201
|
Fonseca E, Machado AM, Vilas-Arrondo N, Gomes-Dos-Santos A, Veríssimo A, Esteves P, Almeida T, Themudo G, Ruivo R, Pérez M, da Fonseca R, Santos MM, Froufe E, Román-Marcote E, Venkatesh B, Castro LFC. Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes. Gen Comp Endocrinol 2020; 295:113527. [PMID: 32526329 DOI: 10.1016/j.ygcen.2020.113527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) are key transcription factors that originated in the common ancestor of metazoans. The vast majority of NRs are triggered by binding to either endogenous (e.g. retinoic acid) or exogenous (e.g. xenobiotics) ligands, and their evolution and expansion is tightly linked to the function of endocrine systems. Importantly, they represent classic targets of physiological exploitation by endocrine disrupting chemicals. The NR gene repertoire in different lineages has been shaped by gene loss, duplication and mutation, denoting a dynamic evolutionary route. As the earliest diverging class of gnathostomes (jawed vertebrates), cartilaginous fishes offer an exceptional opportunity to address the early diversification of NR gene families and the evolution of the endocrine system in jawed vertebrates. Here we provide an exhaustive analysis into the NR gene composition in five elasmobranch (sharks and rays) and two holocephalan (chimaeras) species. For this purpose, we generated also a low coverage draft genome assembly of the chimaera small-eyed rabbitfish, Hydrolagus affinis. We show that cartilaginous fish retain an archetypal NR gene repertoire, similar to that of mammals and coincident with the two rounds of whole genome duplication that occurred in the gnathostome ancestor. Furthermore, novel gene members of the non-canonical NR0B receptors were found in the genomes of this lineage. Our findings provide an essential view into the early diversification of NRs in gnathostomes, paving the way for functional studies.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - André M Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Nair Vilas-Arrondo
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain; UVIGO, phD Program "Marine Science, Tehchology and Management" (Do *MAR), Faculty of Biology, University of Vigo, 36200 Vigo, Spain
| | - André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Ana Veríssimo
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; CIBIO - Research Center in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, U.Porto, 4485-661 Vairão, Portugal
| | - Pedro Esteves
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; UVIGO, phD Program "Marine Science, Tehchology and Management" (Do *MAR), Faculty of Biology, University of Vigo, 36200 Vigo, Spain
| | - Tereza Almeida
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; CIBIO - Research Center in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, U.Porto, 4485-661 Vairão, Portugal
| | - Gonçalo Themudo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Montse Pérez
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain
| | - Rute da Fonseca
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Denmark
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Esther Román-Marcote
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore.
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
202
|
Fouret J, Brunet FG, Binet M, Aurine N, Enchéry F, Croze S, Guinier M, Goumaidi A, Preininger D, Volff JN, Bailly-Bechet M, Lachuer J, Horvat B, Legras-Lachuer C. Sequencing the Genome of Indian Flying Fox, Natural Reservoir of Nipah Virus, Using Hybrid Assembly and Conservative Secondary Scaffolding. Front Microbiol 2020; 11:1807. [PMID: 32849415 PMCID: PMC7403528 DOI: 10.3389/fmicb.2020.01807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
Indian fruit bats, flying fox Pteropus medius was identified as an asymptomatic natural host of recently emerged Nipah virus, which is known to induce a severe infectious disease in humans. The absence of P. medius genome sequence presents an important obstacle for further studies of virus–host interactions and better understanding of mechanisms of zoonotic viral emergence. Generation of the high-quality genome sequence is often linked to a considerable effort associated to elevated costs. Although secondary scaffolding methods have reduced sequencing expenses, they imply the development of new tools for the integration of different data sources to achieve more reliable sequencing results. We initially sequenced the P. medius genome using the combination of Illumina paired-end and Nanopore sequencing, with a depth of 57.4x and 6.1x, respectively. Then, we introduced the novel scaff2link software to integrate multiple sources of information for secondary scaffolding, allowing to remove the association with discordant information among two sources. Different quality metrics were next produced to validate the benefits from secondary scaffolding. The P. medius genome, assembled by this method, has a length of 1,985 Mb and consists of 33,613 contigs and 16,113 scaffolds with an NG50 of 19 Mb. At least 22.5% of the assembled sequences is covered by interspersed repeats already described in other species and 19,823 coding genes are annotated. Phylogenetic analysis demonstrated the clustering of P. medius genome with two other Pteropus bat species, P. alecto and P. vampyrus, for which genome sequences are currently available. SARS-CoV entry receptor ACE2 sequence of P. medius was 82.7% identical with ACE2 of Rhinolophus sinicus bats, thought to be the natural host of SARS-CoV. Altogether, our results confirm that a lower depth of sequencing is enough to obtain a valuable genome sequence, using secondary scaffolding approaches and demonstrate the benefits of the scaff2link application. The genome sequence is now available to the scientific community to (i) proceed with further genomic analysis of P. medius, (ii) to characterize the underlying mechanism allowing Nipah virus maintenance and perpetuation in its bat host, and (iii) to monitor their evolutionary pathways toward a better understanding of bats’ ability to control viral infections.
Collapse
Affiliation(s)
- Julien Fouret
- CIRI, International Center for Infectiology Research, Team Immunobiology of Viral Infections, Univ Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Viroscan3D, Trévoux, France
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Martin Binet
- CIRI, International Center for Infectiology Research, Team Immunobiology of Viral Infections, Univ Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Viroscan3D, Trévoux, France
| | - Noémie Aurine
- CIRI, International Center for Infectiology Research, Team Immunobiology of Viral Infections, Univ Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Francois Enchéry
- CIRI, International Center for Infectiology Research, Team Immunobiology of Viral Infections, Univ Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Séverine Croze
- Plateforme Profilexpert, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Joël Lachuer
- Cancer Research Center of Lyon, INSERM 1052/CNRS 5286, Université de Lyon, Lyon, France.,Plateforme Profilexpert, Université Claude Bernard Lyon 1, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, Team Immunobiology of Viral Infections, Univ Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine Legras-Lachuer
- Viroscan3D, Trévoux, France.,Ecologie Microbienne, CNRS UMR 5557, LEM, INRA, VetAgro Sup, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
203
|
Miyauchi E, Kim SW, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, Morita H, Taylor TD, Hattori M, Ohno H. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature 2020; 585:102-106. [PMID: 32848245 DOI: 10.1038/s41586-020-2634-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
Accumulating evidence indicates that gut microorganisms have a pathogenic role in autoimmune diseases, including in multiple sclerosis1. Studies of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)2,3, as well as human studies4-6, have implicated gut microorganisms in the development or severity of multiple sclerosis. However, it remains unclear how gut microorganisms act on the inflammation of extra-intestinal tissues such as the spinal cord. Here we show that two distinct signals from gut microorganisms coordinately activate autoreactive T cells in the small intestine that respond specifically to myelin oligodendrocyte glycoprotein (MOG). After induction of experimental autoimmune encephalomyelitis in mice, MOG-specific CD4+ T cells are observed in the small intestine. Experiments using germ-free mice that were monocolonized with microorganisms from the small intestine demonstrated that a newly isolated strain in the family Erysipelotrichaceae acts similarly to an adjuvant to enhance the responses of T helper 17 cells. Shotgun sequencing of the contents of the small intestine revealed a strain of Lactobacillus reuteri that possesses peptides that potentially mimic MOG. Mice that were co-colonized with these two strains showed experimental autoimmune encephalomyelitis symptoms that were more severe than those of germ-free or monocolonized mice. These data suggest that the synergistic effects that result from the presence of these microorganisms should be considered in the pathogenicity of multiple sclerosis, and that further study of these microorganisms may lead to preventive strategies for this disease.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seok-Won Kim
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawasumi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Onawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Todd D Taylor
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Immunobiology Laboratory, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan. .,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan.
| |
Collapse
|
204
|
Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, Smidt H, Sipkema D. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569. [PMID: 32819293 PMCID: PMC7440613 DOI: 10.1186/s12864-020-06971-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Francesca Forgiarini
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present address: Ministry of Health, Welfare and Sport, Parnassusplein 5, 2511 VX, The Hague, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
205
|
Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 2020; 6:mgen000409. [PMID: 32706331 PMCID: PMC7641418 DOI: 10.1099/mgen.0.000409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Metagenomics and marker gene approaches, coupled with high-throughput sequencing technologies, have revolutionized the field of microbial ecology. Metagenomics is a culture-independent method that allows the identification and characterization of organisms from all kinds of samples. Whole-genome shotgun sequencing analyses the total DNA of a chosen sample to determine the presence of micro-organisms from all domains of life and their genomic content. Importantly, the whole-genome shotgun sequencing approach reveals the genomic diversity present, but can also give insights into the functional potential of the micro-organisms identified. The marker gene approach is based on the sequencing of a specific gene region. It allows one to describe the microbial composition based on the taxonomic groups present in the sample. It is frequently used to analyse the biodiversity of microbial ecosystems. Despite its importance, the analysis of metagenomic sequencing and marker gene data is quite a challenge. Here we review the primary workflows and software used for both approaches and discuss the current challenges in the field.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| |
Collapse
|
206
|
Chen M, Wang B, Lu G, Zhong Z, Wang Z. Genome Sequence Resource of Magnaporthe oryzae Laboratory Strain 2539. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1029-1031. [PMID: 32343629 DOI: 10.1094/mpmi-02-20-0036-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnaporthe oryzae causes blast disease on more than 50 species of monocot plants, including important crops such as rice, millet, and most recently wheat. Additionally, it is an important model system for studying host-pathogen interaction. Here, we report a high-quality genome assembly and annotation of a laboratory strain 2539 of M. oryzae, which is a widely used progeny of a rice-infecting isolate and a grass-infecting isolate. The genome sequence of strain 2539 will be useful for studying the evolution, host adaption, and pathogenicity of M. oryzae, which will be beneficial for a better understanding of the mechanisms of host-pathogen interaction.
Collapse
Affiliation(s)
- Meilian Chen
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
207
|
Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Int J Biol Macromol 2020; 156:1064-1080. [DOI: 10.1016/j.ijbiomac.2019.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 11/20/2022]
|
208
|
Abstract
Computational tools used for genomic analyses are becoming more accurate but also increasingly sophisticated and complex. This introduces a new problem in that these pieces of software have a large number of tunable parameters that often have a large influence on the results that are reported. We quantify the impact of parameter choice on transcript assembly and take some first steps toward generating a truly automated genomic analysis pipeline by developing a method for automatically choosing input-specific parameter values for reference-based transcript assembly using the Scallop tool. By choosing parameter values for each input, the area under the receiver operator characteristic curve (AUC) when comparing assembled transcripts to a reference transcriptome is increased by an average of 28.9% over using only the default parameter choices on 1595 RNA-Seq samples in the Sequence Read Archive. This approach is general, and when applied to StringTie, it increases the AUC by an average of 13.1% on a set of 65 RNA-Seq experiments from ENCODE. Parameter advisors for both Scallop and StringTie are available on Github.
Collapse
Affiliation(s)
- Dan Deblasio
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Current affiliation: Department of Computer Science, The University of Texas at EI Paso, EI Paso, Texas, USA
| | - Kwanho Kim
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Current affiliation: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
209
|
Steenwyk JL, Lind AL, Ries LNA, Dos Reis TF, Silva LP, Almeida F, Bastos RW, Fraga da Silva TFDC, Bonato VLD, Pessoni AM, Rodrigues F, Raja HA, Knowles SL, Oberlies NH, Lagrou K, Goldman GH, Rokas A. Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Curr Biol 2020; 30:2495-2507.e7. [PMID: 32502407 PMCID: PMC7343619 DOI: 10.1016/j.cub.2020.04.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Interspecific hybridization substantially alters genotypes and phenotypes and can give rise to new lineages. Hybrid isolates that differ from their parental species in infection-relevant traits have been observed in several human-pathogenic yeasts and plant-pathogenic filamentous fungi but have yet to be found in human-pathogenic filamentous fungi. We discovered 6 clinical isolates from patients with aspergillosis originally identified as Aspergillus nidulans (section Nidulantes) that are actually allodiploid hybrids formed by the fusion of Aspergillus spinulosporus with an unknown close relative of Aspergillus quadrilineatus, both in section Nidulantes. Evolutionary genomic analyses revealed that these isolates belong to Aspergillus latus, an allodiploid hybrid species. Characterization of diverse infection-relevant traits further showed that A. latus hybrid isolates are genomically and phenotypically heterogeneous but also differ from A. nidulans, A. spinulosporus, and A. quadrilineatus. These results suggest that allodiploid hybridization contributes to the genomic and phenotypic diversity of filamentous fungal pathogens of humans.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, USA; Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Laure N A Ries
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thaila F Dos Reis
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Lilian P Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Rafael W Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thais Fernanda de Campos Fraga da Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Vania L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - André Moreira Pessoni
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, USA.
| |
Collapse
|
210
|
Yan WJ, Liu H, Yang TG, Liao R, Qin R. Complete chloroplast genome sequence of Chrysosplenium ramosum and Chrysosplenium alternifolium (Saxifragaceae). Mitochondrial DNA B Resour 2020; 5:2837-2838. [PMID: 33553626 PMCID: PMC7850371 DOI: 10.1080/23802359.2020.1790313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The complete chloroplast genome of Chrysosplenium ramosum Maxim. and Chrysosplenium alternifolium L. were reported in this study. The chloroplast genomes were 153,460 bp for C. ramosum and 152,619 bp for C. alternifolium. LSC and SSC of 83,670 bp and 17,342 bp were separated by two IRs of 26,224 bp each in C. ramosum. While C. alternifolium contained IRs of 25,992 bp, LSC of 83,524 bp and SSC of 17,111 bp. The chloroplast genome of C. ramosum contains 112 unique genes, including 79 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. And the chloroplast genome of C. alternifolium contains 112 unique genes, including 79 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. In addition, the rps12 gene was recognized as a trans-spliced gene and 17 intron-containing genes were also detected.
Collapse
Affiliation(s)
- Wen-jie Yan
- College of health and environment, Beijing Union University, Beijing, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Tian-ge Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Rui Liao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
211
|
Stohr JJ, Kluytmans-van den Bergh MF, Wedema R, Friedrich AW, Kluytmans JA, Rossen JW. Detection of extended-spectrum beta-lactamase (ESBL) genes and plasmid replicons in Enterobacteriaceae using PlasmidSPAdes assembly of short-read sequence data. Microb Genom 2020; 6:mgen000400. [PMID: 32589571 PMCID: PMC7478632 DOI: 10.1099/mgen.0.000400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Abstract
Knowledge of the epidemiology of plasmids is essential for understanding the evolution and spread of antimicrobial resistance. PlasmidSPAdes attempts to reconstruct plasmids using short-read sequence data. Accurate detection of extended-spectrum beta-lactamase (ESBL) genes and plasmid replicon genes is a prerequisite for the use of plasmid assembly tools to investigate the role of plasmids in the spread and evolution of ESBL production in Enterobacteriaceae. This study evaluated the performance of PlasmidSPAdes plasmid assembly for Enterobacteriaceae in terms of detection of ESBL-encoding genes, plasmid replicons and chromosomal wgMLST genes, and assessed the effect of k-mer size. Short-read sequence data for 59 ESBL-producing Enterobacteriaceae were assembled with PlasmidSPAdes using different k-mer sizes (21, 33, 55, 77, 99 and 127). For every k-mer size, the presence of ESBL genes, plasmid replicons and a selection of chromosomal wgMLST genes in the plasmid assembly was determined. Out of 241 plasmid replicons and 66 ESBL genes detected by whole-genome assembly, 213 plasmid replicons [88 %; 95 % confidence interval (CI): 83.9-91.9] and 43 ESBL genes (65 %; 95 % CI: 53.1-75.6) were detected in the plasmid assemblies obtained by PlasmidSPAdes. For most ESBL genes (83.3 %) and plasmid replicons (72.0 %), detection results did not differ between the k-mer sizes used in the plasmid assembly. No optimal k-mer size could be defined for the number of ESBL genes and plasmid replicons detected. For most isolates, the number of chromosomal wgMLST genes detected in the plasmid assemblies decreased with increasing k-mer size. Based on our findings, PlasmidSPAdes is not a suitable plasmid assembly tool for short-read sequence data for ESBL-encoding plasmids of Enterobacteriaceae.
Collapse
Affiliation(s)
- Joep J.J.M. Stohr
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Marjolein F.Q. Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald Wedema
- Department of Life Science and Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Alexander W. Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan A.J.W. Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W.A. Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
212
|
Bohr LL, Mortimer TD, Pepperell CS. Lateral Gene Transfer Shapes Diversity of Gardnerella spp. Front Cell Infect Microbiol 2020; 10:293. [PMID: 32656099 PMCID: PMC7324480 DOI: 10.3389/fcimb.2020.00293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Gardnerella spp. are pathognomonic for bacterial vaginosis, which increases the risk of preterm birth and the transmission of sexually transmitted infections. Gardnerella spp. are genetically diverse, comprising what have recently been defined as distinct species with differing functional capacities. Disease associations with Gardnerella spp. are not straightforward: patients with BV are usually infected with multiple species, and Gardnerella spp. are also found in the vaginal microbiome of healthy women. Genome comparisons of Gardnerella spp. show evidence of lateral gene transfer (LGT), but patterns of LGT have not been characterized in detail. Here we sought to define the role of LGT in shaping the genetic structure of Gardnerella spp. We analyzed whole genome sequencing data for 106 Gardnerella strains and used these data for pan genome analysis and to characterize LGT in the core and accessory genomes, over recent and remote timescales. In our diverse sample of Gardnerella strains, we found that both the core and accessory genomes are clearly differentiated in accordance with newly defined species designations. We identified putative competence and pilus assembly genes across most species; we also found them to be differentiated between species. Competence machinery has diverged in parallel with the core genome, with selection against deleterious mutations as a predominant influence on their evolution. By contrast, the virulence factor vaginolysin, which encodes a toxin, appears to be readily exchanged among species. We identified five distinct prophage clusters in Gardnerella genomes, two of which appear to be exchanged between Gardnerella species. Differences among species are apparent in their patterns of LGT, including their exchange with diverse gene pools. Despite frequent LGT and co-localization in the same niche, our results show that Gardnerella spp. are clearly genetically differentiated and yet capable of exchanging specific genetic material. This likely reflects complex interactions within bacterial communities associated with the vaginal microbiome. Our results provide insight into how such interactions evolve and are maintained, allowing these multi-species communities to colonize and invade human tissues and adapt to antibiotics and other stressors.
Collapse
Affiliation(s)
- Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
213
|
The Basis for Natural Multiresistance to Phage in Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9060339. [PMID: 32570896 PMCID: PMC7344871 DOI: 10.3390/antibiotics9060339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for long-term infections and is particularly resistant to treatments when hiding inside the extracellular matrix or biofilms. Phage therapy might represent an alternative to antibiotic treatment, but up to 10% of clinical strains appear to resist multiple phages. We investigated the characteristics of P. aeruginosa clinical strains naturally resistant to phages and compared them to highly susceptible strains. The phage-resistant strains were defective in lipopolysaccharide (LPS) biosynthesis, were nonmotile and displayed an important degree of autolysis, releasing phages and pyocins. Complete genome sequencing of three resistant strains showed the existence of a large accessory genome made of multiple insertion elements, genomic islands, pyocins and prophages, including two phages performing lateral transduction. Mutations were found in genes responsible for the synthesis of LPS and/or type IV pilus, the major receptors for most phages. CRISPR-Cas systems appeared to be absent or inactive in phage-resistant strains, confirming that they do not play a role in the resistance to lytic phages but control the insertion of exogenous sequences. We show that, despite their apparent weakness, the multiphage-resistant strains described in this study displayed selective advantages through the possession of various functions, including weapons to eliminate other strains of the same or closely related species.
Collapse
|
214
|
Using genetic markers to identify the origin of illegally traded agarwood-producing Aquilaria sinensis trees. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
215
|
Jeffress S, Arun-Chinnappa K, Stodart B, Vaghefi N, Tan YP, Ash G. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters. PLoS One 2020; 15:e0227396. [PMID: 32469865 PMCID: PMC7259788 DOI: 10.1371/journal.pone.0227396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.
Collapse
Affiliation(s)
- Sarah Jeffress
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Ben Stodart
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Gavin Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
216
|
Hornung BVH, Kuijper EJ, Smits WK. An in silico survey of Clostridioides difficile extrachromosomal elements . Microb Genom 2020; 5. [PMID: 31526450 PMCID: PMC6807378 DOI: 10.1099/mgen.0.000296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Gram-positive enteropathogen Clostridioides difficile (Clostridium difficile) is the major cause of healthcare-associated diarrhoea and is also an important cause of community-acquired infectious diarrhoea. Considering the burden of the disease, many studies have employed whole-genome sequencing of bacterial isolates to identify factors that contribute to virulence and pathogenesis. Though extrachromosomal elements (ECEs) such as plasmids are important for these processes in other bacteria, the few characterized plasmids of C. difficile have no relevant functions assigned and no systematic identification of plasmids has been carried out to date. Here, we perform an in silico analysis of publicly available sequence data to show that ~13 % of all C. difficile strains contain ECEs, with 1–6 elements per strain. Our approach identifies known plasmids (e.g. pCD6, pCD630 and cloning plasmids) and six novel putative plasmid families. Our study shows that plasmids are abundant and may encode functions that are relevant for C. difficile physiology. The newly identified plasmids may also form the basis for the construction of novel cloning plasmids for C. difficile that are compatible with existing tools.
Collapse
Affiliation(s)
- Bastian V H Hornung
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Ed J Kuijper
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden, The Netherlands
| |
Collapse
|
217
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
218
|
Liu Y, Sun J, Zhang M, Yang G, Wang R, Xu J, Li Q, Zhang S, Le W, Hao B, Li Y, Wu J. Identification of key genes related to seedlessness by genome-wide detection of structural variation and transcriptome analysis in 'Shijiwuhe' pear. Gene 2020; 738:144480. [PMID: 32081696 DOI: 10.1016/j.gene.2020.144480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Seedless fruits are highly marketable because they are easier to eat than fruits with seeds. 'Shijiwuhe' is a seedless pear cultivar that is a mutant derived from an F1 hybridization population ('Bartlett' x 'Yali'). Little is known about the key genes controlling seedless pear fruit. In this study, field experiments revealed that seedless 'Shijiwuhe' pear was not due to parthenocarpy, and that it was self-incompatible. Single nucleotide polymorphisms (SNPs), small insertions and deletions (InDels) and structural variations (SVs) were characterized using DNA sequencing data between 'Shijiwuhe' and parental cultivars. A total of 1498 genes were found to be affected by SV and over 50% of SVs were located in promoter regions. Transcriptome analysis was conducted at three time points (4, 8, and 12 days after cross-pollination) during early fruit development of 'Shijiwuhe', 'Bartlett', and 'Yali'. In total, 1438 differentially expressed genes (DEGs) were found between 'Shijiwuhe' and parental cultivars 'Bartlett' and 'Yali'. We found 1193 SVs that caused differential expression of genes at 4 DACP. Among them, over 100 genes were in pathways related to seed nutrition and energy storage and 41 candidate genes encoded several important transcription factors, such as MYB, WRKY, NAC, and bHLH, which might play important roles in seed development. The qRT-PCR results also confirmed that the candidate genes with SVs showed differential expression between 'Shijiwuhe' pear and 'Bartlett' or 'Yali'. This study, which combined field experiments, SV detection, and transcriptome analysis might provide an effective way to predict the candidate genes regulating the seedless trait and important gene resources for genetic improvement of pear.
Collapse
Affiliation(s)
- Yueyuan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jieying Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangyan Yang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jintao Xu
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Shandong 264000, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenquan Le
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Baofeng Hao
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei 066600, China
| | - Yuanjun Li
- Yantai Academy of Agricultural Sciences, Shandong 264000, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
219
|
Li K, Lu Y, Deng L, Wang L, Shi L, Wang Z. Deconvolute individual genomes from metagenome sequences through short read clustering. PeerJ 2020; 8:e8966. [PMID: 32296615 PMCID: PMC7150542 DOI: 10.7717/peerj.8966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Metagenome assembly from short next-generation sequencing data is a challenging process due to its large scale and computational complexity. Clustering short reads by species before assembly offers a unique opportunity for parallel downstream assembly of genomes with individualized optimization. However, current read clustering methods suffer either false negative (under-clustering) or false positive (over-clustering) problems. Here we extended our previous read clustering software, SpaRC, by exploiting statistics derived from multiple samples in a dataset to reduce the under-clustering problem. Using synthetic and real-world datasets we demonstrated that this method has the potential to cluster almost all of the short reads from genomes with sufficient sequencing coverage. The improved read clustering in turn leads to improved downstream genome assembly quality.
Collapse
Affiliation(s)
- Kexue Li
- School of Mechanics Engineering and Automation, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Power Station Automation Technology, Shanghai, China
| | - Yakang Lu
- School of Mechanics Engineering and Automation, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Power Station Automation Technology, Shanghai, China
| | - Li Deng
- School of Mechanics Engineering and Automation, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Power Station Automation Technology, Shanghai, China.,Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Lili Wang
- School of Mechanics Engineering and Automation, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Power Station Automation Technology, Shanghai, China
| | - Lizhen Shi
- Department of Computer Science, Florida State University, Tallahassee, FL, USA
| | - Zhong Wang
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,School of Natural Sciences, University of California at Merced, Merced, CA, USA
| |
Collapse
|
220
|
López-Durán PA, Fonseca-Coronado S, Lozano-Trenado LM, Araujo-Betanzos S, Rugerio-Trujillo DA, Vaughan G, Saldaña-Rivera E. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. PLoS One 2020; 15:e0231829. [PMID: 32302355 PMCID: PMC7164640 DOI: 10.1371/journal.pone.0231829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic infectious agent that affects primarily immunocompromised individuals. A. baumannii is highly prevalent in hospital settings being commonly associated with nosocomial transmission and drug resistance. Here, we report the identification and genetic characterization of A. baumannii strains among patients in a tertiary level hospital in Mexico. Whole genome sequencing analysis was performed to establish their genetic relationship and drug resistance mutations profile. Ten genetically different, extensively drug resistant strains were identified circulating among seven wards. The genetic profiles showed resistance primarily against aminoglycosides and beta-lactam antibiotics. Importantly, no mutants conferring resistance to colistin were observed. The results highlight the importance of implementing robust classification schemes for advanced genetic characterization of A. baumannii clinical isolates and simultaneous detection of drug resistance markers for adequate patient's management in clinical settings.
Collapse
Affiliation(s)
- Paúl Alexis López-Durán
- Departamento de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Laboratorio de Investigación en Enfermedades Infecciosas; Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, México City, Edo. de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Naucalpan de Juárez, Estado de México, México
| | - Salvador Fonseca-Coronado
- Laboratorio de Investigación en Enfermedades Infecciosas; Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, México City, Edo. de México, México
| | | | - Sergio Araujo-Betanzos
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, México
| | | | - Gilberto Vaughan
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Naucalpan de Juárez, Estado de México, México
| | - Elsa Saldaña-Rivera
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, México
| |
Collapse
|
221
|
Louha S, Ray DA, Winker K, Glenn TC. A High-Quality Genome Assembly of the North American Song Sparrow, Melospiza melodia. G3 (BETHESDA, MD.) 2020; 10:1159-1166. [PMID: 32075855 PMCID: PMC7144075 DOI: 10.1534/g3.119.400929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 01/25/2023]
Abstract
The song sparrow, Melospiza melodia, is one of the most widely distributed species of songbirds found in North America. It has been used in a wide range of behavioral and ecological studies. This species' pronounced morphological and behavioral diversity across populations makes it a favorable candidate in several areas of biomedical research. We have generated a high-quality de novo genome assembly of M. melodia using Illumina short read sequences from genomic and in vitro proximity-ligation libraries. The assembled genome is 978.3 Mb, with a physical coverage of 24.9×, N50 scaffold size of 5.6 Mb and N50 contig size of 31.7 Kb. Our genome assembly is highly complete, with 87.5% full-length genes present out of a set of 4,915 universal single-copy orthologs present in most avian genomes. We annotated our genome assembly and constructed 15,086 gene models, a majority of which have high homology to related birds, Taeniopygia guttata and Junco hyemalis In total, 83% of the annotated genes are assigned with putative functions. Furthermore, only ∼7% of the genome is found to be repetitive; these regions and other non-coding functional regions are also identified. The high-quality M. melodia genome assembly and annotations we report will serve as a valuable resource for facilitating studies on genome structure and evolution that can contribute to biomedical research and serve as a reference in population genomic and comparative genomic studies of closely related species.
Collapse
Affiliation(s)
- Swarnali Louha
- Institute of Bioinformatics, University of Georgia, Athens, GA
| | - David A Ray
- Department of Biological Science, Texas Tech University, Lubbock, TX
| | | | - Travis C Glenn
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Environmental Health Science, University of Georgia, Athens, GA
| |
Collapse
|
222
|
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun 2020; 11:1432. [PMID: 32188846 PMCID: PMC7080791 DOI: 10.1038/s41467-020-14998-3] [Citation(s) in RCA: 864] [Impact Index Per Article: 172.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
An important assessment prior to genome assembly and related analyses is genome profiling, where the k-mer frequencies within raw sequencing reads are analyzed to estimate major genome characteristics such as size, heterozygosity, and repetitiveness. Here we introduce GenomeScope 2.0 (https://github.com/tbenavi1/genomescope2.0), which applies combinatorial theory to establish a detailed mathematical model of how k-mer frequencies are distributed in heterozygous and polyploid genomes. We describe and evaluate a practical implementation of the polyploid-aware mixture model that quickly and accurately infers genome properties across thousands of simulated and several real datasets spanning a broad range of complexity. We also present a method called Smudgeplot (https://github.com/KamilSJaron/smudgeplot) to visualize and estimate the ploidy and genome structure of a genome by analyzing heterozygous k-mer pairs. We successfully apply the approach to systems of known variable ploidy levels in the Meloidogyne genus and the extreme case of octoploid Fragaria × ananassa.
Collapse
Affiliation(s)
| | - Kamil S Jaron
- University of Lausanne, Lausanne, CH, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH, Switzerland
| | - Michael C Schatz
- Johns Hopkins University, Baltimore, MD, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| |
Collapse
|
223
|
Li Q, Ramasamy S, Singh P, Hagel JM, Dunemann SM, Chen X, Chen R, Yu L, Tucker JE, Facchini PJ, Yeaman S. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nat Commun 2020; 11:1190. [PMID: 32132540 PMCID: PMC7055283 DOI: 10.1038/s41467-020-15040-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Genes in plant secondary metabolic pathways enable biosynthesis of a range of medically and industrially important compounds, and are often clustered on chromosomes. Here, we study genomic clustering in the benzylisoquinoline alkaloid (BIA) pathway in opium poppy (Papaver somniferum), exploring relationships between gene expression, copy number variation, and metabolite production. We use Hi-C to improve the existing draft genome assembly, yielding chromosome-scale scaffolds that include 35 previously unanchored BIA genes. We find that co-expression of BIA genes increases within clusters and identify candidates with unknown function based on clustering and covariation in expression and alkaloid production. Copy number variation in critical BIA genes correlates with stark differences in alkaloid production, linking noscapine production with an 11-gene deletion, and increased thebaine/decreased morphine production with deletion of a T6ODM cluster. Our results show that the opium poppy genome is still dynamically evolving in ways that contribute to medically and industrially important phenotypes.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sukanya Ramasamy
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Willow Biosciences Inc., 3655 36 Street N.W., Calgary, Alberta, T2L 1Y8, Canada
| | - Sonja M Dunemann
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Willow Biosciences Inc., 3655 36 Street N.W., Calgary, Alberta, T2L 1Y8, Canada
| | - Rongji Chen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Lisa Yu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Joseph E Tucker
- Willow Biosciences Inc., 3655 36 Street N.W., Calgary, Alberta, T2L 1Y8, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Willow Biosciences Inc., 3655 36 Street N.W., Calgary, Alberta, T2L 1Y8, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
224
|
Li CJ, Zhao D, Li BX, Zhang N, Yan JY, Zou HT. Whole genome sequencing and comparative genomic analysis of oleaginous red yeast Sporobolomyces pararoseus NGR identifies candidate genes for biotechnological potential and ballistospores-shooting. BMC Genomics 2020; 21:181. [PMID: 32093624 PMCID: PMC7041287 DOI: 10.1186/s12864-020-6593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sporobolomyces pararoseus is regarded as an oleaginous red yeast, which synthesizes numerous valuable compounds with wide industrial usages. This species hold biotechnological interests in biodiesel, food and cosmetics industries. Moreover, the ballistospores-shooting promotes the colonizing of S. pararoseus in most terrestrial and marine ecosystems. However, very little is known about the basic genomic features of S. pararoseus. To assess the biotechnological potential and ballistospores-shooting mechanism of S. pararoseus on genome-scale, the whole genome sequencing was performed by next-generation sequencing technology. RESULTS Here, we used Illumina Hiseq platform to firstly assemble S. pararoseus genome into 20.9 Mb containing 54 scaffolds and 5963 predicted genes with a N50 length of 2,038,020 bp and GC content of 47.59%. Genome completeness (BUSCO alignment: 95.4%) and RNA-seq analysis (expressed genes: 98.68%) indicated the high-quality features of the current genome. Through the annotation information of the genome, we screened many key genes involved in carotenoids, lipids, carbohydrate metabolism and signal transduction pathways. A phylogenetic assessment suggested that the evolutionary trajectory of the order Sporidiobolales species was evolved from genus Sporobolomyces to Rhodotorula through the mediator Rhodosporidiobolus. Compared to the lacking ballistospores Rhodotorula toruloides and Saccharomyces cerevisiae, we found genes enriched for spore germination and sugar metabolism. These genes might be responsible for the ballistospores-shooting in S. pararoseus NGR. CONCLUSION These results greatly advance our understanding of S. pararoseus NGR in biotechnological potential and ballistospores-shooting, which help further research of genetic manipulation, metabolic engineering as well as its evolutionary direction.
Collapse
Affiliation(s)
- Chun-Ji Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Die Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bing-Xue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Ning Zhang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jian-Yu Yan
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hong-Tao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| |
Collapse
|
225
|
Thomas JC, Seby S, Abrams AJ, Cartee J, Lucking S, Vidyaprakash E, Schmerer M, Pham CD, Hong J, Torrone E, Cyr SS, Shafer WM, Bernstein K, Kersh EN, Gernert KM. Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014-2016. J Infect Dis 2020; 220:294-305. [PMID: 30788502 DOI: 10.1093/infdis/jiz079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Given the lack of new antimicrobials or a vaccine, understanding the evolutionary dynamics of Neisseria gonorrhoeae is a significant public and global health priority. We investigated the emergence and spread of gonococcal strains with decreased susceptibility to cephalosporins and azithromycin using detailed genomic analyses of gonococcal isolates collected in the United States, 2014-2016. METHODS We sequenced genomes of 649 isolates collected through the Gonococcal Isolate Surveillance Project. We examined the genetic relatedness of isolates and assessed associations between clades and various genotypic and phenotypic combinations. RESULTS We identified a large and clonal lineage of strains (MLST ST9363) associated with elevated azithromycin minimum inhibitory concentration (AZIem), characterized by a mosaic mtr locus (C substitution in the mtrR promoter, mosaic mtrR and mtrD). Mutations in 23S rRNA were sporadically distributed among AZIem strains. Another clonal group (MLST ST1901) possessed 7 unique PBP2 patterns, and it shared common mutations in other genes associated with cephalosporin resistance. CONCLUSIONS Whole-genome sequencing methods can enhance monitoring of antimicrobial resistant gonococcal strains by identifying gonococcal populations containing mutations of concern. These methods could inform the development of point-of-care diagnostic tests designed to determine the specific antibiotic susceptibility profile of a gonococcal infection in a patient.
Collapse
Affiliation(s)
- Jesse C Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sandra Seby
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - A Jeanine Abrams
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jack Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sean Lucking
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eshaw Vidyaprakash
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cau D Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth Torrone
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sancta St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia
| | - Kyle Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kim M Gernert
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
226
|
Hardin A, Nevonen KA, Eckalbar WL, Carbone L, Ahituv N. Comparative Genomic Characterization of the Multimammate Mouse Mastomys coucha. Mol Biol Evol 2020; 36:2805-2812. [PMID: 31424545 PMCID: PMC6878952 DOI: 10.1093/molbev/msz188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors.
Collapse
Affiliation(s)
- Aaron Hardin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
227
|
Genome Assembly and Analysis of the North American Mountain Goat ( Oreamnos americanus) Reveals Species-Level Responses to Extreme Environments. G3-GENES GENOMES GENETICS 2020; 10:437-442. [PMID: 31806764 PMCID: PMC7003085 DOI: 10.1534/g3.119.400747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The North American mountain goat (Oreamnos americanus) is an iconic alpine species that faces stressors from climate change, industrial development, and recreational activities. This species’ phylogenetic position within the Caprinae lineage has not been resolved and their phylogeographic history is dynamic and controversial. Genomic data could be used to address these questions and provide valuable insights to conservation and management initiatives. We sequenced short-read genomic libraries constructed from a DNA sample of a 2.5-year-old female mountain goat at 80X coverage. We improved the short-read assembly by generating Chicago library data and scaffolding using the HiRise approach. The final assembly was 2,506 Mbp in length with an N50 of 66.6 Mbp, which is within the length range and in the upper quartile for N50 published ungulate genome assemblies. Comparative analysis identified 84 gene families unique to the mountain goat. The species demographic history in terms of effective population size generally mirrored climatic trends over the past one hundred thousand years and showed a sharp decline during the last glacial maximum. This genome assembly will provide a reference basis for future population and comparative genomic analyses.
Collapse
|
228
|
Kotzamanidis C, Malousi A, Bitchava K, Vafeas G, Chatzidimitriou D, Skoura L, Papadimitriou E, Chatzopoulou F, Zdragas A. First Report of Isolation and Genome Sequence of L. petauri Strain from a Rainbow Trout Lactococcosis Outbreak. Curr Microbiol 2020; 77:1089-1096. [PMID: 32008079 DOI: 10.1007/s00284-020-01905-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Lactococcosis is a disease encountered in a wide variety of fish species causing mortalities and having great economic impact on farmed fish. In this study, we report for the first time the isolation of a strain of the recently described novel species Lactococcus petauri, from rainbow trout suffering from lactococcosis. The aim of this study was to determine the complete genome sequence of L. petauri strain LG_SAV_20 and to characterize its antimicrobial resistance and virulence. The genome of L. petauri LG_SAV_20 consists of 2,078,949 base pair (bp) with a GC content of 38.05%, 1950 predicted coding sequence (CDS), and 60 RNAs (51 tRNAs, 3 ncRNAs, and 6 rRNAs). Phylogenetic analysis revealed that L. petauri LG_SAV_20 shares most of its genome with L. garvieae strains isolated from rainbow trout. Detection of genes associated with antimicrobial resistance indicated that the isolate possesses the multidrug transporter mdt(A) gene, while using comparative analysis we identified several genes that might be related to bacterial pathogenesis. This genomic information provides new insights into the role of this novel species as an etiological agent of lactococcosis.
Collapse
Affiliation(s)
- Charalampos Kotzamanidis
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 570 01, Thermi, Greece.
| | - Andigoni Malousi
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Bitchava
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 570 01, Thermi, Greece
| | - George Vafeas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 570 01, Thermi, Greece
| | | | - Lemonia Skoura
- Department of Microbiology, AHEPA University General Hospital of Thessaloniki, S. Kiriakidi Str. 1, 546 36, Thessaloniki, Greece
| | | | - Fani Chatzopoulou
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Zdragas
- Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 570 01, Thermi, Greece
| |
Collapse
|
229
|
Yi L, Dalai M, Su R, Lin W, Erdenedalai M, Luvsantseren B, Chimedtseren C, Wang Z, Hasi S. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics 2020; 21:108. [PMID: 32005147 PMCID: PMC6995116 DOI: 10.1186/s12864-020-6495-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
Collapse
Affiliation(s)
- Li Yi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Menggen Dalai
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Rina Su
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Weili Lin
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Surong Hasi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China.
| |
Collapse
|
230
|
Arantes AL, Moreira JPC, Diender M, Parshina SN, Stams AJM, Alves MM, Alves JI, Sousa DZ. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Acetobacterium wieringae Strain JM. Front Microbiol 2020; 11:58. [PMID: 32082285 PMCID: PMC7006291 DOI: 10.3389/fmicb.2020.00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Syngas is a substrate for the anaerobic bioproduction of fuels and valuable chemicals. In this study, anaerobic sludge was used for microbial enrichments with synthetic syngas and acetate as main substrates. The objectives of this study were to identify microbial networks (in enrichment cultures) for the conversion of syngas to added-value products, and to isolate robust, non-fastidious carboxydotrophs. Enrichment cultures produced methane and propionate, this last one an unusual product from syngas fermentation. A bacterium closely related to Acetobacterium wieringae was identified as most prevalent (87% relative abundance) in the enrichments. Methanospirillum sp. and propionate-producing bacteria clustering within the genera Anaerotignum and Pelobacter were also found. Further on, strain JM, was isolated and was found to be 99% identical (16S rRNA gene) to A. wieringae DSM 1911T. Digital DNA-DNA hybridization (dDDH) value between the genomes of strain JM and A. wieringae was 77.1%, indicating that strain JM is a new strain of A. wieringae. Strain JM can grow on carbon monoxide (100% CO, total pressure 170 kPa) without yeast extract or formate, producing mainly acetate. Remarkably, conversion of CO by strain JM showed shorter lag phase than in cultures of A. wieringae DSM 1911T, and about four times higher amount of CO was consumed in 7 days. Genome analysis suggests that strain JM uses the Wood-Ljungdahl pathway for the conversion of one carbon compounds (CO, formate, CO2/H2). Genes encoding bifurcational enzyme complexes with similarity to the bifurcational formate dehydrogenase (Fdh) of Clostridium autoethanogenum are present, and possibly relate to the higher tolerance to CO of strain JM compared to other Acetobacterium species. A. wieringae DSM 1911T grew on CO in medium containing 1 mM formate.
Collapse
Affiliation(s)
- Ana L Arantes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - João P C Moreira
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Sofiya N Parshina
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Microbiology of Anthropogenic Habitats of Winogradsky Institute of Microbiology, Federal State Institution (Fundamentals of Biotechnology) of the Russian Academy of Sciences, Moscow, Russia
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
231
|
Molina-Mora JA, Campos-Sánchez R, Rodríguez C, Shi L, García F. High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers. Sci Rep 2020; 10:1392. [PMID: 31996747 PMCID: PMC6989561 DOI: 10.1038/s41598-020-58319-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Genotyping methods and genome sequencing are indispensable to reveal genomic structure of bacterial species displaying high level of genome plasticity. However, reconstruction of genome or assembly is not straightforward due to data complexity, including repeats, mobile and accessory genetic elements of bacterial genomes. Moreover, since the solution to this problem is strongly influenced by sequencing technology, bioinformatics pipelines, and selection criteria to assess assemblers, there is no systematic way to select a priori the optimal assembler and parameter settings. To assembly the genome of Pseudomonas aeruginosa strain AG1 (PaeAG1), short reads (Illumina) and long reads (Oxford Nanopore) sequencing data were used in 13 different non-hybrid and hybrid approaches. PaeAG1 is a multiresistant high-risk sequence type 111 (ST-111) clone that was isolated from a Costa Rican hospital and it was the first report of an isolate of P. aeruginosa carrying both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes. To assess the assemblies, multiple metrics regard to contiguity, correctness and completeness (3C criterion, as we define here) were used for benchmarking the 13 approaches and select a definitive assembly. In addition, annotation was done to identify genes (coding and RNA regions) and to describe the genomic content of PaeAG1. Whereas long reads and hybrid approaches showed better performances in terms of contiguity, higher correctness and completeness metrics were obtained for short read only and hybrid approaches. A manually curated and polished hybrid assembly gave rise to a single circular sequence with 100% of core genes and known regions identified, >98% of reads mapped back, no gaps, and uniform coverage. The strategy followed to obtain this high-quality 3C assembly is detailed in the manuscript and we provide readers with an all-in-one script to replicate our results or to apply it to other troublesome cases. The final 3C assembly revealed that the PaeAG1 genome has 7,190,208 bp, a 65.7% GC content and 6,709 genes (6,620 coding sequences), many of which are included in multiple mobile genomic elements, such as 57 genomic islands, six prophages, and two complete integrons with blaVIM-2 and blaIMP-18 MBL genes. Up to 250 and 60 of the predicted genes are anticipated to play a role in virulence (adherence, quorum sensing and secretion) or antibiotic resistance (β-lactamases, efflux pumps, etc). Altogether, the assembly and annotation of the PaeAG1 genome provide new perspectives to continue studying the genomic diversity and gene content of this important human pathogen.
Collapse
Affiliation(s)
- José Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Leming Shi
- Human Phenome Institute of Fudan University, Shanghai, China
| | - Fernando García
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
232
|
Draft Genome Sequences of Three Strains of Verticillium nonalfalfae Exhibiting Different Levels of Aggressiveness on Ailanthus altissima. Microbiol Resour Announc 2020; 9:9/2/e01384-19. [PMID: 31919179 PMCID: PMC6952665 DOI: 10.1128/mra.01384-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Verticillium nonalfalfae, a soilborne vascular fungus, shows promise for biocontrol of highly invasive Ailanthus altissima strains. This announcement provides draft genome sequences of the aggressive isolate G1/5 (wild-type strain), the highly aggressive isolate Vert56 (improved strain), and the mildly aggressive isolate I3/2, all obtained from symptomatic A. altissima trees in Austria. Verticillium nonalfalfae, a soilborne vascular fungus, shows promise for biocontrol of highly invasive Ailanthus altissima strains. This announcement provides draft genome sequences of the aggressive isolate G1/5 (wild-type strain), the highly aggressive isolate Vert56 (improved strain), and the mildly aggressive isolate I3/2, all obtained from symptomatic A. altissima trees in Austria.
Collapse
|
233
|
Organohalide-respiring Desulfoluna species isolated from marine environments. ISME JOURNAL 2020; 14:815-827. [PMID: 31896791 PMCID: PMC7031245 DOI: 10.1038/s41396-019-0573-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain, designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect other organohalide-respiring bacteria. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to 1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate reduction and OHR may confer an advantage to marine Desulfoluna strains.
Collapse
|
234
|
Fu S, Chu R, Xu X, Chen H, Shi Y, Zhu S, Wei Z. The complete mitochondrial genome of a Chinese endemic species, Paraprenanthes diversifolia (Vaniot) N. Kilian (Cichorieae; Asteraceae). Mitochondrial DNA B Resour 2020; 5:1098-1099. [PMID: 33366891 PMCID: PMC7748815 DOI: 10.1080/23802359.2020.1726220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The first complete mitochondrial genome (mt) of Paraprenanthes diversifolia (Vaniot) N. Kilian (Cichorieae; Asteraceae) was sequenced and successfully assembled in this study. The full length of the mt genome is 360,751 bp, containing 73 genes (33 protein-coding genes, 29 tRNA genes, 6 rRNA genes, and 5 protein-coding genes containing internal stop codons). There are two pairs of long (over 1000 bp) repeat regions in the mt genome of P. diversifolia. The phylogenetic analysis indicated that P. diversifolia has a close relationship with other Lactucinae species.
Collapse
Affiliation(s)
- Shuoming Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ran Chu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoyuan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shixin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
235
|
da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, Gardner P, Baril T, Hayward A, Campos A, Ribeiro ÂM, Barrio-Hernandez I, Hoving HJ, Tafur-Jimenez R, Chu C, Frazão B, Petersen B, Peñaloza F, Musacchia F, Alexander GC, Osório H, Winkelmann I, Simakov O, Rasmussen S, Rahman MZ, Pisani D, Vinther J, Jarvis E, Zhang G, Strugnell JM, Castro LFC, Fedrigo O, Patricio M, Li Q, Rocha S, Antunes A, Wu Y, Ma B, Sanges R, Vinar T, Blagoev B, Sicheritz-Ponten T, Nielsen R, Gilbert MTP. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience 2020; 9:giz152. [PMID: 31942620 PMCID: PMC6962438 DOI: 10.1093/gigascience/giz152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/27/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. FINDINGS We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. CONCLUSIONS This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
Collapse
Affiliation(s)
- Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Alvarina Couto
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Andre M Machado
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Brona Brejova
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovak Republic
| | - Carolin B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Filipe Silva
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Paul Gardner
- Department of Biochemistry, University of Otago, 710 Cumberland Street, North Dunedin, Dunedin 9016, New Zealand
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Ângela M Ribeiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
| | - Inigo Barrio-Hernandez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Henk-Jan Hoving
- GEOMAR Helmholtz Centre for Ocean Research Kiel,Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Ricardo Tafur-Jimenez
- Instituto del Mar del Perú, Esq. Gamarra y Gral. Valle, Chucuito Apartado 22, Callao, Peru
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara Frazão
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- IPMA, Fitoplâncton Lab, Rua C do Aeroporto, 1749-077, Lisboa, Portugal
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Butik Air Nasi, 08100 Bedong, Kedah, Malaysia
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen,Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Fernando Peñaloza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Francesco Musacchia
- Genomic Medicine, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy
| | - Graham C Alexander
- GCB Sequencing and Genomic Technologies Shared Resource, Duke University CIEMAS, 101 Science Drive, Durham, NC 27708, USA
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
| | - Inger Winkelmann
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Althanstrasse 14 (UZA1), A-1090 Vienna, Austria
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - M Ziaur Rahman
- Bioinformatics Solutions Inc, 470 Weber St N Suite 204, Waterloo, ON N2L 6J2, Canada
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TG, UK
| | - Jakob Vinther
- School of Biological Sciences and School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TG, UK
| | - Erich Jarvis
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- China National Genebank, BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Kunming, Yunnan 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu Kunming, Yunnan 650223, China
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries & Aquaculture, James Cook University, Townsville, Douglas QLD 4814, Australia
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne Victoria 3086, Australia
| | - L Filipe C Castro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Olivier Fedrigo
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | - Sara Rocha
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
- Biomedical Research Center (CINBIO), University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Agostinho Antunes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450'208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Ma
- School of Computer Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovak Republic
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas Sicheritz-Ponten
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Batu 3 1/2, Butik Air Nasi, 08100 Bedong, Kedah, Malaysia
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen,Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Rasmus Nielsen
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Departments of Integrative Biology and Statistics, University of California, 3040 Valley Life Sciences, Berkeley, CA 94720-3200, USA
| | - M Thomas P Gilbert
- Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Høgskolering 1, 7491 Trondheim, Norway
| |
Collapse
|
236
|
Manni M, Simao FA, Robertson HM, Gabaglio MA, Waterhouse RM, Misof B, Niehuis O, Szucsich NU, Zdobnov EM. The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations. Genome Biol Evol 2020; 12:3534-3549. [PMID: 31778187 PMCID: PMC6938034 DOI: 10.1093/gbe/evz260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Marco A Gabaglio
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Switzerland
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany
| | | | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| |
Collapse
|
237
|
Pellegrina L, Pizzi C, Vandin F. Fast Approximation of Frequent k-Mers and Applications to Metagenomics. J Comput Biol 2019; 27:534-549. [PMID: 31891535 DOI: 10.1089/cmb.2019.0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Estimating the abundances of all k-mers in a set of biological sequences is a fundamental and challenging problem with many applications in biological analysis. Although several methods have been designed for the exact or approximate solution of this problem, they all require to process the entire data set, which can be extremely expensive for high-throughput sequencing data sets. Although in some applications it is crucial to estimate all k-mers and their abundances, in other situations it may be sufficient to report only frequent k-mers, which appear with relatively high frequency in a data set. This is the case, for example, in the computation of k-mers' abundance-based distances among data sets of reads, commonly used in metagenomic analyses. In this study, we develop, analyze, and test a sampling-based approach, called Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA), to approximate the frequent k-mers and their frequencies in a high-throughput sequencing data set while providing rigorous guarantees on the quality of the approximation. SAKEIMA employs an advanced sampling scheme and we show how the characterization of the Vapnik-Chervonenkis dimension, a core concept from statistical learning theory, of a properly defined set of functions leads to practical bounds on the sample size required for a rigorous approximation. Our experimental evaluation shows that SAKEIMA allows to rigorously approximate frequent k-mers by processing only a fraction of a data set and that the frequencies estimated by SAKEIMA lead to accurate estimates of k-mer-based distances between high-throughput sequencing data sets. Overall, SAKEIMA is an efficient and rigorous tool to estimate k-mers' abundances providing significant speedups in the analysis of large sequencing data sets.
Collapse
Affiliation(s)
| | - Cinzia Pizzi
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Fabio Vandin
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
238
|
Marchant DB, Sessa EB, Wolf PG, Heo K, Barbazuk WB, Soltis PS, Soltis DE. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Sci Rep 2019; 9:18181. [PMID: 31796775 PMCID: PMC6890710 DOI: 10.1038/s41598-019-53968-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes.
Collapse
Affiliation(s)
- D Blaine Marchant
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- The Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Paul G Wolf
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Kweon Heo
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- The Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- The Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- The Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- The Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- The Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
239
|
Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Sci Rep 2019; 9:17564. [PMID: 31772294 PMCID: PMC6879535 DOI: 10.1038/s41598-019-53608-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
The repertoire of redox-active enzymes produced by the marine fungus Peniophora sp. CBMAI 1063, a laccase hyper-producer strain, was characterized by omics analyses. The genome revealed 309 Carbohydrate-Active Enzymes (CAZymes) genes, including 48 predicted genes related to the modification and degradation of lignin, whith 303 being transcribed under cultivation in optimized saline conditions for laccase production. The secretome confirmed that the fungus can produce a versatile ligninolytic enzyme cocktail. It secretes 56 CAZymes, including 11 oxidative enzymes classified as members of auxiliary activity families (AAs), comprising two laccases, Pnh_Lac1 and Pnh_Lac2, the first is the major secretory protein of the fungi. The Pnh_Lac1-mediator system was able to promote the depolymerization of lignin fragments and polymeric lignin removal from pretreated sugarcane bagasse, confirming viability of this fungus enzymatic system for lignocellulose-based bioproducts applications.
Collapse
|
240
|
Royo-Llonch M, Sánchez P, González JM, Pedrós-Alió C, Acinas SG. Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 2019; 43:126045. [PMID: 31831198 DOI: 10.1016/j.syapm.2019.126045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
Collapse
Affiliation(s)
- M Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - P Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - J M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - C Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - S G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
241
|
Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, Zhang M, Wu S, Hu S, Sun H, Wang Y. The apricot ( Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. HORTICULTURE RESEARCH 2019; 6:128. [PMID: 31754435 PMCID: PMC6861294 DOI: 10.1038/s41438-019-0215-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 05/23/2023]
Abstract
Apricots, scientifically known as Prunus armeniaca L, are drupes that resemble and are closely related to peaches or plums. As one of the top consumed fruits, apricots are widely grown worldwide except in Antarctica. A high-quality reference genome for apricot is still unavailable, which has become a handicap that has dramatically limited the elucidation of the associations of phenotypes with the genetic background, evolutionary diversity, and population diversity in apricot. DNA from P. armeniaca was used to generate a standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on Sequel SMRT Cells, generating a total of 16.54 Gb of PacBio subreads (N50 = 13.55 kb). The high-quality P. armeniaca reference genome presented here was assembled using long-read single-molecule sequencing at approximately 70× coverage and 171× Illumina reads (40.46 Gb), combined with a genetic map for chromosome scaffolding. The assembled genome size was 221.9 Mb, with a contig NG50 size of 1.02 Mb. Scaffolds covering 92.88% of the assembled genome were anchored on eight chromosomes. Benchmarking Universal Single-Copy Orthologs analysis showed 98.0% complete genes. We predicted 30,436 protein-coding genes, and 38.28% of the genome was predicted to be repetitive. We found 981 contracted gene families, 1324 expanded gene families and 2300 apricot-specific genes. The differentially expressed gene (DEG) analysis indicated that a change in the expression of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene but not lycopene beta-cyclase (LcyB) gene results in a low β-carotenoid content in the white cultivar "Dabaixing". This complete and highly contiguous P. armeniaca reference genome will be of help for future studies of resistance to plum pox virus (PPV) and the identification and characterization of important agronomic genes and breeding strategies in apricot.
Collapse
Affiliation(s)
- Fengchao Jiang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Junhuan Zhang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Sen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Li Yang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Shenghan Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Meiling Zhang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Shuangyang Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Haoyuan Sun
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Yuzhu Wang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| |
Collapse
|
242
|
Athena: Automated Tuning of k-mer based Genomic Error Correction Algorithms using Language Models. Sci Rep 2019; 9:16157. [PMID: 31695060 PMCID: PMC6834855 DOI: 10.1038/s41598-019-52196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/07/2019] [Indexed: 01/30/2023] Open
Abstract
The performance of most error-correction (EC) algorithms that operate on genomics reads is dependent on the proper choice of its configuration parameters, such as the value of k in k-mer based techniques. In this work, we target the problem of finding the best values of these configuration parameters to optimize error correction and consequently improve genome assembly. We perform this in an adaptive manner, adapted to different datasets and to EC tools, due to the observation that different configuration parameters are optimal for different datasets, i.e., from different platforms and species, and vary with the EC algorithm being applied. We use language modeling techniques from the Natural Language Processing (NLP) domain in our algorithmic suite, Athena, to automatically tune the performance-sensitive configuration parameters. Through the use of N-Gram and Recurrent Neural Network (RNN) language modeling, we validate the intuition that the EC performance can be computed quantitatively and efficiently using the “perplexity” metric, repurposed from NLP. After training the language model, we show that the perplexity metric calculated from a sample of the test (or production) data has a strong negative correlation with the quality of error correction of erroneous NGS reads. Therefore, we use the perplexity metric to guide a hill climbing-based search, converging toward the best configuration parameter value. Our approach is suitable for both de novo and comparative sequencing (resequencing), eliminating the need for a reference genome to serve as the ground truth. We find that Athena can automatically find the optimal value of k with a very high accuracy for 7 real datasets and using 3 different k-mer based EC algorithms, Lighter, Blue, and Racer. The inverse relation between the perplexity metric and alignment rate exists under all our tested conditions—for real and synthetic datasets, for all kinds of sequencing errors (insertion, deletion, and substitution), and for high and low error rates. The absolute value of that correlation is at least 73%. In our experiments, the best value of k found by Athena achieves an alignment rate within 0.53% of the oracle best value of k found through brute force searching (i.e., scanning through the entire range of k values). Athena’s selected value of k lies within the top-3 best k values using N-Gram models and the top-5 best k values using RNN models With best parameter selection by Athena, the assembly quality (NG50) is improved by a Geometric Mean of 4.72X across the 7 real datasets.
Collapse
|
243
|
Bastías A, Correa F, Rojas P, Martin C, Pérez-Diaz J, Yáñez C, Cuevas M, Verdugo R, Sagredo B. Draft genome sequence data of maqui (Aristotelia chilensis) and identification of SSR markers. Data Brief 2019; 27:104545. [PMID: 31673575 PMCID: PMC6817651 DOI: 10.1016/j.dib.2019.104545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 12/03/2022] Open
Abstract
Maqui (Aristotelia chilensis [Molina] Stunz) is a small dioecious tree, belonging to the Elaeocarpaceae family. Maqui fruit has high levels of antioxidant activity, which are due to elevated anthocyanin and polyphenol content. Here we describe a draft genome sequence data of maqui (A. chilensis). The genomic sequence datasets were obtained using Illumina NextSeq platform. Nucleotide sequences of raw reads and the assembled draft genome are available at NCBI's Sequence Read Archive as BioProject PRJNA544858. Also, a total of 210067 microsatellite or simple sequence repeat (SSR) markers were identified.
Collapse
Affiliation(s)
- Adriana Bastías
- Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Francisco Correa
- Laboratorio de Biotecnología y Recursos Naturales, Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Pamela Rojas
- Laboratorio de Biotecnología y Recursos Naturales, Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Constanza Martin
- Laboratorio de Biotecnología y Recursos Naturales, Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Jorge Pérez-Diaz
- Facultad Medicina Norte, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Cristian Yáñez
- Facultad Medicina Norte, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Mara Cuevas
- Facultad Medicina Norte, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Ricardo Verdugo
- Facultad Medicina Norte, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Boris Sagredo
- Laboratorio de Biotecnología y Recursos Naturales, Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| |
Collapse
|
244
|
Nunes R, Gonçalves AR, Pires de Campos Telles M. Data on the draft genome sequence of Caryocar brasiliense Camb. (Caryocaraceae): An important genetic resource from Brazilian savannas. Data Brief 2019; 26:104543. [PMID: 31667304 PMCID: PMC6811913 DOI: 10.1016/j.dib.2019.104543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 11/28/2022] Open
Abstract
Caryocar brasiliense (Caryocaraceae) is a Neotropical tree species widely distributed in Brazilian savannas. This species is very popular in central Brazil mainly due to the use of its fruits in the local cuisine and their anti-inflammatory proprieties, and indeed it is one of the candidates, among Brazilian native plants, for fast track incorporation into cropping systems. Considering the importance of Caryocar brasiliense, little is known about its genetics and genomics, and determination of a reference genome sequence could improve the understanding of its evolution, as well as the development of tools for domestication. Here, we provide the first draft genome of C. brasiliense, the raw sequencing data and some multiplex sets of high quality microsatellite primers. Data on the genome project can be obtained from the BioProject at NCBI (https://www.ncbi.nlm.nih.gov/bioproject/?term=caryocar).
Collapse
Affiliation(s)
- Rhewter Nunes
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas - UFG, Goiânia, 74690-900, Brazil
| | - Ariany Rosa Gonçalves
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas - UFG, Goiânia, 74690-900, Brazil
| | - Mariana Pires de Campos Telles
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas - UFG, Goiânia, 74690-900, Brazil.,Escola de Ciências Agrárias e Biológicas, PUC-GO, Goiânia, Brazil
| |
Collapse
|
245
|
Magnus representation of genome sequences. J Theor Biol 2019; 480:104-111. [DOI: 10.1016/j.jtbi.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022]
|
246
|
Svensson D, Sjögren R, Sundell D, Sjödin A, Trygg J. doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows. BMC Bioinformatics 2019; 20:498. [PMID: 31615395 PMCID: PMC6794737 DOI: 10.1186/s12859-019-3091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. RESULTS We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. CONCLUSIONS Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Collapse
Affiliation(s)
- Daniel Svensson
- Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Rickard Sjögren
- Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
- Corporate Research, Sartorius AG, Umeå, Sweden
| | - David Sundell
- Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency, Umeå, Sweden
| | - Andreas Sjödin
- Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden.
- Corporate Research, Sartorius AG, Umeå, Sweden.
| |
Collapse
|
247
|
Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, Liu H, Muthemba S, Kariba R, Njuguna J, Maina S, Stomeo F, Djikeng A, Hendre PS, Chen X, Chen W, Li X, Sun W, Wang S, Cheng S, Muchugi A, Jamnadass R, Shapiro HY, Van Deynze A, Yang H, Wang J, Xu X, Odeny DA, Liu X. Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. Gigascience 2019; 8:giz115. [PMID: 31574156 PMCID: PMC6771550 DOI: 10.1093/gigascience/giz115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/14/2019] [Accepted: 08/24/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.
Collapse
Affiliation(s)
- Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yuan Fu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | | | - Sandra Ndagire Kamenya
- Uganda Christian University, Bishop Tucker Road, Box 4, Mukono, Uganda
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Huan Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Samuel Muthemba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Robert Kariba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Solomon Maina
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Prasad S Hendre
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Xiaoli Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Wenbin Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Xiuli Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Wenjing Sun
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Sibo Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Alice Muchugi
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Ramni Jamnadass
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Howard-Yana Shapiro
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
- University of California, 1 Shields Ave, Davis, CA, USA
- Mars, Incorporated, 6885 Elm Street, McLean, VA 22101, USA
| | | | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Damaris Achieng Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – Eastern and Southern Africa, P.O. Box 39063, Nairobi 00623, Kenya
| | - Xin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
248
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
249
|
Červenák F, Juríková K, Devillers H, Kaffe B, Khatib A, Bonnell E, Sopkovičová M, Wellinger RJ, Nosek J, Tzfati Y, Neuvéglise C, Tomáška Ľ. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci Rep 2019; 9:13365. [PMID: 31527614 PMCID: PMC6746865 DOI: 10.1038/s41598-019-49628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5′-TTNNNNAGGG-3′, with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5′-TTAGGG-3′. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.
Collapse
Affiliation(s)
- Filip Červenák
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Katarína Juríková
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Binyamin Kaffe
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Areej Khatib
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Erin Bonnell
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Martina Sopkovičová
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jozef Nosek
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel.
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Ľubomír Tomáška
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia.
| |
Collapse
|
250
|
Rowe WPM. When the levee breaks: a practical guide to sketching algorithms for processing the flood of genomic data. Genome Biol 2019; 20:199. [PMID: 31519212 PMCID: PMC6744645 DOI: 10.1186/s13059-019-1809-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
Considerable advances in genomics over the past decade have resulted in vast amounts of data being generated and deposited in global archives. The growth of these archives exceeds our ability to process their content, leading to significant analysis bottlenecks. Sketching algorithms produce small, approximate summaries of data and have shown great utility in tackling this flood of genomic data, while using minimal compute resources. This article reviews the current state of the field, focusing on how the algorithms work and how genomicists can utilize them effectively. References to interactive workbooks for explaining concepts and demonstrating workflows are included at https://github.com/will-rowe/genome-sketching .
Collapse
Affiliation(s)
- Will P M Rowe
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Scientific Computing Department, The Hartree Centre, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK.
| |
Collapse
|