201
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
202
|
Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, Cook W, Smirnova E, Wheeler T, Clark NR, Lachmann A, Zhang B, Hornbeck P, Ma'ayan A, Comb M. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Sci Signal 2018; 11:eaaq1087. [PMID: 29789295 PMCID: PMC6822907 DOI: 10.1126/scisignal.aaq1087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein posttranslational modifications (PTMs) have typically been studied independently, yet many proteins are modified by more than one PTM type, and cell signaling pathways somehow integrate this information. We coupled immunoprecipitation using PTM-specific antibodies with tandem mass tag (TMT) mass spectrometry to simultaneously examine phosphorylation, methylation, and acetylation in 45 lung cancer cell lines compared to normal lung tissue and to cell lines treated with anticancer drugs. This simultaneous, large-scale, integrative analysis of these PTMs using a cluster-filtered network (CFN) approach revealed that cell signaling pathways were outlined by clustering patterns in PTMs. We used the t-distributed stochastic neighbor embedding (t-SNE) method to identify PTM clusters and then integrated each with known protein-protein interactions (PPIs) to elucidate functional cell signaling pathways. The CFN identified known and previously unknown cell signaling pathways in lung cancer cells that were not present in normal lung epithelial tissue. In various proteins modified by more than one type of PTM, the incidence of those PTMs exhibited inverse relationships, suggesting that molecular exclusive "OR" gates determine a large number of signal transduction events. We also showed that the acetyltransferase EP300 appears to be a hub in the network of pathways involving different PTMs. In addition, the data shed light on the mechanism of action of geldanamycin, an HSP90 inhibitor. Together, the findings reveal that cell signaling pathways mediated by acetylation, methylation, and phosphorylation regulate the cytoskeleton, membrane traffic, and RNA binding protein-mediated control of gene expression.
Collapse
Affiliation(s)
- Mark Grimes
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | - Lauren Foltz
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Jeremiah Gaiser
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - William Cook
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Ekaterina Smirnova
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Travis Wheeler
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Neil R Clark
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Michael Comb
- Cell Signaling Technology, Danvers, MA 01923, USA
| |
Collapse
|
203
|
Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol 2018; 7:rsob.170152. [PMID: 28931650 PMCID: PMC5627056 DOI: 10.1098/rsob.170152] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo many different alterations during their transformation, including genetic and epigenetic events. The controlled division of healthy cells can be impaired through the downregulation of tumour suppressor genes. Here, we provide an update of the mechanisms in which epigenetically altered coding and non-coding tumour suppressor genes are implicated. We will highlight the importance of epigenetics in the different molecular pathways that lead to enhanced and unlimited capacity of division, genomic instability, metabolic shift, acquisition of mesenchymal features that lead to metastasis, and tumour plasticity. We will briefly describe these pathways, focusing especially on genes whose epigenetic inactivation through DNA methylation has been recently described, as well as on those that are well established as being epigenetically silenced in cancer. A brief perspective of current clinical therapeutic approaches that can revert epigenetic inactivation of non-coding tumour suppressor genes will also be given.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Carrer de la Feixa Llarga, s/n, 08908 L'Hospitalet, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
204
|
Mitra S, Dash R. Structural dynamics and quantum mechanical aspects of shikonin derivatives as CREBBP bromodomain inhibitors. J Mol Graph Model 2018; 83:42-52. [PMID: 29758466 DOI: 10.1016/j.jmgm.2018.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The Proteins involved in the chemical modification of lysine residues in histone, is currently being excessively focused as the therapeutic target for the treatment of cell related diseases like cancer. Among these proteins, the epigenetic reader, CREB-binding protein (CREBBP) bromodomain is one of the most prominent targets for effective anticancer drug design, which is responsible for the reorganization of acetylated histone lysine residues. Therefore, this study employed an integrative approach of structure based drug design, in combination with Molecular Dynamics (MD) and QM/MM study to identify as well as to describe the binding mechanism of two shikonin derivatives, acetylshikonin and propionylshikonin as inhibitors of CREBBP bromodomain. Here induced fit docking strategy was employed to explore the important intrinsic interactions of ligands with CREBBP bromodomain, consistently molecular dynamics simulation with two different methods and binding energy calculations by MM-GBSA and MM-PBSA were adopted to determine the stability of intermolecular interactions between protein and ligands. The results showed that both these derivatives made direct contacts with the important conserved residues of the active site, where propionylshikonin demonstrated stronger binding and stability than acetylshikonin, according to molecular dynamics simulation and binding free energy calculations. Further, QM/MM energy calculation was employed to study the chemical reactivity of the propionylshikonin and also to describe the mechanism of non bonded interactions between the propionylshikonin and CREBBP bromodomain. Though this study demands in vitro and in vivo experiments to evaluate the efficiency of the compound, these insights would assist to design more potent CREBBP bromodomain inhibitor, guiding the site of modification of propionylshikonin moiety for designing selective inhibitors.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Pharmacy, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Raju Dash
- Molecular Modeling & Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific & Industrial Research (BCSIR), Chittagong, 4220, Bangladesh; Department of Biochemistry and Biotechnology, University of Science & Technology Chittagong, Chittagong, 4202, Bangladesh.
| |
Collapse
|
205
|
Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr Probl Cancer 2018; 42:530-547. [PMID: 29625794 DOI: 10.1016/j.currproblcancer.2018.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
Although developments in the diagnosis and therapy of colorectal cancer (CRC) have been made in the last decade, much work remains to be done as it remains the second leading cause of cancer death. It is now well established that epigenetic events, together with genetic alterations, are key events in initiation and progression of CRC. Epigenetics refers to heritable alterations in gene expression that do not involve changes in the DNA sequence. These alterations include DNA methylation, histone alterations, chromatin remodelers, and noncoding RNAs. In CRC, aberrations in epigenome may also involve in the development of drug resistance to conventional drugs such as 5-fluorouracil, oxaliplatin, and irinotecan. Thus, it has been suggested that combined therapies with epigenetic agents may reverse drug resistance. In this regard, DNA methyltransferase inhibitors and histone deacetylase inhibitors have been extensively investigated in CRC. The aim of this review is to provide a brief overview of the preclinical data that represent a proof of principle for the employment of epigenetic agents in CRC with a focus on the advantages of combinatorial therapy over single-drug treatment. We will also critically discuss the results and limitations of initial clinical experiences of epigenetic-based therapy in CRC and summarize ongoing clinical trials. Nevertheless, since recent translational research suggest that epigenetic modulators play a key role in augmenting immunogenicity of the tumor microenvironment and in restoring immune recognition, we will also highlight the recent developments of combinations strategies of immunotherapies and epigenetic therapies in CRC, summarizing preclinical, and clinical data to signify this evolving and promising field for CRC treatment.
Collapse
Affiliation(s)
- Marina Baretti
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University.
| | - Nilofer Saba Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
| |
Collapse
|
206
|
Berger NA, Scacheri PC. Targeting Epigenetics to Prevent Obesity Promoted Cancers. Cancer Prev Res (Phila) 2018; 11:125-128. [PMID: 29476043 DOI: 10.1158/1940-6207.capr-18-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Epigenetic changes in DNA and associated chromatin proteins are increasingly being considered as important mediators of the linkage between obesity and cancer. Although multiple agents, targeted at epigenetic changes, are being tested for therapy of established cancers, this issue of Cancer Prevention Research carries two articles demonstrating that the bromodomain inhibitor I-BET-762 can attenuate adipose tissue-promoted cancers. Although I-BET-762 significantly delayed, rather than completely prevented, the onset of adiposity-promoted transformation and malignancy, these experiments provide important proof of principle for the strategies of targeting epigenetic changes to disrupt the obesity-cancer linkage. Because bromodomain proteins represent only one of multiple epigenetic mediators, it is probable that targeting other epigenetic processes, alone or in combination, may serve to even more effectively disrupt the obesity promotion of cancer. Given the magnitude of the current obesity pandemic and its impact on cancer, preventive measures to disrupt this linkage are critically important. Cancer Prev Res; 11(3); 125-8. ©2018 AACRSee related article by Chakraborty et al., p. 129.
Collapse
Affiliation(s)
- Nathan A Berger
- Department of Medicine, Center for Science, Health & Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio. .,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics & Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter C Scacheri
- Department of Genetics & Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
207
|
Huang M, Zhu L, Garcia JS, Li MX, Gentles AJ, Mitchell BS. Brd4 regulates the expression of essential autophagy genes and Keap1 in AML cells. Oncotarget 2018; 9:11665-11676. [PMID: 29545928 PMCID: PMC5837743 DOI: 10.18632/oncotarget.24432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
We have recently reported that activation of Brd4 is associated with the presence of autophagy in NPMc+ and MLL AML cells. In order to determine the mechanisms underlying this relationship, we have examined the role of Brd4 in regulating the expression of several genes that are central to the process of autophagy. We found that Brd4 binds to the promoters of ATG 3, 7 and CEBPβ, and expression of these genes is markedly reduced by inhibitors of Brd4, as well as by Brd4-shRNA and depletion of CEBPβ. Inhibitors of Brd4 also dramatically suppress the transcription of Keap1, thereby increasing the expression of anti-oxidant genes through the Nrf2 pathway and reducing the cytotoxicity induced by Brd4 inhibitors. Elimination of ATG3 or KEAP1 expression using CRISPR-cas9 mediated genomic editing markedly reduced autophagy. We conclude that Brd4 plays a significant role in autophagy activation through the direct transcriptional regulation of genes essential for it, as well as through the Keap1-Nrf2 axis in NPMc+ and MLL-fusion AML cells.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jacqueline S Garcia
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael X Li
- Department of Electrical Engineering and Computer Science, College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Andrew J Gentles
- Department of Medicine, Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
208
|
Predicting effective pro-apoptotic anti-leukaemic drug combinations using co-operative dynamic BH3 profiling. PLoS One 2018; 13:e0190682. [PMID: 29298347 PMCID: PMC5752038 DOI: 10.1371/journal.pone.0190682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
The BH3-only apoptosis agonists BAD and NOXA target BCL-2 and MCL-1 respectively and co-operate to induce apoptosis. On this basis, therapeutic drugs targeting BCL-2 and MCL-1 might have enhanced activity if used in combination. We identified anti-leukaemic drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism using the technique of dynamic BH3 profiling, whereby cells were primed with drugs to discover whether this would elicit mitochondrial outer membrane permeabilisation in response to BCL-2-targeting BAD-BH3 peptide or MCL-1-targeting MS1-BH3 peptide. We found that a broad range of anti-leukaemic agents–notably MCL-1 inhibitors, DNA damaging agents and FLT3 inhibitors–sensitise leukaemia cells to BAD-BH3. We further analysed the BCL-2 inhibitors ABT-199 and JQ1, the MCL-1 inhibitors pladienolide B and torin1, the FLT3 inhibitor AC220 and the DNA double-strand break inducer etoposide to correlate priming responses with co-operative induction of apoptosis. ABT-199 in combination with pladienolide B, torin1, etoposide or AC220 strongly induced apoptosis within 4 hours, but the MCL-1 inhibitors did not co-operate with etoposide or AC220. In keeping with the long half-life of BCL-2, the BET domain inhibitor JQ1 was found to downregulate BCL-2 and to prime cells to respond to MS1-BH3 at 48, but not at 4 hours: prolonged priming with JQ1 was then shown to induce rapid cytochrome C release when pladienolide B, torin1, etoposide or AC220 were added. In conclusion, dynamic BH3 profiling is a useful mechanism-based tool for understanding and predicting co-operative lethality between drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism. A plethora of agents sensitised cells to BAD-BH3-mediated mitochondrial outer membrane permeabilisation in the dynamic BH3 profiling assay and this was associated with effective co-operation with the BCL-2 inhibitory compounds ABT-199 or JQ1.
Collapse
|
209
|
|
210
|
Pérez-Salvia M, Simó-Riudalbas L, Llinàs-Arias P, Roa L, Setien F, Soler M, de Moura MC, Bradner JE, Gonzalez-Suarez E, Moutinho C, Esteller M. Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget 2017; 8:51621-51629. [PMID: 28881673 PMCID: PMC5584274 DOI: 10.18632/oncotarget.18255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 01/25/2023] Open
Abstract
BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Laia Simó-Riudalbas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Laura Roa
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manuel Castro de Moura
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - James E Bradner
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|