201
|
Impaired regulatory function in circulating CD4(+)CD25(high)CD127(low/-) T cells in patients with myasthenia gravis. Clin Immunol 2012; 145:209-23. [PMID: 23110942 DOI: 10.1016/j.clim.2012.09.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 01/04/2023]
Abstract
Previous studies have reported alterations in numbers or function of regulatory T (Treg) cells in myasthenia gravis (MG) patients, but published results have been inconsistent, likely due to the isolation of heterogenous "Treg" populations. In this study, we used surface CD4, CD25(high), and CD127(low/-) expression to isolate a relatively pure population of Tregs, and established that there was no alteration in the relative numbers of Tregs within the peripheral T cell pool in MG patients. In vitro proliferation assays, however, demonstrated that Treg-mediated suppression of responder T (Tresp) cells was impaired in MG patients and was associated with a reduced expression of FOXP3 in isolated Tregs. Suppression of both polyclonal and AChR-activated Tresp cells from MG patients could be restored using Tregs isolated from healthy controls, indicating that the defect in immune regulation in MG is primarily localized to isolated Treg cells, and revealing a potential novel therapeutic target.
Collapse
|
202
|
Li J, Lin KW, Murray F, Nakajima T, Zhao Y, Perkins DL, Finn PW. Regulation of cytotoxic T lymphocyte antigen 4 by cyclic AMP. Am J Respir Cell Mol Biol 2012; 48:63-70. [PMID: 23024062 DOI: 10.1165/rcmb.2012-0155oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent studies indicate that cyclic AMP (cAMP) induces cytotoxic T lymphocyte antigen (CTLA) 4. CTLA4 is expressed in T cells, and is a negative regulator of T cell activation. CTLA4 expression is regulated by T cell receptor plus CD28 (adaptive immune signaling) at both the transcriptional and post-transcriptional level. Here, we examine the pathways by which cAMP regulates CTLA4 expression, focusing on transcriptional activation. Elevating intracellular cAMP levels by cell-permeable cAMP analogs, the adenylyl cyclase activator, forskolin, or phosphodiesterase inhibitors increases CTLA4 mRNA expression in EL4 murine T cells and primary CD4(+) T cells. Activation of protein kinase A (using the protein kinase A-selective agonist, N6-phenyladenosine-cAMP), but not exchange proteins activated by cAMP (using the exchange proteins activated by cAMP-selective 8-pCPT-2Me-cAMP), increases CTLA4 promoter activity. Mutation constructs of the CTLA4 promoter uncover an enhancer binding site located within the -150 to -130 bp region relative to the transcription start site. Promoter analysis and chromatin immunoprecipitation assays suggest that cAMP response element-binding is a putative transcription factor induced by cAMP. We have previously shown that CTLA4 mediates decreased pulmonary inflammation in an LPS-induced murine model of acute lung injury (ALI). We observed that LPS can induce CTLA4 transcription via the same cAMP-inducible promoter region. The immunosuppressant, rapamycin, decreases cAMP and LPS-induced CTLA4 transcription in vitro. In vivo, LPS induces cAMP accumulation in bronchoalveolar lavage fluid, bronchoalveolar lavage cells, and lung tissues in ALI. We demonstrate that rapamycin decreases cAMP accumulation and CTLA4 expression in ALI. Together, these data suggest that cAMP may negatively regulate pulmonary inflammatory responses in vivo and in vitro by altering CTLA4 expression.
Collapse
Affiliation(s)
- Jinghong Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Induction of antigen-specific human T suppressor cells by membrane and soluble ILT3. Exp Mol Pathol 2012; 93:294-301. [PMID: 23018130 DOI: 10.1016/j.yexmp.2012.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Antigen-specific CD8 suppressor T cells (CD8(+) Ts) are adaptive regulatory T cells that are induced in vivo and in vitro by chronic antigenic stimulation of human T cells. CD8(+) Ts induce the upregulation of the inhibitory receptors ILT3 and ILT4 on monocytes and dendritic cells rendering these antigen presenting cells (APCs) tolerogenic. Tolerogenic APCs induce CD4(+) T helper anergy and elicit the differentiation of CD4(+) and CD8(+) T regulatory/suppressor cells. Overexpression of membrane ILT3 in APC results in inhibition of NF-κB activation, transcription of inflammatory cytokines and costimulatory molecules. Soluble ILT3-Fc which contains only the extracellular, Ig-like domain linked to mutated IgG1 Fc, is strongly immunosuppressive. ILT3-Fc, induces the differentiation of human CD8(+) Ts which inhibit CD4(+) Th and CD8(+) CTL effector function both in vitro and in vivo. The acquisition of Ts' function by primed CD8(+) T cells treated with ILT3-Fc was demonstrated to be the effect of the significant upregulation of BCL6, a transcriptional repressor of IL-2, IFN-gamma, IL-5 and granzyme B. The upregulated expression of BCL6, SOCS1 and DUSP10 is integral to the signature of ILT3-Fc-induced CD8(+) Ts. These genes are known inhibitors of cytokine production and TCR signaling and are targeted by miRNAs which are suppressed by ILT3-Fc. ILT3-Fc induces tolerance to allogeneic human islets and reverses rejection after its onset in a humanized NOD/SCID mouse model. Based on these findings we postulate that ILT3-Fc may become an important new agent for treatment of autoimmunity and transplant rejection.
Collapse
|
204
|
Gibson HM, Mishra A, Chan DV, Hake TS, Porcu P, Wong HK. Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sézary syndrome. J Invest Dermatol 2012; 133:249-57. [PMID: 22951729 DOI: 10.1038/jid.2012.265] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Highly regulated expression of the negative costimulatory molecule cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T cells modulates T-cell activation and proliferation. CTLA-4 is preferentially expressed in Th2 T cells, whose differentiation depends on the transcriptional regulator GATA3. Sézary syndrome (SS) is a T-cell malignancy characterized by Th2 cytokine skewing, impaired T-cell responses, and overexpression of GATA3 and CTLA-4. GATA3 is regulated by phosphorylation and ubiquitination. In SS cells, we detected increased polyubiquitinated proteins and activated GATA3. We hypothesized that proteasome dysfunction in SS T cells may lead to GATA3 and CTLA-4 overexpression. To test this hypothesis, we blocked proteasome function with bortezomib in normal T cells, and observed sustained GATA3 and CTLA-4 upregulation. The increased CTLA-4 was functionally inhibitory in a mixed lymphocyte reaction (MLR). GATA3 directly transactivated the CTLA-4 promoter, and knockdown of GATA3 messenger RNA and protein inhibited CTLA-4 induction mediated by bortezomib. Finally, knockdown of GATA3 in patient's malignant T cells suppressed CTLA-4 expression. Here we demonstrate a new T-cell regulatory pathway that directly links decreased proteasome degradation of GATA3, CTLA-4 upregulation, and inhibition of T-cell responses. We also demonstrate the requirement of the GATA3/CTLA-4 regulatory pathway in fresh neoplastic CD4+ T cells. Targeting of this pathway may be beneficial in SS and other CTLA-4-overexpressing T-cell neoplasms.
Collapse
Affiliation(s)
- Heather M Gibson
- Division of Dermatology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
205
|
Hubo M, Jonuleit H. Plasmacytoid dendritic cells are inefficient in activation of human regulatory T cells. PLoS One 2012; 7:e44056. [PMID: 22952871 PMCID: PMC3430613 DOI: 10.1371/journal.pone.0044056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/30/2012] [Indexed: 12/20/2022] Open
Abstract
Background Dendritic cells (DC) play a key role in initiation and regulation of immune responses. Plasmacytoid DC (pDC), a small subset of DC, characterized as type-I interferon producing cells, are critically involved in anti-viral immune responses, but also mediate tolerance by induction of regulatory T cells (Treg). In this study, we compared the capacity of human pDC and conventional DC (cDC) to modulate T cell activity in presence of Foxp3+ Treg. Principal Findings In coculture of T effector cells (Teff) and Treg, activated cDC overcome Treg anergy, abrogate their suppressive function and induce Teff proliferation. In contrast, pDC do not break Treg anergy but induce Teff proliferation even in coculture with Treg. Lack of Treg-mediated suppression is independent of proinflammatory cytokines like IFN-α, IL-1, IL-6 and TNF-α. Phenotyping of pDC-stimulated Treg reveals a reduced expression of Treg activation markers GARP and CTLA-4. Additional stimulation by anti-CD3 antibodies enhances surface expression of GARP and CTLA-4 on Treg and consequently reconstitutes their suppressive function, while increased costimulation with anti-CD28 antibodies is ineffective. Conclusions/Significance Our data show that activated pDC induce Teff proliferation, but are insufficient for functional Treg activation and, therefore, allow expansion of Teff also in presence of Treg.
Collapse
Affiliation(s)
- Mario Hubo
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | |
Collapse
|
206
|
Foxp3+CD25high CD4+ regulatory T cells from indeterminate patients with Chagas disease can suppress the effector cells and cytokines and reveal altered correlations with disease severity. Immunobiology 2012; 217:768-77. [DOI: 10.1016/j.imbio.2012.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/26/2012] [Accepted: 04/27/2012] [Indexed: 12/17/2022]
|
207
|
Venigalla RKC, Guttikonda PJ, Eckstein V, Ho AD, Sertel S, Lorenz HM, Tretter T. Identification of a human Th1-like IFNγ-secreting Treg subtype deriving from effector T cells. J Autoimmun 2012; 39:377-87. [PMID: 22824211 DOI: 10.1016/j.jaut.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 02/04/2023]
Abstract
Characteristics and function of effector T-cells with regulatory properties (induced Treg, "iTreg") in humans are ill defined. Here we report that a proportion of activated, initially CD4(+)CD25(-)CD127(+) effector T-cells from human peripheral blood can convert into T-cells with regulatory activity while concomitantly secreting IFNγ. Upon short-term culture in vitro these cells expressed a panel of common Treg markers, including FOXP3, CD25, GITR, HLA-DR and CTLA-4 in parallel with the Th1-specific transcription factor T-bet. Despite their own IFNγ secretion they effectively suppressed IFNγ secretion in effector T cells in parallel with inhibition of their proliferation. Highly purified IFNγ(+)iTreg shared many functional properties with nTreg: Their suppressive activity was antigen-independent, contact-mediated and cytokine-independent. Of note, in contrast to nTreg an inhibitor of TGF-β1 signalling promoted the proliferation of IFNγ(+)iTreg, without abrogating their suppressive function. In addition in vivo in tonsils of patients with chronic tonsillitis an IFNγ-secreting subpopulation of the CD4(+)CD25(-)CD127(+)CD45RA(-) memory T helper cell population was detected, which exhibited regulatory properties as well. Our results support the existence of Th1-like adaptive Tregs in humans that express a robust regulatory phenotype, comparable to nTreg and at the same time share characteristics of Th1 cells. According to our in vitro data IFNγ(+)iTreg can emerge from activated effector T cells and downregulate Th1-mediated immune responses, supporting the hypothesis of effector T cell plasticity as a means for proper initiation and self regulation of inflammatory processes. This report characterizes a new subpopulation of human adaptive regulatory T-cells that derive from effector Th-cells and concomitantly express Th1-specific T-bet and IFNγ with Foxp3.
Collapse
|
208
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
209
|
Schober L, Radnai D, Schmitt E, Mahnke K, Sohn C, Steinborn A. Term and preterm labor: decreased suppressive activity and changes in composition of the regulatory T-cell pool. Immunol Cell Biol 2012; 90:935-44. [PMID: 22751216 DOI: 10.1038/icb.2012.33] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulatory T cells (Tregs) exert a key role in tolerance induction to the semi-allogeneic fetus. Currently, it is not known whether immunological rejection processes are involved in the induction of normal term or irresistible preterm labor. In this study, we examined whether there were differences in the percentage of the total CD4(+)CD127(low+/-)CD25(+)FoxP3(+)-Treg-cell pool, its suppressive activity and its composition with distinct Treg subsets (HLA-DR(low+)-, HLA-DR(high+)-, HLA-DR(-)- and naive CD45RA(+)-Tregs) between preterm and term laboring women. We found that its percentage was decreased neither in term nor in preterm laboring women. Its suppressive activity was strongly diminished in preterm laboring women and to a lesser extent in spontaneously term laboring women. During the normal course of pregnancy, its composition changed in such a way that the percentage of naive CD45RA(+)-Tregs increased while the percentage of the highly suppressive HLA-DR(low+)- and HLA-DR(high+)-Tregs decreased significantly until term. With the onset of spontaneous term labor this phenomenon was reversed and reached significant values postpartum. In addition, we confirmed that both the decreased percentage of HLA-DR(+)-Tregs within the total Treg-cell pool and their decreased level of HLA-DR expression (depending on the percentage of HLA-DR(low+)- and HLA-DR(high+)-Tregs) had a reducing effect on the suppressive activity of the total Treg cell pool in preterm laboring women. However, spontaneous term delivery was associated with increasing percentages of HLA-DR(+)-Tregs and increasing HLA-DR expression of this Treg subset. Therefore, it becomes apparent that the mechanisms inducing term or preterm labor may be completely different.
Collapse
Affiliation(s)
- Linda Schober
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
210
|
Whiteside TL, Mandapathil M, Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 2012; 18:5217-23. [PMID: 22087822 DOI: 10.2174/092986711798184334] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/01/2011] [Indexed: 12/30/2022]
Abstract
Tumor-induced dysfunction of immune cells is a common problem in cancer. Tumors induce immune suppression by many different mechanisms, including accumulation of regulatory T cells (Treg). Adaptive Treg (Tr1) generated in the tumor microenvironment express CD39 and CD73 ectonucleotidases, produce adenosine and are COX2+PGE2+. Adenosine and PGE2 produced by Tr1 or tumor cells bind to their respective receptors on the surface of T effector cells (Teff) and cooperate in up-regulating cytosolic 3'5'-cAMP levels utilizing adenylyl cyclase isoform 7 (AC-7). In Teff, increased cAMP mediates suppression of anti-tumor functions. Treg, in contrast to Teff, seem to require high cAMP levels for mediating suppression. This differential requirement of Treg and Teff for cAMP offers an opportunity for pharmacologic interventions using selected inhibitors of the adenosine/PGE2 pathways. Blocking of adenosine/PGE2 production by Tr1 or blocking binding of these factors to their receptors on T cells or inhibition of cAMP synthesis in Teff all represent novel therapeutic strategies that used in combination with conventional therapies could restore anti-tumor functions of Teff . At the same time, these inhibitors could disarm Tr1 cells by depriving them of the factors promoting their generation and activity or by down-regulating 3'5'-cAMP levels. Thus, the pharmacologic control of Treg-Teff interactions offers a novel strategy for restoration of anti-tumor Teff functions and silencing of Treg. Used in conjunction with anti-cancer drugs or with immune therapies, this strategy has a potential to improve therapeutic effects by preventing or reversing tumor-induced immune suppression.
Collapse
Affiliation(s)
- T L Whiteside
- University of Pittsburgh Cancer Institute, Research Pavilion at the Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213-1863, USA.
| | | | | |
Collapse
|
211
|
|
212
|
Becker C, Bopp T, Jonuleit H. Boosting regulatory T cell function by CD4 stimulation enters the clinic. Front Immunol 2012; 3:164. [PMID: 22719741 PMCID: PMC3376463 DOI: 10.3389/fimmu.2012.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023] Open
Abstract
Understanding tolerance mechanisms at the cellular and molecular level holds the promise to establish novel immune intervention therapies in patients with allergy or autoimmunity and to prevent transplant rejection. Administration of mAb against the CD4 molecule has been found to be exceptionally well suited for intentional tolerance induction in rodent and non-human primate models as well as in humanized mouse models. Recent evidence demonstrated that regulatory T cells (Treg) are directly activated by non-depleting CD4 ligands and suggests Treg activation as a central mechanism in anti-CD4-mediated tolerance induction. This review summarizes the current knowledge on the role of Treg in peripheral tolerance, addresses the putative mechanisms of Treg-mediated suppression and discusses the clinical potential of harnessing Treg suppressive activity through CD4 stimulation.
Collapse
Affiliation(s)
- Christian Becker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
213
|
Are we ready for the use of foxp3(+) regulatory T cells for immunodiagnosis and immunotherapy in kidney transplantation? J Transplant 2012; 2012:397952. [PMID: 22690325 PMCID: PMC3368592 DOI: 10.1155/2012/397952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
The existence of T-cell subsets naturally committed to perform immunoregulation has led to enthusiastic efforts to investigate their role in the immunopathogenesis of transplantation. Being able to modulate alloresponses, regulatory T cells could be used as an immunodiagnostic tool in clinical kidney transplantation. Thus, the measurement of Foxp3 transcripts, the presence of regulatory T cells in kidney biopsies, and the phenotypic characterisation of the T-cell infiltrate could aid in the diagnosis of rejection and the immune monitoring and prediction of outcomes in kidney transplantation. Interestingly, the adoptive transfer of regulatory T cells in animal models has been proven to downmodulate powerful alloresponses, igniting translational research on their potential use as an immunomodulatory therapy. For busy transplant clinicians, the vast amount of information in the literature on regulatory T cells can be overwhelming. This paper aims to highlight the most applicable research findings on the use of regulatory T cells in the immune diagnosis and potential immunomodulatory therapy of kidney transplant patients. However, can we yet rely on differential regulatory T-cell profiles for the identification of rejection or to tailor patient's immunosuppression? Are we ready to administer regulatory T cells as inductive or adjunctive therapy for kidney transplantation?
Collapse
|
214
|
Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, Amani D. Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 2012; 77:306-11. [PMID: 22608141 DOI: 10.1016/j.lungcan.2012.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 01/21/2023]
Abstract
We hypothesized that the increased percentages of Regulatory T (Treg) cells, as well as over expression of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) by lymphocyte subsets might be associated with lung cancer. Accordingly, peripheral blood of 23 new cases with non-small cell lung cancer (NSCLC) and 16 healthy volunteers were investigated, by follow cytometry, for the prevalence of CD4+CD25+FoxP3+ Treg cells as well as surface (sur-) and intracellular (In-) expression of CTLA-4 by the main lymphocyte subsets (CD4+, CD8+ and CD19+). Results indicated that NSCLC patients had an increased percentage of Treg cells than controls (7.9±4.1 versus 3.8±1.8, P=0.001). The proportion of Treg cells was observed to be increased by stage increase in patients (stage II=5.2±2.4, stage III=7.9±4.4, stage IV=12.0±2.2), and also significantly higher in metastatic than non-metastatic stages (12.0±2.2 versus 6.8±3.9, P=0.023). Increase of SurCTLA-4- as well as InCTLA-4-expressing lymphocytes in patients were observed in nearly all investigated subsets, but significant differences between patients and controls were observed about InCTLA-4+CD4+ lymphocytes (8.6±7.1 and 3.8±5.3 respectively, P=0.006) as well as SurCTLA-4+CD8+ lymphocytes (0.3±0.2 and 0.2±0.1 respectively, P=0.047). In conclusion, the results suggest that immunotherapy regimen targeting CTLA-4 and Treg cells might be beneficial in lung cancer patients.
Collapse
Affiliation(s)
- Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
215
|
Leventhal J, Huang Y, Xu H, Goode I, Ildstad ST. Novel regulatory therapies for prevention of Graft-versus-host disease. BMC Med 2012; 10:48. [PMID: 22587383 PMCID: PMC3361491 DOI: 10.1186/1741-7015-10-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/15/2012] [Indexed: 12/12/2022] Open
Abstract
Graft-versus-host disease is one of the major transplant-related complications in allogeneic hematopoietic stem cell transplantation. Continued efforts have been made to prevent the occurrence of severe graft-versus-host disease by eliminating or suppressing donor-derived effector T cells. Conventional immunosuppression does not adequately prevent graft-versus-host disease, especially in mismatched transplants. Unfortunately, elimination of donor-derived T cells impairs stem cell engraftment, and delays immunologic reconstitution, rendering the recipient susceptible to post-transplant infections and disease relapse, with potentially lethal consequences. In this review, we discuss the role of dynamic immune regulation in controlling graft-versus-host disease, and how cell-based therapies are being developed using regulatory T cells and other tolerogenic cells for the prevention and treatment of graft-versus-host disease. In addition, advances in the design of cytoreductive conditioning regimens to selectively target graft-versus-host disease-inducing donor-derived T cells that have improved the safety of allogeneic stem cell transplantation are reviewed. Finally, we discuss advances in our understanding of the tolerogenic facilitating cell population, a phenotypically and functionally distinct population of bone marrow-derived cells which promote hematopoietic stem cell engraftment while reducing the risk of graft-versus-host disease.
Collapse
Affiliation(s)
- Joseph Leventhal
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
216
|
Sorafenib prevents escape from host immunity in liver cirrhosis patients with advanced hepatocellular carcinoma. Clin Dev Immunol 2012; 2012:607851. [PMID: 22666283 PMCID: PMC3359796 DOI: 10.1155/2012/607851] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 12/11/2022]
Abstract
Purpose. It has been reported that Th2 cytokines downregulate antitumor immunity, while activation of type T cells promotes antitumor immunity. The aim of this paper was to evaluate host immunity in liver cirrhosis (LC) patients with advanced hepatocellular carcinoma (aHCC) receiving sorafenib therapy. Methods. Forty-five adult Japanese LC patients received sorafenib for aHCC between 2009 and 2011 at our hospital. Sorafenib was administered at a dose of 200–800 mg/day for 4 weeks. Blood samples were collected before and after treatment. Results. Eleven patients were treated with sorafenib at 200 mg/day (200 group), 27 patients received sorafenib at 400 mg/day (400 group), and 7 patients were given sorafenib at 800 mg/day (800 group). There was no significant change in the percentage of Th1 cells after treatment in any group. However, the percentages of Th2 cells and regulatory T cells were significantly decreased after treatment in the 400 group and 800 group compared with before treatment, although there was no significant change after treatment in the 200 group. Conclusions. These results indicate that treatment with sorafenib might induce Th1 dominance and prevent the escape of tumor cells from the host immune system in LC patients with aHCC.
Collapse
|
217
|
Stelmaszczyk-Emmel A, Jackowska T, Rutkowska-Sak L, Marusak-Banacka M, Wąsik M. Identification, frequency, activation and function of CD4+ CD25(high)FoxP3+ regulatory T cells in children with juvenile idiopathic arthritis. Rheumatol Int 2012; 32:1147-54. [PMID: 21249500 PMCID: PMC3336051 DOI: 10.1007/s00296-010-1728-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/30/2010] [Indexed: 11/25/2022]
Abstract
The aim of the study was to test the frequency of CD4+ CD25(high)FoxP3 regulatory T cells in JIA patients and to assess their activation status and functional activity. The study involved 12 children with JIA and 35 healthy control subjects. PBMC were stained with monoclonal antibodies (anti-CD25, anti-CD4, anti-CD127, anti-CD69, anti-CD71, and anti-FoxP3). The samples were evaluated using flow cytometer. CD4+ CD25- and CD4+ CD25+ cells were isolated by negative and positive selection with magnetic microbeads. CD4+ CD25+ and CD4+ CD25- cells were cultured separately and co-cultured (1:1) with or without PHA. The percentage of Tregs in JIA patients was significantly decreased in comparison with controls (median, 3.2 vs. 4.6; P = 0.042). Relative fluorescence intensities of FoxP3 were higher in JIA patients than in controls (median, 9.1 vs. 6.8). The percentage of activated Tregs (CD71+) was significantly higher in JIA patients in comparison with controls (median, 6.5 vs. 2.8; P = 0.00043). CD4+ CD25+ cells derived from JIA patients and controls were anergic upon PHA stimulation, while CD4+ CD25- cells showed intensive proliferative response. The proliferation rate of CD4+ CD25- cells stimulated by PHA was decreased in co-cultures. In JIA patients, the inhibition of proliferation of CD4+ CD25- cells by CD4+ CD25+ cells was 37.9%, whereas in controls it was significantly lower (55.7%, P = 0.046). JIA patients had statistically lower percentage of Tregs in peripheral blood compared to controls. CD4+ CD25+ cells sorted from peripheral blood of JIA patients had statistically lower ability to suppress CD4+ CD25- cell proliferation in comparison with cells obtained from controls.
Collapse
Affiliation(s)
- Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, ul. Marszalkowska 24, 00-576 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
218
|
Pleiotropic targets: the problem of shared signaling circuitry in rheumatoid arthritis disease progression and protection. Future Med Chem 2012; 4:735-50. [PMID: 22530638 DOI: 10.4155/fmc.12.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The immune response is replete with feedback control at many levels. These protective circuits are even functional within the arthritic joint, tempering disease to varying extents. An optimal therapy would inhibit autoimmune processes while maintaining protective circuitry. However, many of the cells and proteins that serve as important mediators of disease progression also play an active role in these protective circuits. The hypothesis considered in this review is that the inadvertent inhibition of protective circuitry adversely affects efficacy. Conversely, if therapeutics can be designed, which avoid inhibiting known regulatory circuits, efficacy will be improved. Understanding where these processes share signaling molecules will be crucial to the development of the next generation of therapeutics. This review discusses three well-defined signal transduction cascades; IL-2, IFNγ and TNF-α, and demonstrate within two cell types, T cells and macrophages, how these cytokines may contribute both to protection and to disease progression.
Collapse
|
219
|
Spencer PS, Hakam SM, Laissue PP, Jabeen A, Jain P, Hayrabedyan S, Todorova K, Blanch A, McElhinney JMWR, Muhandiram N, Alkhatib S, Dealtry GB, Miranda-Sayago JM, Fernández N. Key cellular components and interactive histocompatibility molecules regulating tolerance to the fetal allograft. Am J Reprod Immunol 2012; 68:95-9. [PMID: 22531035 DOI: 10.1111/j.1600-0897.2012.01138.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Implantation is a major landmark in life. It involves the correct apposition of the embryo in the maternal endometrium. The cellular environment influences placenta development, and direct contact of the fetus with maternal tissues is achieved through decidual cells. At the decidua, and at systemic level, the correct balance of cells potentially acting as antigen-presenting cells and histocompatibility products play a pivotal role in achieving feto-maternal tolerance. Here, we review some of the current issues associated with the interplay between cells and molecules needed for pregnancy development.
Collapse
Affiliation(s)
- Patrick S Spencer
- School of Biological Sciences, University of Essex, Colchester, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Lindqvist CA, Loskog ASI. T regulatory cells in B-cell malignancy - tumour support or kiss of death? Immunology 2012; 135:255-60. [PMID: 22112044 DOI: 10.1111/j.1365-2567.2011.03539.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that T regulatory (Treg) cells counteract tumour immunity. However, conflicting results describing the role of Treg cells in haematological tumours warrant further investigations to clarify the interactions between Treg cells and the tumour. B-cell malignancy derives from different stages of B-cell development and differentiation in which T cells play a profound role. The transformed B cell may still be in need of T-cell help to thrive but simultaneously they may be recognized and destroyed by cytotoxic lymphocytes. Recent reports demonstrate that Treg cells can suppress and even kill B cells as part of their normal function to rescue the body from autoimmunity. An emerging body of evidence points out that Treg cells not only inhibit tumour-specific T cells but may also have a role in suppressing the progression of the B-cell tumour. In this review, we discuss the origin and function of Treg cells and their role in patients with B-cell tumours.
Collapse
Affiliation(s)
- Camilla A Lindqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
221
|
Identification of new hematopoietic cell subsets with a polyclonal antibody library specific for neglected proteins. PLoS One 2012; 7:e34395. [PMID: 22496798 PMCID: PMC3319577 DOI: 10.1371/journal.pone.0034395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs.
Collapse
|
222
|
CD83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer 2012; 15:144-53. [PMID: 22083420 DOI: 10.1007/s10120-011-0090-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/11/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are potent antigen-presenting cells that are central to the regulation, maturation, and maintenance of the cellular immune response against cancer. In contrast, CD4(+)CD25(+) regulatory T cells (Tregs) play a central role in self-tolerance and suppress antitumor immunity. In this study, we investigated the clinical significance of mature CD83(+) DCs and Foxp3(+) Tregs in the primary tumor and regional lymph nodes from the viewpoint of the two opposing players in the immune responses. METHODS We investigated, immunohistochemically, the density of CD83(+) DCs and Foxp3(+) Tregs in primary lesions of gastric cancer (n = 123), as well as in regional lymph nodes with (n = 40) or without metastasis (n = 40). RESULTS Decreased density of CD83(+) DCs and increased density of Foxp3(+) Tregs were observed in the primary tumor and metastatic lymph nodes. Density was significantly correlated with certain clinicopathological features. Poor prognosis was observed in patients with a low density of CD83(+) DCs and a high density of Foxp3(+) Tregs in primary lesions. For patients with metastatic lymph nodes, the density of CD83(+) DCs in negative lymph nodes was found to be an independent prognostic factor by multivariate analysis. CONCLUSION The density of CD83(+) DCs and Foxp3(+) Tregs was inversely correlated with tumor progression and reflected the prognosis of gastric cancer.
Collapse
|
223
|
Taylor AL, Cross ELA, Llewelyn MJ. Induction of contact-dependent CD8(+) regulatory T cells through stimulation with staphylococcal and streptococcal superantigens. Immunology 2012; 135:158-67. [PMID: 22043981 DOI: 10.1111/j.1365-2567.2011.03529.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes are potent stimulators of polyclonal T-cell proliferation. They are the causes of toxic shock syndrome but also induce CD25(+) FOXP3(+) regulatory cells in the CD4 compartment. Several studies have recently described different forms of antigen-induced regulatory CD8(+) T cells in the context of inflammatory diseases and chronic viral infections. In this paper we show that bacterial superantigens are potent inducers of human regulatory CD8(+) T cells. We used four prototypic superantigens of S. aureus (toxic shock syndrome toxin-1 and staphylococcal enterotoxin A) and Str. pyogenes (streptococcal pyrogenic exotoxins A and K/L). At concentrations below 1 ng/ml each toxin triggers concentration-dependent T-cell receptor Vβ-specific expression of CD25 and FOXP3 on CD8(+) T cells. This effect is independent of CD4(+) T-cell help but requires antigen-presenting cells for maximum effect. The cells also express the activation/regulatory markers cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumour necrosis factor receptor-related protein and skin homing adhesins CD103 and cutaneous lymphocyte-associated antigen. Superantigen-induced CD25(+) FOXP3(+) CD8(+) T cells were as potent as freshly prepared naturally occurring CD4(+) regulatory T cells in suppressing proliferation of CD4(+) CD25(-) T cells in response to anti-CD3 stimulation. Although superantigen-induced CD8(+) CD25(+) FOXP3(+) express interleukin-10 and interferon-γ their suppressive function is cell contact dependent. Our findings indicate that regulatory CD8(+) T cells may be a feature of acute bacterial infections contributing to immune evasion by the microbe and disease pathogenesis. The presence and magnitude of regulatory CD8(+) T-cell responses may represent a novel biomarker in such infections. Superantigen-induced regulatory CD8(+) T cells also have therapeutic potential.
Collapse
Affiliation(s)
- Amanda L Taylor
- Division of Clinical Medicine, Brighton and Sussex Medical School, Falmer, UK
| | | | | |
Collapse
|
224
|
Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 2012; 22:327-34. [PMID: 22465232 DOI: 10.1016/j.semcancer.2012.03.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/15/2012] [Indexed: 02/06/2023]
Abstract
The role regulatory T cells (Treg) play in cancer development and progression is not clear. Earlier evidence suggested that CD4(+)FOXP3(+)CD25(high) Treg accumulate in tumors and the peripheral blood of patients with cancer and through suppression of anti-tumor immune responses promote tumor growth. However, more recent data indicate that in certain cancers, such as colorectal carcinoma (CRC), Treg suppress bacteria-driven inflammation which promotes carcinogenesis and thus benefit the host. Treg appear to play a dual role in cancer. This might explain why the frequency and functions of Treg are associated with a poor prognosis in some cancers but with favorable outcome in others. The clinical and prognostic significance of Treg in cancer depends on environmental factors, including infectious agents, tumor-derived products and locally-produced cytokines, which shape the nature of immune responses, including Treg generation, recruitment and survival. Adaptive or inducible (i) Treg or Tr1 are the major subset(s) of Treg present in cancer. These iTreg are a distinct subset of regulatory cells that phenotypically and functionally differ from FOXP3(+) natural (n) Treg responsible for peripheral tolerance. They mediate powerful suppression of effector T cells via diverse mechanisms, produce immunosuppressive cytokines, notably TGF-β as well as prostaglandin E2 and adenosine, and are resistant to apoptosis or oncological therapies. Strategies for silencing of Tr1 in patients with cancer will require novel approaches that can selectively deplete these cells or block molecular pathways they utilize.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
225
|
Regulatory T cells in type 1 autoimmune pancreatitis. Int J Rheumatol 2012; 2012:795026. [PMID: 22536257 PMCID: PMC3321297 DOI: 10.1155/2012/795026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/16/2012] [Indexed: 12/24/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a newly recognized pancreatic disorder. Recently, International Consensus Diagnostic Criteria for AIP (ICDC) was published. In this ICDC, AIP was classified into Type 1 and Type 2. Patients with Type 1 AIP have several immunologic and histologic abnormalities specific to the disease, including increased levels of serum IgG4 and storiform fibrosis with infiltration of lymphocytes and IgG4-positive plasmacytes in the involved organs. Among the involved organs showing extrapancreatic lesions, the bile duct is the most common, exhibiting sclerosing cholangitis (IgG4-SC). However, the role of IgG4 is unclear. Recently, it has been reported that regulatory T cells (Tregs) are involved in both the development of various autoimmune diseases and the shift of B cells toward IgG4, producing plasmacytes. Our study showed that Tregs were increased in the pancreas with Type 1 AIP and IgG4-SC compared with control. In the patients with Type 1 AIP and IgG4-SC, the numbers of infiltrated Tregs were significantly positively correlated with IgG4-positive plasma cells. In Type 1 AIP, inducible costimulatory molecule (ICOS)+ and IL-10+ Tregs significantly increased compared with control groups. Our data suggest that increased quantities of ICOS+ Tregs may influence IgG4 production via IL-10 in Type 1 AIP.
Collapse
|
226
|
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3:51. [PMID: 22566933 PMCID: PMC3341960 DOI: 10.3389/fimmu.2012.00051] [Citation(s) in RCA: 524] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/01/2012] [Indexed: 12/22/2022] Open
Abstract
CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4(+)CD25(-) conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca(2+)), NFAT, and NF-κB signaling in Tcons by Tregs.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics, Tumorimmunology Program, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | | |
Collapse
|
227
|
Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, Desjardins A, Friedman AH, Friedman HS, Herndon JE, Coan A, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Mitchell DA. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 2012; 7:e31046. [PMID: 22383993 PMCID: PMC3288003 DOI: 10.1371/journal.pone.0031046] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells. OBJECTIVE To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses. METHODOLOGY A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2Rα MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete T(Regs) in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ). RESULTS AND CONCLUSIONS Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study. TRIAL REGISTRATION ClinicalTrials.gov NCT00626015.
Collapse
Affiliation(s)
- John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J 2012; 26:2253-76. [DOI: 10.1096/fj.11-193672] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Klaus G. Schmetterer
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Alina Neunkirchner
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| |
Collapse
|
229
|
Maślanka T, Jaroszewski JJ. In vitro effects of dexamethasone on bovine CD25+CD4+ and CD25-CD4+ cells. Res Vet Sci 2012; 93:1367-79. [PMID: 22349593 DOI: 10.1016/j.rvsc.2012.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 12/31/2022]
Abstract
This paper investigates the in vitro effect of dexamethasone on bovine CD25highCD4+, CD25lowCD4+ and CD25-CD4+ T cells. Only a small percentage of bovine CD25highCD4+ (2-4%) and CD25lowCD4+ (1-2%) cells expressed Foxp3. Dexamethasone caused considerable loss of CD25-CD4+ cells, but it increased the relative and absolute numbers of CD25highCD4+ and CD25lowCD4+ lymphocytes, while at the same time reducing the percentage of Foxp3+ cells within the latter subpopulations. Considering all these, as well as the intrinsically poor Foxp3 expression in bovine CD25+CD4+, it can be concluded that the drug most probably increased the number of activated non-regulatory CD4+ lymphocytes. It has been found that changes in cell number were at least partly caused by proapoptotic effect of the drug on CD25-CD4+ cells and antiapoptotic effect on CD25highCD4+ and CD25lowCD4+ cells. The results obtained from this study indicate that the involvement of CD4+ lymphocytes in producing the anti-inflammatory and immunosuppressive effect of dexamethasone in cattle results from the fact that the drug had a depressive effect on the production of IFN-γ by CD25-CD4+ cells. Secretion of TGF-β and IL-10 by CD4+ lymphocytes was not involved in producing these pharmacological effects, because the drug did not affect production of TGF-β and, paradoxically, it reduced the percentage of IL-10+CD4+ cells.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Street 13, 10-718 Olsztyn, Poland.
| | | |
Collapse
|
230
|
Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One 2012; 7:e30815. [PMID: 22303460 PMCID: PMC3267747 DOI: 10.1371/journal.pone.0030815] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/21/2011] [Indexed: 11/30/2022] Open
Abstract
Background Immunosuppressive factors such as regulatory T cells (Tregs) limit the efficacy of immunotherapies. Histone deacetylase (HDAC) inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA) model or a survivin-based vaccine therapy (SurVaxM) in a castration resistant prostate cancer (CR Myc-CaP) model. Methods and Results RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg) entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs). In vitro low dose entinostat (0.5 µM) induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat. Conclusions These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Benzamides/pharmacology
- Benzamides/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Castration
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Histone Deacetylases/metabolism
- Humans
- Immunity/drug effects
- Immunotherapy
- Interferon-gamma/immunology
- Interleukin-2/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Lymphocyte Depletion
- Male
- Mice
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Pyridines/pharmacology
- Pyridines/therapeutic use
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
- Li Shen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michael Ciesielski
- Department of Neuro-Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Swathi Ramakrishnan
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Kiersten M. Miles
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Leigh Ellis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Paula Sotomayor
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Protul Shrikant
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Robert Fenstermaker
- Department of Neuro-Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Roberto Pili
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
231
|
Li CH, Kuo WH, Chang WC, Huang SC, Chang KJ, Sheu BC. Activation of regulatory T cells instigates functional down-regulation of cytotoxic T lymphocytes in human breast cancer. Immunol Res 2012; 51:71-9. [PMID: 21918886 DOI: 10.1007/s12026-011-8242-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulatory T (Treg) cells are a subpopulation of T cells with the ability to control the responses of both CD4+ and CD8+ T cells. A case-control study was conducted in order to determine the functional attributes of Treg cells within the breast cancer milieu. Triple-color flow cytometry was utilized to study the phenotype expression of CD4+CD25+ Treg cells and CD8+ T cells in autologous tumor-infiltrating lymphocytes (TILs) and peripheral blood lymphocytes (PBLs) derived from 33 patients with stage I-III breast cancer. The prevalence of CD4+CD25+ T cells was significantly higher in TILs than in PBLs. The expressions of FOXP3 and GITR in CD4+CD25+ Treg cells were lower in PBLs than in TILs. Functional studies showed that both granzyme B and perforin were barely expressed in peripheral Treg cells but were highly expressed in Treg cells in the tumor microenvironment. On the contrary, down-regulation of both granzyme B and perforin expressed in the CD8+ cytotoxic T lymphocytes was significantly lower in TILs than in PBLs. Further functional assays demonstrated that Th1 cytokines and cytotoxic molecules were synchronously up-regulated in CD8+ cytotoxic T cells. The in vitro kinetic study showed that adequate activation of TILs derived from breast cancer tissue could restore the appropriate antitumor immune response.
Collapse
Affiliation(s)
- Chao-Hsu Li
- Department of Surgery, Buddhist Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
232
|
Mayer E, Bannert C, Gruber S, Klunker S, Spittler A, Akdis CA, Szépfalusi Z, Eiwegger T. Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter. PLoS One 2012; 7:e29355. [PMID: 22272233 PMCID: PMC3260151 DOI: 10.1371/journal.pone.0029355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/27/2011] [Indexed: 01/16/2023] Open
Abstract
Background: Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these “excessive” responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Methods: Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([3H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4+CD25highFoxP3+ T cells were characterized by mRNA analysis and flow cytometry. Results: Cord blood derived CD4+CD25high cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4+CD25high cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3+CD4+CD25highcells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4+CD25+CD127low) is highly suppressive even without prior antigen exposure. Conclusion: Cord blood harbors a very small subset of CD4+CD25high Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs.
Collapse
Affiliation(s)
- Elisabeth Mayer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christina Bannert
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Saskia Gruber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sven Klunker
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Andreas Spittler
- Surgical Research Laboratories and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Cezmi A. Akdis
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Eiwegger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
- * E-mail:
| |
Collapse
|
233
|
Biragyn A, Longo DL. Neoplastic "Black Ops": cancer's subversive tactics in overcoming host defenses. Semin Cancer Biol 2012; 22:50-9. [PMID: 22257681 DOI: 10.1016/j.semcancer.2012.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Metastatic cancer is usually an incurable disease. Cancers have a broad repertoire of subversive tactics to defeat the immune system. They mimic self, they down-regulate MHC molecules so that T cells are blind to their presence, they interfere with antigen presentation, and they produce factors that can kill T cells or paralyze their response to antigens. Furthermore, the same powerful machinery designed to prevent harmful autoimmune responses is also acting to protect cancers. In particular, cancer is protected with the help of so-called regulatory immune cells. These unique subsets of cells, represented by almost every immune cell type, function to control responses of effector immune cells. In this review, we will discuss the evidence that cancer actively promotes cross-talk of regulatory immune cells to evade immunosurveillance. We will also discuss the role of a newly described cell type, regulatory B cells, by emphasizing their importance in suppression of antitumor immune responses. Thus, cancer not only directly suppresses immune function, but also recruits components of the immune system to become traitors and protect the tumor from immune attack.
Collapse
Affiliation(s)
- Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, United States.
| | | |
Collapse
|
234
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
235
|
Abstract
CD4+CD25(high)CD127(low/neg) regulatory T cells (Tregs) play a critical role in the maintenance of peripheral tolerance and in controlling the development of autoimmune diseases. A combination of surface and intracellular markers, namely, CD25, CD39/CD73, CD62L, CD45RO, CD127, glucocorticoid-induced tumor necrosis factor receptor (GITR), CTLA-4, and the forkhead/winged helix transcription factor (FOXP3), has been used to characterize Tregs. Tregs suppress T effector responses mainly in a direct cell-cell contact manner. However, other mechanisms independent from this manner cannot be excluded entirely. It has been shown that Tregs can undergo limited expansion in vitro after the stimulation of TCR in the presence of exogenous cytokines, e.g., IL-2. Expanded Tregs retain their suppression function. Human Tregs have demonstrated their great potential to be used as a therapeutic intervention in preventing graft rejection and treating autoimmune diseases. In this chapter, we have given a review on how to characterize, isolate, expand Tregs and assess their suppressive functions.
Collapse
|
236
|
Goodman WA, Cooper KD, McCormick TS. Regulation generation: the suppressive functions of human regulatory T cells. Crit Rev Immunol 2012; 32:65-79. [PMID: 22428855 PMCID: PMC3413266 DOI: 10.1615/critrevimmunol.v32.i1.40] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proper regulation of immune homeostasis is necessary to limit inflammation and prevent autoimmune and chronic inflammatory diseases. Many autoimmune diseases, such as psoriasis, are driven by vicious cycles of activated T cells that are unable to be suppressed by regulatory T cells. Effective suppression of auto-reactive T cells by regulatory T cells (Treg) is critical for the prevention of spontaneous autoimmune disease. Psoriatic Treg cells have been observed to a defect in their capacity to regulate, which clearly contributes to psoriasis pathogenesis. A challenge for translational research is the development of novel therapeutic interventions for autoimmune diseases that will result in durable remissions. Understanding the mechanism(s) of dysregulated T cell responses in autoimmune disease will allow for the development of future therapeutic strategies that may be employed to specifically target pathogenic, proinflammatory cells. Several reports have demonstrated a pathogenic role for Thl and Thl7 cells in psoriasis as well as other autoimmune diseases. Similarly, several laboratories have independently demonstrated functional defects in regulatory T cells isolated from patients with numerous divergent autoimmune diseases. One primary challenge of research in autoimmune diseases is therefore to restore the balance between chronic T cell activation and impairment of Treg suppressor mechanisms. To this end, it is critical to develop an understanding of the many suppressive mechanisms employed by Treg cells in hopes of developing more targeted therapeutic strategies for Treg-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
237
|
Potential Application of Probiotics in the Prevention and Treatment of Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/841651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of inflammatory bowel diseases. These include changes in the gut microbiota, stimulation of the host immune responses, and reduction of the oxidative stress due to their antioxidant properties. A brief overview of the uses of genetically engineered LAB that produce either antioxidant enzymes (such as catalase and superoxide dismutase) or anti-inflammatory cytokines (such as IL-10) will also be discussed. This paper will show that probiotics should be considered in treatment protocols of IBD since they provide many beneficial effects and can enhance the effectiveness of traditional used medicines.
Collapse
|
238
|
Ernerudh J, Berg G, Mjösberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance. Am J Reprod Immunol 2011; 66 Suppl 1:31-43. [PMID: 21726336 DOI: 10.1111/j.1600-0897.2011.01049.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PROBLEM During pregnancy, the maternal immune system needs to adapt in order not to reject the semi-allogenic fetus. METHOD In this review, we describe and discuss the role of regulatory T (Treg) cells in fetal tolerance. RESULTS Treg cells constitute a T helper lineage that is derived from thymus (natural Treg cells) or is induced in the periphery (induced Treg cells). Treg cells are enriched at the fetal-maternal interface, showing a suppressive phenotype. In contrast, Treg cells are not increased in the circulation of pregnant women, and the suppressive capacity is similar to that in non-pregnant women. However, aberrations in Treg frequencies and functions, both systemically and in the uterus, may be involved in the complications of pregnancy. CONCLUSION Treg cells seem to have distinguished roles locally versus systemically, based on their distribution and phenotype.
Collapse
Affiliation(s)
- Jan Ernerudh
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
239
|
McMurchy AN, Levings MK. Suppression assays with human T regulatory cells: a technical guide. Eur J Immunol 2011; 42:27-34. [PMID: 22161814 DOI: 10.1002/eji.201141651] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/17/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022]
Abstract
The suppression of inappropriate immune responses by Treg cells is one of the major ways that the body maintains immune tolerance and homeostasis. Since defects in the suppressive capacity of Treg cells underlie many different immune-mediated diseases, there is great interest in developing ways to track the number and function of Treg cells as biomarkers of tolerance and in devising ways to enhance their function therapeutically. However, the methods of studying human Treg cells are fraught with technical challenges that can often lead to misinterpretation. The most common way to determine the suppressive capacity of human Treg cells is to measure their ability to suppress the proliferation of responding CD4(+) T cells. Here, we discuss the technical considerations that must be taken into account when performing suppression of T-cell proliferation assays with human Treg cells. We also consider how T cells may falsely appear suppressive because of dying cells in the system, improper resting of T-cell lines prior to the assay, or insufficient proliferation of the responding T cells. We propose that, in the future, classification of a population of cells as "regulatory" should rely on more than a simple test for blockade of CD4(+) T-cell proliferation.
Collapse
Affiliation(s)
- Alicia N McMurchy
- Child and Family Research Institute & Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
240
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
241
|
Proietti E, Moschella F, Capone I, Belardelli F. Exploitation of the propulsive force of chemotherapy for improving the response to cancer immunotherapy. Mol Oncol 2011; 6:1-14. [PMID: 22177803 DOI: 10.1016/j.molonc.2011.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Abstract
Since the early clinical studies of cancer immunotherapy, the question arose as to whether it was possible to combine it with standard cancer treatments, mostly chemotherapy. The answer, now, is past history. The combined use of immunotherapy and chemotherapy is not only possible but, in certain cases, can be advantageous, depending on the drug, the dose and the combination modalities. In order to find the best synergisms between the two treatments and to turn weak immunotherapeutic interventions into potent anticancer instruments, it is mandatory to understand the complex mechanisms responsible for the positive interactions between chemotherapy and immunotherapy. In this article, we review the current knowledge on mechanisms involved in the immunostimulating activity of chemotherapy and summarize the main studies in both mouse models and patients aimed at exploiting such mechanisms for enhancing the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Enrico Proietti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
242
|
Käser T, Gerner W, Saalmüller A. Porcine regulatory T cells: mechanisms and T-cell targets of suppression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1166-1172. [PMID: 21530576 DOI: 10.1016/j.dci.2011.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/30/2023]
Abstract
Tregs are known for their suppressive capacity on various immune reactions. In swine, existence as well as suppressive activity of Foxp3(+) Tregs could be demonstrated but detailed functional investigations are lacking. Therefore, we analysed the functional properties of porcine Tregs. We observed that besides TCR stimulation Tregs require IL-2 for activation. Furthermore, we investigated the following mechanisms of suppression: (i) cell-cell contact dependency, (ii) production of soluble suppressive factors and (iii) competition for growth factors. Our experiments revealed that suppression by porcine Tregs is abrogated by blocking cell-cell contact or by supplementing excessive amounts of IL-2. Additionally it could be shown that porcine Tregs produce immunosuppressive IL-10. Thereby, we demonstrated that porcine Tregs can use all main mechanisms of suppression mentioned above. Further investigations on the suppressive activity of Tregs using CFSE proliferation assays demonstrated that suppression affects T-helper cells as well as cytotoxic T lymphocytes and TCR-γδ T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Communication
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/metabolism
- Immune Tolerance
- Interleukin-10/biosynthesis
- Interleukin-10/immunology
- Interleukin-2/biosynthesis
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Swine/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Tobias Käser
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | | | | |
Collapse
|
243
|
Kim DS, Kim DH, Goo B, Cho YH, Park JM, Lee TH, Kim HO, Kim HS, Lee H, Lee JD, Byamba D, Je JH, Lee MG. Immunotherapy of malignant melanoma with tumor lysate-pulsed autologous monocyte-derived dendritic cells. Yonsei Med J 2011; 52:990-8. [PMID: 22028165 PMCID: PMC3220245 DOI: 10.3349/ymj.2011.52.6.990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Dendritic cell (DC) vaccination for melanoma was introduced because melanoma carries distinct tumor-associated antigens. The purpose of this study was to investigate the efficacy and safety of DC vaccination for melanoma in Korea. MATERIALS AND METHODS Five patients with stage IV and one with stage II were enrolled. Autologous monocyte-derived DCs (MoDCs) were cultured and pulsed with tumor-lysate, keyhole limpet hemocyanin, and cytokine cocktail for mature antigen-loaded DC. DC vaccination was repeated four times at 2-week intervals and 2-4×10⁷ DC were injected each time. RESULTS Reduced tumor volume was observed by PET-CT in three patients after DC vaccination. Delayed type hypersensitivity responses against tumor antigen were induced in five patients. Tumor antigen-specific IFN-γ-producing peripheral blood mononuclear cells were detected with enzyme-linked immunosorbent spot in two patients. However, the overall clinical outcome showed disease progression in all patients. CONCLUSION In this study, DC vaccination using tumor antigen-loaded, mature MoDCs led to tumor regression in individual melanoma patients. Further standardization of DC vaccination protocol is required to determine which parameters lead to better anti-tumor responses and clinical outcomes.
Collapse
Affiliation(s)
- Dae Suk Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Boncheol Goo
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hun Cho
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Mo Park
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hyung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei Cell Therapy Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han-Soo Kim
- Department of Laboratory Medicine, Yonsei Cell Therapy Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunah Lee
- Clinical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Doo Lee
- Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Dashlkhumbe Byamba
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Hwan Je
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
244
|
Ben Ahmed M, Zaraa I, Rekik R, Elbeldi-Ferchiou A, Kourda N, Belhadj Hmida N, Abdeladhim M, Karoui O, Ben Osman A, Mokni M, Louzir H. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res 2011; 25:99-109. [DOI: 10.1111/j.1755-148x.2011.00920.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
245
|
Wang WJ, Hao CF, Lin QD. Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients. J Reprod Immunol 2011; 92:97-102. [PMID: 22015003 DOI: 10.1016/j.jri.2011.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/04/2011] [Accepted: 08/11/2011] [Indexed: 10/16/2022]
Abstract
CD4(+)CD25(+) T cells (Treg cells) and macrophages play roles in the maintenance of maternal-fetal immunological tolerance. Treg cells suppress the function of macrophages via mechanisms mediated by cell-cell contact and production of soluble factors. The purpose of this study was to investigate regulation of macrophages by Treg cells within decidua from patients with unexplained recurrent miscarriage (RM) and normal control women during early pregnancy. Treg cells and macrophages were isolated from deciduas of unexplained RM (n=15) and control women (n=15) by magnetic cell separation and co-cultured for six days. Regulation of macrophages by Treg cells was assessed in the presence and absence of neutralizing anti-TGFβ antibodies and in transwell experiments. Expression of CD80, CD86, IL10, and IFNγ by macrophages was measured by flow cytometry or ELISA. Macrophage expression of CD80 and CD86 was higher in deciduas of unexplained RM patients compared with controls whereas the expression of IL10 was lower. There was no difference in the expression of IFNγ by macrophages between the two groups. Treg cells inhibited macrophage expression of CD80, CD86 and IFNγ and increased the expression of IL10. The regulatory effects of Treg cells were abrogated in the presence of neutralizing anti-TGFβ antibodies or by transwell culture. The phenotype of macrophages therefore differed in unexplained RM patients compared with normal early pregnant subjects. Macrophage regulation by Treg cells was shown to be mediated by cell-cell contact and TGFβ and this capacity was decreased in unexplained RM patients.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Reproduction Medical Center, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, China.
| | | | | |
Collapse
|
246
|
Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel) 2011; 3:3856-93. [PMID: 24213115 PMCID: PMC3763400 DOI: 10.3390/cancers3043856] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 02/06/2023] Open
Abstract
Cytokines are molecular messengers that allow the cells of the immune system to communicate with one another to generate a coordinated, robust, but self-limited response to a target antigen. The growing interest over the past two decades in harnessing the immune system to eradicate cancer has been accompanied by heightened efforts to characterize cytokines and exploit their vast signaling networks to develop cancer treatments. The goal of this paper is to review the major cytokines involved in cancer immunotherapy and discuss their basic biology and clinical applications. The paper will also describe new cytokines in pre-clinical development, combinations of biological agents, novel delivery mechanisms, and potential directions for future investigation using cytokines.
Collapse
Affiliation(s)
- Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kim Margolin
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
247
|
Cedeno-Laurent F, Dimitroff CJ. Galectin-1 research in T cell immunity: past, present and future. Clin Immunol 2011; 142:107-16. [PMID: 22019770 DOI: 10.1016/j.clim.2011.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/12/2023]
Abstract
Galectin-1 (Gal-1) is one of 15 evolutionarily conserved ß-galactoside-binding proteins that display biologically-diverse activities in pathogenesis of inflammation and cancer. Gal-1 is variably expressed on immune cells and endothelial cells, though is commonly found and secreted at high levels in cancer cells. It induces apoptosis in effector T cells through homodimeric binding of N-acetyllactosamines on membrane glycoproteins (Gal-1 ligands). There is also compelling evidence in models of cancer and autoimmunity that recombinant Gal-1 (rGal-1) can potentiate immunoregulatory function of T cells. Here, we review Gal-1's structural and functional features, while analyzing potential drawbacks and technical difficulties inherent to rGal-1's nature. We also describe new Gal-1 preparations that exhibit dimeric stability and functional activity on T cells, providing renewed excitement for studying Gal-1 efficacy and/or use as anti-inflammatory therapeutics. We lastly summarize strategies targeting the Gal-1-Gal-1 ligand axis to circumvent Gal-1-driven immune escape in cancer and boost anti-tumor immunity.
Collapse
|
248
|
Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas 2011; 40:1120-30. [PMID: 21926547 DOI: 10.1097/mpa.0b013e31821fc796] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Immunoglobulin G4 (IgG4)-related autoimmune pancreatitis (AIP) is a new clinical entity of pancreatic disorder. There are immunologic and histological abnormalities, including increased serum IgG4 levels and the infiltration of IgG4-positive plasmacytes. However, the role of IgG4 is unclear. Recently, regulatory T cells (Tregs) were reported to contribute to the development of various autoimmune diseases as well as in B-cell shifting to IgG4-producing plasmacytes. We studied Tregs in the pancreas and peripheral blood. METHODS We recruited 44 patients with IgG4-related AIP. For comparison, we recruited 37 patients with other pancreatic diseases and 27 healthy subjects as controls. We studied infiltrating cells in the pancreas by immunohistochemistry and analyzed inducible costimulator-positive Tregs and interleukin 10-positive Tregs in the peripheral blood by flow cytometry. RESULTS The ratio of Foxp3-positive cells to infiltrated mononuclear cells (Foxp3/Mono) in AIP patients was significantly higher than in patients with alcoholic chronic pancreatitis. In AIP, Foxp3/Mono and IgG4/Mono were positively correlated. Inducible costimulator-positive Tregs were significantly higher in AIP patients than in the patients with other pancreatic diseases and the healthy control group. Interleukin 10-positive Tregs were significantly higher in AIP patients than in the healthy control group. CONCLUSIONS Increased quantities of inducible costimulator-positive Tregs may influence IgG4 production in IgG4-related AIP.
Collapse
|
249
|
Chen X, Oppenheim JJ. Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int Immunopharmacol 2011; 11:1489-96. [PMID: 21635972 PMCID: PMC3183123 DOI: 10.1016/j.intimp.2011.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/29/2022]
Abstract
Authenticating markers for the functional suppressive CD4(+)FoxP3(+) regulatory T cells (Tregs) are important for the quantitative identification and enrichment of viable Tregs for possible therapeutic use. CD25 as a surrogate marker of Tregs has some limitations, which prompted investigators to identify more specific marker(s) of Tregs. The search for a firm molecular definition of Tregs resulted in the identification of FoxP3 as a better marker of this subset of CD4 cells. Nevertheless, FoxP3(+) Tregs are phenotypically and functionally heterogeneous. Even in normal mice, only a minority of FoxP3(+) T cells are potent suppressor cells. Therefore, additional marker(s) are required for delineation of truly functional Tregs. In this review, the studies identifying markers of functional Tregs, both in mouse and in human, and their functional implications are discussed. Our finding that TNFR2, which mediates the effect of TNF on the activation of Tregs, is a superb marker of the most suppressive subset of mouse Tregs and its application in the identification of functional human Tregs will also be reviewed.
Collapse
Affiliation(s)
- Xin Chen
- Basic Science Program, SAIC-Frederick, Inc, Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, United States.
| | | |
Collapse
|
250
|
Luan YY, Yao YM, Zhang L, Dong N, Zhang QH, Yu Y, Sheng ZY. Expression of tumor necrosis factor-α induced protein 8 like-2 contributes to the immunosuppressive property of CD4+CD25+ regulatory T cells in mice. Mol Immunol 2011; 49:219-26. [DOI: 10.1016/j.molimm.2011.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/13/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023]
|