201
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
202
|
Hirschey MD, Zhao Y. Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation. Mol Cell Proteomics 2015; 14:2308-15. [PMID: 25717114 DOI: 10.1074/mcp.r114.046664] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
Protein acetylation is a well-studied regulatory mechanism for several cellular processes, ranging from gene expression to metabolism. Recent discoveries of new post-translational modifications, including malonylation, succinylation, and glutarylation, have expanded our understanding of the types of modifications found on proteins. These three acidic lysine modifications are structurally similar but have the potential to regulate different proteins in different pathways. The deacylase sirtuin 5 (SIRT5) catalyzes the removal of these modifications from a wide range of proteins in different subcellular compartments. Here, we review these new modifications, their regulation by SIRT5, and their emerging role in cellular regulation and diseases.
Collapse
Affiliation(s)
- Matthew D Hirschey
- From the ‡Duke Molecular Physiology Institute, Sarah W. Stedman Metabolism and Nutrition Center, §Departments of Medicine & Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, NC 27710;
| | - Yingming Zhao
- ¶Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
203
|
Teng YB, Jing H, Aramsangtienchai P, He B, Khan S, Hu J, Lin H, Hao Q. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci Rep 2015; 5:8529. [PMID: 25704306 PMCID: PMC4894398 DOI: 10.1038/srep08529] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/22/2015] [Indexed: 12/21/2022] Open
Abstract
Sirtuins are a class of enzymes originally identified as nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacetylases. Among the seven mammalian sirtuins, SIRT1-7, only SIRT1-3 possess efficient deacetylase activity in vitro, whereas SIRT4-7 possess very weak in vitro deacetylase activity. Several sirtuins that exhibit weak deacetylase activity have recently been shown to possess more efficient activity for the removal other acyl lysine modifications, such as succinyl lysine and palmitoyl lysine. Here, we demonstrate that even the well-known deacetylase SIRT2 possesses efficient activity for the removal of long-chain fatty acyl groups. The catalytic efficiency (kcat/Km) for the removal of a myristoyl group is slightly higher than that for the removal of an acetyl group. The crystal structure of SIRT2 in complex with a thiomyristoyl peptide reveals that SIRT2 possesses a large hydrophobic pocket that can accommodate the myristoyl group. Comparison of the SIRT2 acyl pocket to those of SIRT1, SIRT3, and SIRT6 reveals that the acyl pockets of SIRT1-3 are highly similar, and to a lesser degree, similar to that of SIRT6. The efficient in vitro demyristoylase activity of SIRT2 suggests that this activity may be physiologically relevant and warrants future investigative studies.
Collapse
Affiliation(s)
- Yan-Bin Teng
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Saba Khan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Quan Hao
- 1] Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA [2] Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
204
|
Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. Int J Biochem Cell Biol 2015; 59:193-202. [DOI: 10.1016/j.biocel.2014.11.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/05/2014] [Accepted: 11/21/2014] [Indexed: 12/15/2022]
|
205
|
Mo R, Yang M, Chen Z, Cheng Z, Yi X, Li C, He C, Xiong Q, Chen H, Wang Q, Ge F. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803. J Proteome Res 2015; 14:1275-86. [PMID: 25621733 DOI: 10.1021/pr501275a] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.
Collapse
Affiliation(s)
- Ran Mo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Yang M, Wang Y, Chen Y, Cheng Z, Gu J, Deng J, Bi L, Chen C, Mo R, Wang X, Ge F. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis. Mol Cell Proteomics 2015; 14:796-811. [PMID: 25605462 DOI: 10.1074/mcp.m114.045922] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.
Collapse
Affiliation(s)
- Mingkun Yang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Wang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Chen
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhongyi Cheng
- §Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China
| | - Jing Gu
- ¶Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaoyu Deng
- ¶Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lijun Bi
- ‖Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuangbin Chen
- **Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Ran Mo
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xude Wang
- ¶Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ge
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
207
|
Lysine acetylproteome analysis suggests its roles in primary and secondary metabolism in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2014; 99:1399-413. [PMID: 25487885 DOI: 10.1007/s00253-014-6144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 01/19/2023]
Abstract
Lysine acetylation is a dynamic, reversible posttranslational modification that is known to play an important role in regulating the activity of many key enzymes in bacteria. Acetylproteome studies have been performed on some bacteria. However, until now, there have been no data on Actinomycetes, which are the major producers of therapeutic antibiotics. In this study, we investigated the first acetylproteome of the erythromycin-producing actinomycete Saccharopolyspora erythraea using a high-resolution mass spectrometry-based proteomics approach. Using immune-affinity isolation of acetyl-peptides with an anti-acetyllysine antibody followed by nano ultra performance liquid chromatography tandem mass spectroscopy (nanoUPLC-MS/MS) analysis, we identified 664 unique lysine-acetylated sites on 363 proteins. Acetylated proteins are involved in many biological processes such as protein synthesis, glycolysis/gluconeogenesis, citric acid (TCA) cycle, fatty acid metabolism, secondary metabolism, and the feeder metabolic pathways of erythromycin synthesis. We characterized the acetylproteome and analyzed in detail the impact of acetylation on diverse cellular functions according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four motif sequences surrounding the acetylation sites (K(AC)H, K(AC)Y, K(AC)XXXXR, and K(AC)XXXXK) were found in the S. erythraea acetylproteome. These findings suggest that abundant lysine acetylation occurs in Actinomycetes, expand our current knowledge of the bacterial acetylproteome, and provide insight into the regulatory function of acetylation in primary and secondary metabolism.
Collapse
|
208
|
Ringel AE, Roman C, Wolberger C. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Sci 2014; 23:1686-97. [PMID: 25200501 PMCID: PMC4253809 DOI: 10.1002/pro.2546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/03/2014] [Indexed: 01/07/2023]
Abstract
Sirtuins were originally shown to regulate a wide array of biological processes such as transcription, genomic stability, and metabolism by catalyzing the NAD(+) -dependent deacetylation of lysine residues. Recent proteomic studies have revealed a much wider array of lysine acyl modifications in vivo than was previously known, which has prompted a reevaluation of sirtuin substrate specificity. Several sirtuins have now been shown to preferentially remove propionyl, succinyl, and long-chain fatty acyl groups from lysines, which has changed our understanding of sirtuin biology. In light of these developments, we revisited the acyl specificity of several well-studied archaeal and bacterial sirtuins. We find that the Archaeoglobus fulgidus sirtuins, Sir2Af1 and Sir2Af2, preferentially remove succinyl and myristoyl groups, respectively. Crystal structures of Sir2Af1 bound to a succinylated peptide and Sir2Af2 bound to a myristoylated peptide show how the active site of each enzyme accommodates a noncanonical acyl chain. As compared to its structure in complex with an acetylated peptide, Sir2Af2 undergoes a conformational change that expands the active site to accommodate the myristoyl group. These findings point to both structural and biochemical plasticity in sirtuin active sites and provide further evidence that sirtuins from all three domains of life catalyze noncanonical deacylation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185
| | - Christina Roman
- The Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185,The Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, Maryland, 21205-2185,
*Correspondence to: Cynthia Wolberger, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205. E-mail:
| |
Collapse
|
209
|
Bernal V, Castaño-Cerezo S, Gallego-Jara J, Écija-Conesa A, de Diego T, Iborra JL, Cánovas M. Regulation of bacterial physiology by lysine acetylation of proteins. N Biotechnol 2014; 31:586-95. [DOI: 10.1016/j.nbt.2014.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/10/2023]
|
210
|
Castaño-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S, Sánchez-Díaz NC, Sauer U, Heck AJR, Altelaar AFM, Cánovas M. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. Mol Syst Biol 2014; 10:762. [PMID: 25518064 PMCID: PMC4299603 DOI: 10.15252/msb.20145227] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although protein acetylation is widely observed, it has been associated with few specific
regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the
acetylome in Escherichia coli knockout mutants of cobB, the only
known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase.
For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins,
were identified and differentially quantified. Nearly 65% of these proteins are related to
metabolism. The global activity of CobB contributes to the deacetylation of a large number of
substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase,
we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the
glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating
flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion
of patZ increased acetylation in acetate cultures, which suggests that it regulates
the levels of acetylating agents. The results presented offer new insights into functional roles of
protein acetylation in metabolic fitness and global cell regulation.
Collapse
Affiliation(s)
- Sara Castaño-Cerezo
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia Campus de Excelencia Mare Nostrum, Murcia, Spain
| | - Vicente Bernal
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia Campus de Excelencia Mare Nostrum, Murcia, Spain
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Salvatore Cappadona
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nerea C Sánchez-Díaz
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia Campus de Excelencia Mare Nostrum, Murcia, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Center, Utrecht, The Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Manuel Cánovas
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia Campus de Excelencia Mare Nostrum, Murcia, Spain
| |
Collapse
|
211
|
AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, Sahu AK, Becher D, Antelmann H, Mrksich M, Anderson WF, Gibson BW, Schilling B, Wolfe AJ. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. Microbiologyopen 2014; 4:66-83. [PMID: 25417765 PMCID: PMC4335977 DOI: 10.1002/mbo3.223] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 01/22/2023] Open
Abstract
Nε-lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent Nε-lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD+-dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli.
Collapse
Affiliation(s)
- Alaa AbouElfetouh
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, 60153; Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Xie L, Liu W, Li Q, Chen S, Xu M, Huang Q, Zeng J, Zhou M, Xie J. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res 2014; 14:107-19. [PMID: 25363132 DOI: 10.1021/pr500859a] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein lysine succinylation, an emerging protein post-translational modification widespread among eukaryotic and prokaryotic cells, represents an important regulator of cellular processes. However, the extent and function of lysine succinylation in Mycobacterium tuberculosis, especially extensively drug-resistant strain, remain elusive. Combining protein/peptide prefractionation, immunoaffinity enrichment, and LC-MS/MS analysis, a total of 686 succinylated proteins and 1739 succinylation sites of M. tuberculosis were identified, representing the first global profiling of M. tuberculosis lysine succinylation. The identified succinylated proteins are involved in a variety of cellular functions such as metabolic processes, transcription, translation, and stress responses and exhibit different subcellular localization via GO, protein interaction network, and other bioinformatic analysis. Notably, proteins involved in protein biosynthesis and carbon metabolism are preferred targets of lysine succinylation. Moreover, two prevalent sequence patterns: EK(suc) and K*****K(suc), can be found around the succinylation sites. There are 109 lysine-succinylated homologues in E. coli, suggesting highly conserved succinylated proteins. Succinylation was found to occur at the active sites predicted by Prosite signature including Rv0946c, indicating that lysine succinylation may affect their activities. There is extensive overlapping between acetylation sites and succinylation sites in M. tuberculosis. Many M. tuberculosis metabolic enzymes and antibiotic resistance proteins were succinylated. This study provides a basis for further characterization of the pathophysiological role of lysine succinylation in M. tuberculosis.
Collapse
Affiliation(s)
- Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University , Beibei, Chongqing 400715, China
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Pedruzzi I, Rivoire C, Auchincloss AH, Coudert E, Keller G, de Castro E, Baratin D, Cuche BA, Bougueleret L, Poux S, Redaschi N, Xenarios I, Bridge A. HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res 2014; 43:D1064-70. [PMID: 25348399 PMCID: PMC4383873 DOI: 10.1093/nar/gku1002] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.
Collapse
Affiliation(s)
- Ivo Pedruzzi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Catherine Rivoire
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Andrea H Auchincloss
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Elisabeth Coudert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Guillaume Keller
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Edouard de Castro
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Delphine Baratin
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Béatrice A Cuche
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lydie Bougueleret
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland Department of Biochemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
214
|
The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014; 15:536-50. [PMID: 25053359 DOI: 10.1038/nrm3841] [Citation(s) in RCA: 1028] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
Collapse
|
215
|
Papanicolaou KN, O'Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 2014; 5:301. [PMID: 25228883 PMCID: PMC4151196 DOI: 10.3389/fphys.2014.00301] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
216
|
|