH-terminal region (residue 1034 to the COOH terminus), which exists in two forms as a result of alternative splicing. The form encoded by the "a" class exons (exons 18a and 19a) undergoes sterol-regulated cleavage. The form encoded by the "c" class exons (18c and 19c) is cleaved less efficiently and is not suppressed by sterols. These studies were made possible through use of a vector that achieves low level expression of epitope-tagged SREBPs under control of the relatively weak thymidine kinase promoter from herpes simplex virus. In contrast to SREBPs overproduced by high level expression vectors, the SREBPs produced at low levels were subject to the same regulated cleavage pattern as the endogenous SREBPs. These results indicate that sterol-regulated proteolysis of SREBPs is a complex process, requiring sequences on both sides of the ER membrane.
Collapse
Affiliation(s)
- X Hua
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
247
|
Streicher R, Kotzka J, Müller-Wieland D, Siemeister G, Munck M, Avci H, Krone W. SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem 1996; 271:7128-33. [PMID: 8636148 DOI: 10.1074/jbc.271.12.7128] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription of the low density lipoprotein (LDL) receptor gene is regulated by intracellular cholesterol concentration, hormones, and growth factors. We studied the mechanisms by which insulin and estradiol stimulate promoter activity of the LDL receptor gene. Hormonal effects were analyzed in HepG2 cells after transient transfection with promotor reporter gene constructs. Successive 5' deletions of the LDL receptor promoter fragment from -537 to +88 revealed the sterol regulatory element 1 (SRE-1) between -65 and -56 as an insulin- and estradiol-sensitive cis-element. If the SRE-1 is point mutated at position -59 (C to G), which abolishes the binding of the SRE binding proteins (SREBP-1 and SREBP-2), no insulin or estradiol stimulatory effect on reporter gene expression was observed, indicating a role of SRE binding proteins in this regulatory mechanism. The concentration of the 125-kDa membrane-integrated SREBP-1 precursor protein in LDL repressed HepG2 cells is not altered by hormone treatment. Concentrations of SREBP-1 mRNA and precursor protein are reduced significantly by high and stable expression of an SREBP-1 antisense cDNA fragment in HepG2 cells (SREBP1(-) cells). Transfection of SREBP1(-) cells with promoter construct phLDL4 (-105 to +88) reduces induction of reporter gene activity by insulin and insulin-like growth factor-I to 35 and 17%, respectively, compared with HepG2 cells. The stimulatory effect of estradiol remains unchanged, and the inductions by pravastatin are enlarged. We conclude that different regulatory effects converge at SRE-1, but that SREBP-1 is selectively involved in the signal transduction pathway of insulin and insulin-like growth factor-I leading to LDL receptor gene activation.
Collapse
Affiliation(s)
- R Streicher
- Klinik II und Poliklinik für Innere Medizin, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
248
|
Lopez JM, Bennett MK, Sanchez HB, Rosenfeld JM, Osborne TF. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci U S A 1996; 93:1049-53. [PMID: 8577712 PMCID: PMC40028 DOI: 10.1073/pnas.93.3.1049] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcription from the housekeeping promoter for the acetyl coenzyme A carboxylase (ACC) gene, which encodes the rate-controlling enzyme of fatty acid biosynthesis, is shown to be regulated by cellular sterol levels through novel binding sites for the sterol-sensitive sterol regulatory element binding protein (SREBP)-1 transcription factor. The position of the SREBP sites relative to those for the ubiquitous auxiliary transcription factor Sp1 is reminiscent of that previously described for the sterol-regulated low density lipoprotein receptor promoter. The experiments provide molecular evidence that the metabolism of fatty acids and cholesterol, two different classes of essential cellular lipids, are coordinately regulated by cellular lipid levels.
Collapse
Affiliation(s)
- J M Lopez
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | | | | | |
Collapse
|
249
|
Edwards PA, Davis R. Isoprenoids, sterols and bile acids. BIOCHEMISTRY OF LIPIDS, LIPOPROTEINS AND MEMBRANES 1996. [DOI: 10.1016/s0167-7306(08)60520-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
250
|
Masucci-Magoulas L, Plump A, Jiang XC, Walsh A, Breslow JL, Tall AR. Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. J Clin Invest 1996; 97:154-61. [PMID: 8550828 PMCID: PMC507074 DOI: 10.1172/jci118384] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters from HDL to other lipoproteins and is a key regulated component of reverse cholesterol transport. Dietary hypercholesterolemia results in increased hepatic CETP gene transcription and higher plasma CETP levels. To investigate the mechanisms by which the liver senses hypercholesterolemia, mice containing a natural flanking region CETP transgene (NFR-CETP transgene) were bred with apo E or LDL receptor gene knockout mice (E0 or LDLr0 mice). Compared to NFR-CETP transgenic (Tg) mice with intact apo E genes, in NFR-CETP Tg/E0 mice there was an eightfold induction of plasma CETP levels and a parallel increase in hepatic CETP mRNA levels. Other sterol-responsive genes (LDL receptor and hydroxymethyl glutaryl CoA reductase) also showed evidence of altered regulation with decreased abundance of their mRNAs in the E0 background. A similar induction of plasma CETP and hepatic CETP mRNA levels resulted from breeding the NFR-CETP transgene into the LDL receptor gene knockout background. When placed on a high cholesterol diet, there was a further increase in CETP levels in both E0 and LDLr0 backgrounds. In CETP Tg, CETP Tg/E0, and CETP Tg/LDLr0 mice on different diets, plasma CETP and CETP mRNA levels were highly correlated with plasma cholesterol levels. The results indicate that hepatic CETP gene expression is driven by a mechanism which senses changes in plasma cholesterol levels independent of apo E and LDL receptors. Hepatic sterol-sensitive genes have mechanisms to sense hypercholesterolemia that do not require classical receptor-mediated lipoprotein uptake.
Collapse
Affiliation(s)
- L Masucci-Magoulas
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | | | | | | | | | |
Collapse
|