201
|
Shi K, Liu X, Pan X, Liu J, Gong W, Gong P, Cao M, Jia S, Wang Z. Unveiling the Complexity of Red Clover ( Trifolium pratense L.) Transcriptome and Transcriptional Regulation of Isoflavonoid Biosynthesis Using Integrated Long- and Short-Read RNAseq. Int J Mol Sci 2021; 22:ijms222312625. [PMID: 34884432 PMCID: PMC8658037 DOI: 10.3390/ijms222312625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Red clover (Trifolium pratense L.) is used as forage and contains a high level of isoflavonoids. Although isoflavonoids in red clover were discovered a long time ago, the transcriptional regulation of isoflavonoid biosynthesis is virtually unknown because of the lack of accurate and comprehensive characterization of the transcriptome. Here, we used a combination of long-read (PacBio Iso-Seq) and short-read (Illumina) RNAseq sequencing to develop a more comprehensive full-length transcriptome in four tissues (root, stem, leaf, and flower) and to identify transcription factors possibly involved in isoflavonoid biosynthesis in red clover. Overall, we obtained 50,922 isoforms, including 19,860 known genes and 2817 novel isoforms based on the annotation of RefGen Tp_v2.0. We also found 1843 long non-coding RNAs, 1625 fusion genes, and 34,612 alternatively spliced events, with some transcript isoforms validated experimentally. A total of 16,734 differentially expressed genes were identified in the four tissues, including 43 isoflavonoid-biosynthesis-related genes, such as stem-specific expressed TpPAL, TpC4H, and Tp4CL and root-specific expressed TpCHS, TpCHI1, and TpIFS. Further, weighted gene co-expression network analysis and a targeted compound assay were combined to investigate the association between the isoflavonoid content and the transcription factors expression in the four tissues. Twelve transcription factors were identified as key genes for isoflavonoid biosynthesis. Among these transcription factors, the overexpression of TpMYB30 or TpRSM1-2 significantly increased the isoflavonoid content in tobacco. In particular, the glycitin was increased by 50-100 times in the plants overexpressing TpRSM1-2, in comparison to that in the WT plants. Our study provides a comprehensive and accurate annotation of the red clover transcriptome and candidate genes to improve isoflavonoid biosynthesis and accelerate research into molecular breeding in red clover or other crops.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Xiqiang Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Xinyi Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Wenlong Gong
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China;
| | - Pan Gong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Mingshu Cao
- Grasslands Research Centre, AgResearch Limited, Palmerston North 4410, New Zealand;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
- Correspondence:
| |
Collapse
|
202
|
Namba S, Ueno T, Kojima S, Kobayashi K, Kawase K, Tanaka Y, Inoue S, Kishigami F, Kawashima S, Maeda N, Ogawa T, Hazama S, Togashi Y, Ando M, Shiraishi Y, Mano H, Kawazu M. Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer. Commun Biol 2021; 4:1320. [PMID: 34811492 PMCID: PMC8608905 DOI: 10.1038/s42003-021-02833-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Although transcriptome alteration is an essential driver of carcinogenesis, the effects of chromosomal structural alterations on the cancer transcriptome are not yet fully understood. Short-read transcript sequencing has prevented researchers from directly exploring full-length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction of a transcriptome from long-read sequence data. Using the constructed transcriptome as a reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a comprehensive set of subtype-specific and differentially used isoforms, which extended our knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We also find that the exon-intron structure of fusion transcripts depends on their genomic context, and we identify double-hop fusion transcripts that are transcribed from complex structural rearrangements. For example, a double-hop fusion results in aberrant expression of an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta and is thought to protect fetus from maternal rejection; expression is elevated in several TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length transcript sequencing of clinical samples can add to our understanding of cancer biology and genomics in general.
Collapse
Affiliation(s)
- Shinichi Namba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumishi Kishigami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shusuke Kawashima
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Tomoko Ogawa
- Department of Breast Surgery, Mie University Hospital, Mie, 514-8507, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Yosuke Togashi
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Mizuo Ando
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.
| |
Collapse
|
203
|
He Y, Chen H, Zhao J, Yang Y, Yang B, Feng L, Zhang Y, Wei P, Hou D, Zhao J, Yu M. Transcriptome and metabolome analysis to reveal major genes of saikosaponin biosynthesis in Bupleurum chinense. BMC Genomics 2021; 22:839. [PMID: 34798822 PMCID: PMC8603497 DOI: 10.1186/s12864-021-08144-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. In the present study, we performed an integrated analysis of metabolic composition and the expressed genes involved in saikosaponin biosynthetic pathways among four organs (the root, flower, stem, and leaf) of B. chinense to discover the genes related to the saikosaponin biosynthetic pathway. RESULTS Transcript and metabolite profiles were generated through high-throughput RNA-sequencing (RNA-seq) data analysis and liquid chromatography tandem mass spectrometry, respectively. Evaluation of saikosaponin contents and transcriptional changes showed 152 strong correlations (P < 0.05) over 3 compounds and 77 unigenes. These unigenes belonged to eight gene families: the acetoacetyl CoA transferase (AACT) (6), HMG-CoA synthase (HMGS) (2), HMG-CoA reductase (HMGR) (2), mevalonate diphosphate decarboxylase (MVD) (1), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) (3), farnesyl diphosphate synthase (FPPS) (11), β-amyrin synthase (β-AS) (13) and cytochrome P450 enzymes (P450s) (39) families. CONCLUSIONS Our results investigated the diversity of the saikosaponin triterpene biosynthetic pathway in the roots, stems, leaves and flowers of B. chinese by integrated transcriptomic and metabolomic analysis, implying that manipulation of P450s genes such as Bc95697 and Bc35434 might improve saikosaponin biosynthesis. This is a good candidate for the genetic improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Yilian He
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Hua Chen
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Jun Zhao
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yuxia Yang
- Institute of Medicinal Plant Resources, Sichuan Academy of Traditional Chinese Medicine Sciences, 51 4th Section S. Renmin Road, Chengdu, 610041, Sichuan, China
| | - Bin Yang
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Liang Feng
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yiguan Zhang
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Ping Wei
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Dabin Hou
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Ma Yu
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China. .,Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
204
|
Li T, Zhang X, Guo L, Qi T, Tang H, Wang H, Qiao X, Zhang M, Zhang B, Feng J, Zuo Z, Zhang Y, Xing C, Wu J. Single-molecule real-time transcript sequencing of developing cotton anthers facilitates genome annotation and fertility restoration candidate gene discovery. Genomics 2021; 113:4245-4253. [PMID: 34793949 DOI: 10.1016/j.ygeno.2021.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/04/2021] [Accepted: 11/10/2021] [Indexed: 01/23/2023]
Abstract
Heterosis refers to the superior phenotypes observed in hybrids. Cytoplasmic male sterility (CMS) system plays an important role in cotton heterosis utilization. However, the global gene expression patterns of CMS-D2 and its interaction with the restorer gene Rf1 remain unclear. Here, the full-length transcript sequencing was performed in anthers of the CMS-D2 restorer line using PacBio single-molecule real-time sequencing technology. Combining PacBio SMRT long-read isoforms and Illumina RNA-seq data, 107,066 isoforms from 44,338 loci were obtained, including 10,086 novel isoforms of novel genes and 66,419 new isoforms of known genes. Totally 56,572 alternative splicing (AS) events, 1146 lncRNAs, 61 fusion transcripts and 10,466 genes exhibited alternative polyadenylation (APA), and 60,995 novel isoforms with predicted open reading frames (ORFs) were further identified. Furthermore, the specifically expressed genes in restorer line were selected and confirmed by qRT-PCR. These findings provide a basis for upland cotton genome annotation and transcriptome research, and will help to reveal the molecular mechanism of interaction between Rf1 and CMS-D2 cytoplasm.
Collapse
Affiliation(s)
- Ting Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Zhidan Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Yongjie Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Jianyong Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| |
Collapse
|
205
|
Monsu M, Comin M. Fast alignment of reads to a variation graph with application to SNP detection. J Integr Bioinform 2021; 18:jib-2021-0032. [PMID: 34783230 PMCID: PMC8709736 DOI: 10.1515/jib-2021-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Sequencing technologies has provided the basis of most modern genome sequencing studies due to its high base-level accuracy and relatively low cost. One of the most demanding step is mapping reads to the human reference genome. The reliance on a single reference human genome could introduce substantial biases in downstream analyses. Pangenomic graph reference representations offer an attractive approach for storing genetic variations. Moreover, it is possible to include known variants in the reference in order to make read mapping, variant calling, and genotyping variant-aware. Only recently a framework for variation graphs, vg [Garrison E, Adam MN, Siren J, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875–9], have improved variation-aware alignment and variant calling in general. The major bottleneck of vg is its high cost of reads mapping to a variation graph. In this paper we study the problem of SNP calling on a variation graph and we present a fast reads alignment tool, named VG SNP-Aware. VG SNP-Aware is able align reads exactly to a variation graph and detect SNPs based on these aligned reads. The results show that VG SNP-Aware can efficiently map reads to a variation graph with a speedup of 40× with respect to vg and similar accuracy on SNPs detection.
Collapse
Affiliation(s)
- Maurilio Monsu
- Department of Information Engineering, University of Padua, Padua 35100, Italy
| | - Matteo Comin
- Department of Information Engineering, University of Padua, Padua 35100, Italy
| |
Collapse
|
206
|
Yuan Z, Ge L, Sun J, Zhang W, Wang S, Cao X, Sun W. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differentially expressed transcripts in sheep tail fat. PeerJ 2021; 9:e12454. [PMID: 34760406 PMCID: PMC8571958 DOI: 10.7717/peerj.12454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Background Nowadays, both customers and producers prefer thin-tailed fat sheep. To effectively breed for this phenotype, it is important to identify candidate genes and uncover the genetic mechanism related to tail fat deposition in sheep. Accumulating evidence suggesting that post-transcriptional modification events of precursor-messenger RNA (pre-mRNA), including alternative splicing (AS) and alternative polyadenylation (APA), may regulate tail fat deposition in sheep. Differentially expressed transcripts (DETs) analysis is a way to identify candidate genes related to tail fat deposition. However, due to the technological limitation, post-transcriptional modification events in the tail fat of sheep and DETs between thin-tailed and fat-tailed sheep remains unclear. Methods In the present study, we applied pooled PacBio isoform sequencing (Iso-Seq) to generate transcriptomic data of tail fat tissue from six sheep (three thin-tailed sheep and three fat-tailed sheep). By comparing with reference genome, potential gene loci and novel transcripts were identified. Post-transcriptional modification events, including AS and APA, and lncRNA in sheep tail fat were uncovered using pooled Iso-Seq data. Combining Iso-Seq data with six RNA-sequencing (RNA-Seq) data, DETs between thin- and fat-tailed sheep were identified. Protein protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were implemented to investigate the potential functions of DETs. Results In the present study, we revealed the transcriptomic complexity of the tail fat of sheep, result in 9,001 potential novel gene loci, 17,834 AS events, 5,791 APA events, and 3,764 lncRNAs. Combining Iso-Seq data with RNA-Seq data, we identified hundreds of DETs between thin- and fat-tailed sheep. Among them, 21 differentially expressed lncRNAs, such as ENSOART00020036299, ENSOART00020033641, ENSOART00020024562, ENSOART00020003848 and 9.53.1 may regulate tail fat deposition. Many novel transcripts were identified as DETs, including 15.527.13 (DGAT2), 13.624.23 (ACSS2), 11.689.28 (ACLY), 11.689.18 (ACLY), 11.689.14 (ACLY), 11.660.12 (ACLY), 22.289.6 (SCD), 22.289.3 (SCD) and 22.289.14 (SCD). Most of the identified DETs have been enriched in GO and KEGG pathways related to extracellular matrix (ECM). Our result revealed the transcriptome complexity and identified many candidate transcripts in tail fat, which could enhance the understanding of molecular mechanisms behind tail fat deposition.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
207
|
Alternative splicing landscape of small brown planthopper and different response of JNK2 isoforms to rice stripe virus infection. J Virol 2021; 96:e0171521. [PMID: 34757837 DOI: 10.1128/jvi.01715-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. Importance Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.
Collapse
|
208
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
209
|
Hao DC, Li P, Xiao PG, He CN. Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae): implications in evolution of specialized metabolism of Ranunculales medicinal plants. PeerJ 2021; 9:e12428. [PMID: 34760397 PMCID: PMC8574218 DOI: 10.7717/peerj.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Several main families of Ranunculales are rich in alkaloids and other medicinal compounds; many species of these families are used in traditional and folk medicine. Dichocarpum is a representative medicinal genus of Ranunculaceae, but the genetic basis of its metabolic phenotype has not been investigated, which hinders its sustainable conservation and utilization. We use the third-generation high-throughput sequencing and metabolomic techniques to decipher the full-length transcriptomes and metabolomes of five Dichocarpum species endemic in China, and 71,598 non-redundant full-length transcripts were obtained, many of which are involved in defense, stress response and immunity, especially those participating in the biosynthesis of specialized metabolites such as benzylisoquinoline alkaloids (BIAs). Twenty-seven orthologs extracted from trancriptome datasets were concatenated to reconstruct the phylogenetic tree, which was verified by the clustering analysis based on the metabolomic profile and agreed with the Pearson correlation between gene expression patterns of Dichocarpum species. The phylogenomic analysis of phytometabolite biosynthesis genes, e.g., (S)-norcoclaurine synthase, methyltransferases, cytochrome p450 monooxygenases, berberine bridge enzyme and (S)-tetrahydroprotoberberine oxidase, revealed the evolutionary trajectories leading to the chemodiversity, especially that of protoberberine type, aporphine type and bis-BIA abundant in Dichocarpum and related genera. The biosynthesis pathways of these BIAs are proposed based on full-length transcriptomes and metabolomes of Dichocarpum. Within Ranunculales, the gene duplications are common, and a unique whole genome duplication is possible in Dichocarpum. The extensive correlations between metabolite content and gene expression support the co-evolution of various genes essential for the production of different specialized metabolites. Our study provides insights into the transcriptomic and metabolomic landscapes of Dichocarpum, which will assist further studies on genomics and application of Ranunculales plants.
Collapse
Affiliation(s)
| | - Pei Li
- Chinese Academy of Medical Sciences, Beijing, China
| | - Pei-Gen Xiao
- Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Nian He
- Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
210
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 806] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
211
|
Full-Length SMRT Transcriptome Sequencing and SSR Analysis of Bactrocera dorsalis (Hendel). INSECTS 2021; 12:insects12100938. [PMID: 34680707 PMCID: PMC8537375 DOI: 10.3390/insects12100938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary In this study, a full-length transcriptome was analyzed with single-molecule real-time (SMRT) sequencing, which was first used to discover simple sequence repeat (SSR) genetic markers from B. dorsalis. Moreover, SSR markers from isoforms were screened for the identification of species diversity. These results could provide molecular biology methods for further population research. Abstract Bactrocera dorsalis (Hendel), as one of the most notorious and destructive invasive agricultural pests in the world, causes damage to over 250 different types of fruits and vegetables throughout tropical and subtropical areas. PacBio single-molecule real-time (SMRT) sequencing was used to generate the full-length transcriptome data of B. dorsalis. A total of 40,319,890 subreads (76.6 Gb, clean reads) were generated, including 535,241 circular consensus sequences (CCSs) and 386,916 full-length non-concatemer reads (FLNCs). Transcript cluster analysis of the FLNC reads revealed 22,780 high-quality reads (HQs). In total, 12,274 transcripts were functionally annotated based on four different databases. A total of 1978 SSR loci were distributed throughout 1714 HQ transcripts, of which 1926 were complete SSRs and 52 were complex SSRs. Among the total SSR loci, 2–3 nucleotide repeats were dominant, occupying 83.62%, of which di- and tri- nucleotide repeats were 39.38% and 44.24%, respectively. We detected 105 repeat motifs, of which AT/AT (50.19%), AC/GT (39.15%), CAA/TTG (32.46%), and ACA/TGT (10.86%) were the most common in di- and tri-nucleotide repeats. The repeat SSR motifs were 12–190 bp in length, and 1638 (88.02%) were shorter than 20 bp. According to the randomly selected microsatellite sequence, 80 pairs of primers were designed, and 174 individuals were randomly amplified by PCR using primers. The number of primers that had amplification products with clear bands and showed good polymorphism came to 41, indicating that this was a feasible way to explore SSR markers from the transcriptomic data of B. dorsalis. These results lay a foundation for developing highly polymorphic microsatellites for researching the functional genomics, population genetic structure, and genetic diversity of B. dorsalis.
Collapse
|
212
|
Satoh A, Takasu M, Yano K, Terai Y. De novo assembly and annotation of the mangrove cricket genome. BMC Res Notes 2021; 14:387. [PMID: 34627387 PMCID: PMC8502352 DOI: 10.1186/s13104-021-05798-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives The mangrove cricket, Apteronemobius asahinai, shows endogenous activity rhythms that synchronize with the tidal cycle (i.e., a free-running rhythm with a period of ~ 12.4 h [the circatidal rhythm]). Little is known about the molecular mechanisms underlying the circatidal rhythm. We present the draft genome of the mangrove cricket to facilitate future molecular studies of the molecular mechanisms behind this rhythm. Data description The draft genome contains 151,060 scaffolds with a total length of 1.68 Gb (N50: 27 kb) and 92% BUSCO completeness. We obtained 28,831 predicted genes, of which 19,896 (69%) were successfully annotated using at least one of two databases (UniProtKB/SwissProt database and Pfam database).
Collapse
Affiliation(s)
- Aya Satoh
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan. .,School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Miwako Takasu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
213
|
Lin R, Xia Y, Liu Y, Zhang D, Xiang X, Niu X, Jiang L, Wang X, Zheng A. Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Front Microbiol 2021; 12:707281. [PMID: 34616376 PMCID: PMC8488467 DOI: 10.3389/fmicb.2021.707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Xia
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xing Xiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Linjia Jiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Wang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Agriculture College, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
214
|
Hybrid Sequencing in Different Types of Goat Skeletal Muscles Reveals Genes Regulating Muscle Development and Meat Quality. Animals (Basel) 2021; 11:ani11102906. [PMID: 34679927 PMCID: PMC8532877 DOI: 10.3390/ani11102906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Domestic goats are commonly reared for meat and milk production in several regions of the world. However, the genetic mechanism underlying muscle development and meat quality of goats is limited. Therefore, the aim of this study was to identify known and novel genes regulating muscle development and meat quality of goats using second- and third-generation sequencing technologies. To achieve this, the meat quality and transcriptomes of longissimus dorsi (LD) and biceps femoris (BF) muscle tissues of Lingqiu Greyback goats were examined and compared. Differentially expressed genes (DEGs) and isoforms (DEIs) were functionally annotated. Results showed that 45,574 full-length transcripts covering 18,491 loci were characterized, and 12,566 genes were co-expressed in all samples. Differential expression analysis identified 231 DEGs, including 45 novel genes in the LD and BF muscles of the goats. Additionally, 1173 DEIs were found, in which 642 novel isoforms were identified in this study. Functional annotation and pathway analysis of the DEGs and DEIs revealed that some of them were associated with muscle growth and lipid metabolism. Overall, the findings of this study contribute to the understanding of the transcriptomic diversity underlying meat quality and muscle development of goat.
Collapse
|
215
|
Mao L, Jin B, Chen L, Tian M, Ma R, Yin B, Zhang H, Guo J, Tang J, Chen T, Lai C, Cui G, Huang L. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm Sin B 2021; 11:3310-3321. [PMID: 34729318 PMCID: PMC8546855 DOI: 10.1016/j.apsb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.
Collapse
Affiliation(s)
- Liuying Mao
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingli Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Biwei Yin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
216
|
Tang Q, Chi FM, Liu HD, Zhang HJ, Song Y. Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. FRONTIERS IN PLANT SCIENCE 2021; 12:754325. [PMID: 34659323 PMCID: PMC8514788 DOI: 10.3389/fpls.2021.754325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 05/24/2023]
Abstract
Blueberries (Vaccinium corymbosum) contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, VcMYB1, that can positively regulate anthocyanin synthesis in blueberries. VcMYB1 is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of VcMYB1 promoted anthocyanin synthesis in Arabidopsis, tobacco (Nicotiana benthamiana) plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of VcDFR, thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.
Collapse
|
217
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
218
|
Lima L, Marchet C, Caboche S, Da Silva C, Istace B, Aury JM, Touzet H, Chikhi R. Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data. Brief Bioinform 2021; 21:1164-1181. [PMID: 31232449 DOI: 10.1093/bib/bbz058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/05/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Nanopore long-read sequencing technology offers promising alternatives to high-throughput short read sequencing, especially in the context of RNA-sequencing. However this technology is currently hindered by high error rates in the output data that affect analyses such as the identification of isoforms, exon boundaries, open reading frames and creation of gene catalogues. Due to the novelty of such data, computational methods are still actively being developed and options for the error correction of Nanopore RNA-sequencing long reads remain limited. RESULTS In this article, we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool that not only reports classical error correction metrics but also the effect of correction on gene families, isoform diversity, bias toward the major isoform and splice site detection. We find that long read error correction tools that were originally developed for DNA are also suitable for the correction of Nanopore RNA-sequencing data, especially in terms of increasing base pair accuracy. Yet investigators should be warned that the correction process perturbs gene family sizes and isoform diversity. This work provides guidelines on which (or whether) error correction tools should be used, depending on the application type. BENCHMARKING SOFTWARE https://gitlab.com/leoisl/LR_EC_analyser.
Collapse
Affiliation(s)
- Leandro Lima
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR Villeurbanne, France.,EPI ERABLE - Inria Grenoble, Rhône-Alpes, France.,Università di Roma 'Tor Vergata', Roma, Italy
| | | | - Ségolène Caboche
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR, Center for Infection and Immunity of Lille, Lille, France
| | - Corinne Da Silva
- Genoscope, Institut de biologie Francois-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Benjamin Istace
- Genoscope, Institut de biologie Francois-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de biologie Francois-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Hélène Touzet
- CNRS, Université de Lille, CRIStAL UMR, Lille, France
| | - Rayan Chikhi
- CNRS, Université de Lille, CRIStAL UMR, Lille, France.,Institut Pasteur, C3BI - USR 3756, 25-28 rue du Docteur Roux, Paris, France
| |
Collapse
|
219
|
Zhou P, Li X, Liu X, Wen X, Zhang Y, Zhang D. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics 2021; 22:681. [PMID: 34548013 PMCID: PMC8456659 DOI: 10.1186/s12864-021-07998-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. Results Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that “plant hormone signal transduction”, “starch and sucrose metabolism”, “peroxisome” and “photosynthesis” might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. Conclusions Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07998-0.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
220
|
Chang T, An B, Liang M, Duan X, Du L, Cai W, Zhu B, Gao X, Chen Y, Xu L, Zhang L, Gao H, Li J. PacBio Single-Molecule Long-Read Sequencing Provides New Light on the Complexity of Full-Length Transcripts in Cattle. Front Genet 2021; 12:664974. [PMID: 34527015 PMCID: PMC8437344 DOI: 10.3389/fgene.2021.664974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Cattle (Bos taurus) is one of the most widely distributed livestock species in the world, and provides us with high-quality milk and meat which have a huge impact on the quality of human life. Therefore, accurate and complete transcriptome and genome annotation are of great value to the research of cattle breeding. In this study, we used error-corrected PacBio single-molecule real-time (SMRT) data to perform whole-transcriptome profiling in cattle. Then, 22.5 Gb of subreads was generated, including 381,423 circular consensus sequences (CCSs), among which 276,295 full-length non-chimeric (FLNC) sequences were identified. After correction by Illumina short reads, we obtained 22,353 error-corrected isoforms. A total of 305 alternative splicing (AS) events and 3,795 alternative polyadenylation (APA) sites were detected by transcriptome structural analysis. Furthermore, we identified 457 novel genes, 120 putative transcription factors (TFs), and 569 novel long non-coding RNAs (lncRNAs). Taken together, this research improves our understanding and provides new insights into the complexity of full-length transcripts in cattle.
Collapse
Affiliation(s)
- Tianpeng Chang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingxing An
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mang Liang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinghai Duan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lili Du
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cai
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
221
|
Leinonen M, Salmela L. Extraction of long k-mers using spaced seeds. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34529572 DOI: 10.1109/tcbb.2021.3113131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extraction of k-mers from reads is an important task in many bioinformatics applications, such as all DNA sequence analysis methods based on de Bruijn graphs. These methods tend to be more accurate when the used k-mers are unique in the analyzed DNA, and thus the use of longer k-mers is preferred. When the read lengths of short read sequencing technologies increase, the error rate will become the determining factor for the largest possible value of k. Here we propose LoMeX which uses spaced seeds to extract long k-mers accurately even in the presence of sequencing errors. Our experiments show that LoMeX can extract long k-mers from current Illumina reads with a similar or higher recall than a standard k-mer counting tool. Furthermore, our experiments on simulated data show that when the read length further increases enabling even longer k-mers, the performance of standard k-mer counters declines, whereas LoMeX still extracts long k-mers successfully.
Collapse
|
222
|
He ZS, Zhu A, Yang JB, Fan W, Li DZ. Organelle Genomes and Transcriptomes of Nymphaea Reveal the Interplay between Intron Splicing and RNA Editing. Int J Mol Sci 2021; 22:ijms22189842. [PMID: 34576004 PMCID: PMC8466565 DOI: 10.3390/ijms22189842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Posttranscriptional modifications, including intron splicing and RNA editing, are common processes during regulation of gene expression in plant organelle genomes. However, the intermediate products of intron-splicing, and the interplay between intron-splicing and RNA-editing were not well studied. Most organelle transcriptome analyses were based on the Illumina short reads which were unable to capture the full spectrum of transcript intermediates within an organelle. To fully investigate the intermediates during intron splicing and the underlying relationships with RNA editing, we used PacBio DNA-seq and Iso-seq, together with Illumina short reads genome and transcriptome sequencing data to assemble the chloroplast and mitochondrial genomes of Nymphaea 'Joey Tomocik' and analyze their posttranscriptional features. With the direct evidence from Iso-seq, multiple intermediates partially or fully intron-spliced were observed, and we also found that both cis- and trans-splicing introns were spliced randomly. Moreover, by using rRNA-depleted and non-Oligo(dT)-enrichment strand-specific RNA-seq data and combining direct SNP-calling and transcript-mapping methods, we identified 98 and 865 RNA-editing sites in the plastome and mitogenome of N. 'Joey Tomocik', respectively. The target codon preference, the tendency of increasing protein hydrophobicity, and the bias distribution of editing sites are similar in both organelles, suggesting their common evolutionary origin and shared editing machinery. The distribution of RNA editing sites also implies that the RNA editing sites in the intron and exon regions may splice synchronously, except those exonic sites adjacent to intron which could only be edited after being intron-spliced. Our study provides solid evidence for the multiple intermediates co-existing during intron-splicing and their interplay with RNA editing in organelle genomes of a basal angiosperm.
Collapse
Affiliation(s)
- Zheng-Shan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-S.H.); (A.Z.); (J.-B.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-S.H.); (A.Z.); (J.-B.Y.)
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-S.H.); (A.Z.); (J.-B.Y.)
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-S.H.); (A.Z.); (J.-B.Y.)
- Correspondence: (W.F.); (D.-Z.L.); Tel.: +86-871-6523-8370 (W.F.); +86-871-6522-3503 (D.-Z.L.)
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-S.H.); (A.Z.); (J.-B.Y.)
- Correspondence: (W.F.); (D.-Z.L.); Tel.: +86-871-6523-8370 (W.F.); +86-871-6522-3503 (D.-Z.L.)
| |
Collapse
|
223
|
Wu Z, Liu H, Zhan W, Yu Z, Qin E, Liu S, Yang T, Xiang N, Kudrna D, Chen Y, Lee S, Li G, Wing RA, Liu J, Xiong H, Xia C, Xing Y, Zhang J, Qin R. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1725-1742. [PMID: 33768699 PMCID: PMC8428823 DOI: 10.1111/pbi.13586] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 05/04/2023]
Abstract
Safflower (Carthamus tinctorius L.), a member of the Asteraceae, is a popular crop due to its high linoleic acid (LA) and flavonoid (such as hydroxysafflor yellow A) contents. Here, we report the first high-quality genome assembly (contig N50 of 21.23 Mb) for the 12 pseudochromosomes of safflower using single-molecule real-time sequencing, Hi-C mapping technologies and a genetic linkage map. Phyloge nomic analysis showed that safflower diverged from artichoke (Cynara cardunculus) and sunflower (Helianthus annuus) approximately 30.7 and 60.5 million years ago, respectively. Comparative genomic analyses revealed that uniquely expanded gene families in safflower were enriched for those predicted to be involved in lipid metabolism and transport and abscisic acid signalling. Notably, the fatty acid desaturase 2 (FAD2) and chalcone synthase (CHS) families, which function in the LA and flavonoid biosynthesis pathways, respectively, were expanded via tandem duplications in safflower. CarFAD2-12 was specifically expressed in seeds and was vital for high-LA content in seeds, while tandemly duplicated CarFAD2 genes were up-regulated in ovaries compared to CarFAD2-12, which indicates regulatory divergence of FAD2 in seeds and ovaries. CarCHS1, CarCHS4 and tandem-duplicated CarCHS5˜CarCHS6, which were up-regulated compared to other CarCHS members at early stages, contribute to the accumulation of major flavonoids in flowers. In addition, our data reveal multiple alternative splicing events in gene families related to fatty acid and flavonoid biosynthesis. Together, these results provide a high-quality reference genome and evolutionary insights into the molecular basis of fatty acid and flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wei Zhan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Niyan Xiang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Dave Kudrna
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Yan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Seunghee Lee
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Gang Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Rod A. Wing
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hairong Xiong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
224
|
Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. NATURE PLANTS 2021; 7:1239-1253. [PMID: 34475528 PMCID: PMC8445822 DOI: 10.1038/s41477-021-00990-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/22/2021] [Indexed: 05/04/2023]
Abstract
Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lumei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Stefan Wanke
- Institute of Botany, Dresden University of Technology, Dresden, Germany
| | - John E Bowers
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | | | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
225
|
De Vos S, Rombauts S, Coussement L, Dermauw W, Vuylsteke M, Sorgeloos P, Clegg JS, Nambu Z, Van Nieuwerburgh F, Norouzitallab P, Van Leeuwen T, De Meyer T, Van Stappen G, Van de Peer Y, Bossier P. The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genomics 2021; 22:635. [PMID: 34465293 PMCID: PMC8406910 DOI: 10.1186/s12864-021-07937-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brine shrimp Artemia have an unequalled ability to endure extreme salinity and complete anoxia. This study aims to elucidate its strategies to cope with these stressors. RESULTS AND DISCUSSION Here, we present the genome of an inbred A. franciscana Kellogg, 1906. We identified 21,828 genes of which, under high salinity, 674 genes and under anoxia, 900 genes were differentially expressed (42%, respectively 30% were annotated). Under high salinity, relevant stress genes and pathways included several Heat Shock Protein and Leaf Embryogenesis Abundant genes, as well as the trehalose metabolism. In addition, based on differential gene expression analysis, it can be hypothesized that a high oxidative stress response and endocytosis/exocytosis are potential salt management strategies, in addition to the expression of major facilitator superfamily genes responsible for transmembrane ion transport. Under anoxia, genes involved in mitochondrial function, mTOR signalling and autophagy were differentially expressed. Both high salt and anoxia enhanced degradation of erroneous proteins and protein chaperoning. Compared with other branchiopod genomes, Artemia had 0.03% contracted and 6% expanded orthogroups, in which 14% of the genes were differentially expressed under high salinity or anoxia. One phospholipase D gene family, shown to be important in plant stress response, was uniquely present in both extremophiles Artemia and the tardigrade Hypsibius dujardini, yet not differentially expressed under the described experimental conditions. CONCLUSIONS A relatively complete genome of Artemia was assembled, annotated and analysed, facilitating research on its extremophile features, and providing a reference sequence for crustacean research.
Collapse
Affiliation(s)
- Stephanie De Vos
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Louis Coussement
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Patrick Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - James S Clegg
- Coastal and Marine Sciences Institute, University of California, Bodega Bay, Davis, CA, USA
| | - Ziro Nambu
- Department of Medical Technology, School of Health Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
226
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|
227
|
Zhu D, Ge J, Guo S, Hou L, Shi R, Zhou X, Nie X, Wang X. Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. J Genet Genomics 2021; 48:681-694. [PMID: 34315685 DOI: 10.1016/j.jgg.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Caste differentiation in social hymenopterans is an intriguing example of phenotypic plasticity. However, the co-ordination among gene regulatory factors to mediate caste differentiation remains inconclusive. In this study, we determined the role of gene regulation and related epigenetic processes in pre-imaginal caste differentiation in the primitively eusocial bumblebee Bombus terrestris. By combining RNA-Seq data from Illumina and PacBio and accurately quantifying methylation at whole-genomic base pair resolution, we found that queens, workers, and drones mainly differentiate in gene expression but not in alternative splicing and DNA methylation. Gynes are the most distinct with the lowest global level of whole-genomic methylation and with the largest number of caste-specific transcripts and alternative splicing events. By contrast, workers exhibit few uniquely expressed or alternatively spliced genes. Moreover, several genes involved in hormone and neurotransmitter metabolism are related to caste differentiation, whereas several neuropeptides are linked with sex differentiation. Despite little genome-wide association among differential gene expression, splicing, and differential DNA methylation, the overlapped gene ontology (GO) terms point to nutrition-related activity. Therefore, variations in gene regulation correlate with the behavioral differences among castes and highlight the specialization of toolkit genes in bumblebee gynes at the beginning of the adult stage.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Nie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
228
|
He Y, Yu H, Zhao H, Zhu H, Zhang Q, Wang A, Shen Y, Xu X, Li J. Transcriptomic analysis to elucidate the effects of high stocking density on grass carp (Ctenopharyngodon idella). BMC Genomics 2021; 22:620. [PMID: 34399686 PMCID: PMC8369720 DOI: 10.1186/s12864-021-07924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Grass carp (Ctenopharyngodon idella) is one of the most widely cultivated fishes in China. High stocking density can reportedly affect fish growth and immunity. Herein we performed PacBio long-read single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to evaluate the effects of high stocking density on grass carp transcriptome. Results SMRT sequencing led to the identification of 33,773 genes (14,946 known and 18,827 new genes). From the structure analysis, 8,009 genes were detected with alternative splicing events, 10,219 genes showed alternative polyadenylation sites and 15,521 long noncoding RNAs. Further, 1,235, 962, and 213 differentially expressed genes (DEGs) were identified in the intestine, muscle, and brain tissues, respectively. We performed functional enrichment analyses of DEGs, and they were identified to be significantly enriched in nutrient metabolism and immune function. The expression levels of several genes encoding apolipoproteins and activities of enzymes involved in carbohydrate enzymolysis were found to be upregulated in the high stocking density group, indicating that lipid metabolism and carbohydrate decomposition were accelerated. Besides, four isoforms of grass carp major histocompatibility complex class II antigen alpha and beta chains in the aforementioned three tissue was showed at least a 4-fold decrease. Conclusions The results suggesting that fish farmed at high stocking densities face issues associated with the metabolism and immune system. To conclude, our results emphasize the importance of maintaining reasonable density in grass carp aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07924-4.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Honggang Zhao
- Department of Natural Resources, Cornell University, 14853, Ithaca, New York, USA
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
229
|
Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during Artemisia sphaerocephala Seed Development. Int J Mol Sci 2021; 22:ijms22168369. [PMID: 34445076 PMCID: PMC8395072 DOI: 10.3390/ijms22168369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/24/2023] Open
Abstract
Artemisia sphaerocephala seeds are rich in polysaccharides and linoleic acid (C18:2), which have been widely used as traditional medicine and to improve food quality. The accumulation patterns and molecular regulatory mechanisms of polysaccharides during A. sphaerocephala seed development have been studied. However, the related research on seed oil and C18:2 remain unclear. For this study, A. sphaerocephala seeds at seven different development stages at 10, 20, 30, 40, 50, 60, and 70 days after flowering (designated as S1~S7), respectively, were employed as experimental samples, the accumulation patterns of oil and fatty acids (FA) and the underlying molecular regulatory mechanisms were analyzed. The results revealed that oil content increased from 10.1% to 20.0% in the early stages of seed development (S1~S2), and up to 32.0% in mature seeds, of which C18:2 accounted for 80.6% of the total FA. FA and triacylglycerol biosynthesis-related genes jointly involved in the rapid accumulation of oil in S1~S2. Weighted gene co-expression network analysis showed that transcription factors FUS3 and bHLH played a critical role in the seed oil biosynthesis. The perfect harmonization of the high expression of FAD2 with the extremely low expression of FAD3 regulated the accumulation of C18:2. This study uncovered the gene involved in oil biosynthesis and molecular regulatory mechanisms of high C18:2 accumulation in A. sphaerocephala seeds; thus, advancing research into unsaturated fatty acid metabolism in plants while generating valuable genetic resources for optimal C18:2 breeding.
Collapse
|
230
|
Liu H, Guo S, He Y, Shi Q, Yang M, You X. Toll protein family structure, evolution and response of the whiteleg shrimp (Litopenaeus vannamei) to exogenous iridescent virus. JOURNAL OF FISH DISEASES 2021; 44:1131-1145. [PMID: 33835515 DOI: 10.1111/jfd.13374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Whiteleg shrimp is a widely cultured crustacean, but frequent disease outbreaks have decreased production and caused significant losses. Toll-like receptors (TLRs) comprise a large innate immune family that is involved in the innate immune response. However, understanding of their regulatory mechanism is limited. In this study, PacBio sequencing and Illumina sequencing were applied to the gill and hepatopancreas tissues of whiteleg shrimp and an integrated transcript gene set was established. The upregulation of Toll1, Toll2 and Toll3 transcripts in the hepatopancreas tissue of whiteleg shrimp after iridescent virus infection implies that these proteins are involved in the immune response to the virus; simultaneously, the TRAF6 and relish transcripts in the Toll pathway were also upregulated, implying that the Toll pathway was activated. We predicted the three-dimensional structure of the five Toll proteins in whiteleg shrimp and humans and constructed a phylogenetic tree of the Toll protein family. In addition, there was a large discrepancy of Toll1 between invertebrates and vertebrates, presumably because of the loss of Toll1 protein sequence during the evolution process from invertebrates to vertebrates. Our research will improve the cognition of Toll protein family in invertebrates in terms of evolution, structure and function and provide theoretical guidance for researchers in this field.
Collapse
Affiliation(s)
- Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Shengtao Guo
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yugui He
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiu Yang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
231
|
Gao Z, You X, Zhang X, Chen J, Xu T, Huang Y, Lin X, Xu J, Bian C, Shi Q. A chromosome-level genome assembly of the striped catfish (Pangasianodon hypophthalmus). Genomics 2021; 113:3349-3356. [PMID: 34343676 DOI: 10.1016/j.ygeno.2021.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus), belonging to the Pangasiidae family, has become an economically important fish with wide cultivation in Southeast Asia. Owing to the high-fat trait, it is always considered as an oily fish. In our present study, a high-quality genome assembly of the striped catfish was generated by integration of Illumina short reads, Nanopore long reads and Hi-C data. A 731.7-Mb genome assembly was finally obtained, with a contig N50 of 3.5 Mb, a scaffold N50 of 29.5 Mb, and anchoring of 98.46% of the assembly onto 30 pseudochromosomes. The genome contained 36.9% repeat sequences, and a total 18,895 protein-coding genes were predicted. Interestingly, we identified a tandem triplication of fatty acid binding protein 1 gene (fabp1; thereby named as fabp1-1, fabp1-2 and fabp1-3 respectively), which may be related to the high fat content in striped catfish. Meanwhile, the FABP1-2 and -3 isoforms differed from FABP1-1 by several missense mutations including R126T, which may affect the fatty acid binding properties. In summary, we report a high-quality chromosome-level genome assembly of the striped catfish, which provides a valuable genetic resource for biomedical studies on the high-fat trait, and lays a solid foundation for practical aquaculture and molecular breeding of this international teleost species.
Collapse
Affiliation(s)
- Zijian Gao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jieming Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xueqiang Lin
- BGI Marine-Hainan, BGI Marine, BGI, Wenchang 571327, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
232
|
Complete Genome Sequence of an mcr-10-Possessing Enterobacter roggenkampii Strain Isolated from a Dog in Japan. Microbiol Resour Announc 2021; 10:e0042621. [PMID: 34323612 PMCID: PMC8320466 DOI: 10.1128/mra.00426-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of mcr-10-possessing Enterobacter roggenkampii En37, isolated from a dog in Japan, was determined. mcr-10 was located on a 70,277-bp IncFIB plasmid without any additional antimicrobial resistance genes.
Collapse
|
233
|
Full-length transcriptome assembly of Andrias davidianus (Amphibia: Caudata) skin via hybrid sequencing. Biosci Rep 2021; 41:229267. [PMID: 34282833 PMCID: PMC8329649 DOI: 10.1042/bsr20210511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the world; it is thus an economically and ecologically important species. The skin of A. davidianus exhibits complex adaptive structural and functional adaptations to facilitate survival in aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcriptome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled (mean length of 2039 bp and N50 of 2172 bp), and 133,794 were annotated in at least one database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876 transcripts were classified into 24 KOG categories, 1903 GO term categories, and 46 KEGG pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription factors, 27,237 potential long non-coding RNAs, and 8299 simple sequence repeats were also identified. The hybrid-assembled transcriptome recovered more full-length transcripts, had a higher N50 contig length, and a higher annotation rate of unique genes compared with that assembled in previous studies using next-generation sequencing. The high-quality full-length reference gene set generated in this study will help elucidate the genetic characteristics of A. davidianus skin and aid the identification of functional skin proteins.
Collapse
|
234
|
Zhang C, Chen J, Huang W, Song X, Niu J. Transcriptomics and Metabolomics Reveal Purine and Phenylpropanoid Metabolism Response to Drought Stress in Dendrobium sinense, an Endemic Orchid Species in Hainan Island. Front Genet 2021; 12:692702. [PMID: 34276795 PMCID: PMC8283770 DOI: 10.3389/fgene.2021.692702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Drought stress is a bottleneck factor for plant growth and development, especially in epiphytic orchids that absorb moisture mainly from the air. Recent studies have suggested that there are complex transcriptional regulatory networks related to drought stress in Dendrobium sinense. In this study, the transcription and metabolite alterations involved in drought stress response in D. sinense were investigated through RNA-seq and metabolomics. A total of 856 metabolites were identified from stressed and control samples, with 391 metabolites showing significant differences. With PacBio and Illumina RNA sequencing, 72,969 genes were obtained with a mean length of 2,486 bp, and 622 differentially expressed genes (DEGs) were identified. Correlation analysis showed 7 differential genes, and 39 differential metabolites were involved in interaction networks. The network analysis of differential genes and metabolites suggested that the pathways of purine metabolism and phenylpropanoid biosynthesis may play an important role in drought response in D. sinense. These results provide new insights and reference data for culturally important medicinal plants and the protection of endangered orchids.
Collapse
Affiliation(s)
- Cuili Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China.,Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Weixia Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
235
|
Zhao J, He Z, Chen X, Huang Y, Xie J, Qin X, Ni Z, Sun C. Growth trait gene analysis of kuruma shrimp (Marsupenaeus japonicus) by transcriptome study. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100874. [PMID: 34243027 DOI: 10.1016/j.cbd.2021.100874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Growth traits are a vital standard for the animal culture industry. The molecular mechanism of growth traits remains poorly understood, especially in aquaculture, which hinders the development of the selective breeding industry. Genomic resources discovered by next-generation sequencing (NGS) have been widely applied in certain species. However, accurate assembly and downstream analysis by NGS are still major challenges for species without reference genomes. In this study, a comparative transcriptome analysis of an economic crustacean species (Marsupenaeus japonicus) between a fast growth group and slow growth group at different stages was performed by SMRT (single molecule real time) and NGS. A high-quality full-length transcriptome (e.g., mean length of unigenes was longer than those unigenes assembled by Illumina clean reads from previous reports, and annotation rate was higher than Illumina sequencing in the same studies) was generated and analyzed. Several differentially expressed genes (DEGs) related to growth were identified and validated by quantitative real-time PCR (qPCR). The results showed that compared with the late stage, more DEGs were identified at the early stage, indicating that the growth-related physiological activity differences between different individuals at the early stage were higher than at the late stage. Moreover, 215 DEGs were shared between the early stage and late stage, and 109 had divergent functions during development. These 109 genes may play an important role in regulating the specific growth rate (SGR) of kuruma shrimp. In addition, twelve growth-related pathways were shared between the two comparative groups. Among these pathways, the fly Hippo signaling pathway and its key gene Mj14-3-3-like were identified for the first time to be involved in growth traits in crustaceans. Further analysis showed that Mj14-3-3-like was significantly downregulated in the fast growth group at the early stage and late stage; its expression level was reduced to its lowest level at the intermolt stage (C), the most important growth stage in shrimp, suggesting that Mj14-3-3-like may inhibit the growth of kuruma shrimp. Our study helps to elucidate the genes involved in the molecular mechanisms governing growth traits in kuruma shrimp, which is valuable for future shrimp developmental research.
Collapse
Affiliation(s)
- Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yiyi Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Jingjing Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Xuan Qin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Zuotao Ni
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China.
| |
Collapse
|
236
|
Complete Genome Sequence of an mcr-9-Possessing Enterobacter asburiae Strain Isolated from a Cat in Japan. Microbiol Resour Announc 2021; 10:e0028121. [PMID: 34197197 PMCID: PMC8248887 DOI: 10.1128/mra.00281-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of the mcr-9-possessing strain Enterobacter asburiae En30, isolated from a cat in Japan. The genome sequence was obtained by using long- and short-read sequencing.
Collapse
|
237
|
Gao Z, Guo L, Chen M, Yu F, Wei Q. Characterization of the development dynamics within the linear growth bamboo leaf. PHYSIOLOGIA PLANTARUM 2021; 172:1518-1534. [PMID: 33502764 DOI: 10.1111/ppl.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The leaf is the main photosynthetic organ in plants, such as bamboo. Leaves from bamboo are used as a food additive. However, according to our investigation, to date there have been no reports concerning the leaf development of bamboo. By measuring over 7500 parenchymal cells, we discovered that the linear leaf growth of Pseudosasa japonica could be divided into three growth sections. The first one is a roughly 1-cm long division zone (DZ), containing about 1580 cells, located at the bottom of the leaf; the second one is an about 3-cm long elongation zone (EZ), with ~1905 cells, located above the DZ; and the last is a mature zone (MZ) in which cell elongation is completed. The cell production rate of the DZ was 25.33-35.81 cells per hour, with an average of 29.73; and the cell division rate was ~0.45 cells per cell every 24 h. PacBio and Illumina transcriptome sequencing found 21 933 unigenes expressed in these zones. Further analysis revealed a dynamic transcriptome, with transcripts for cell division in the DZ changing to transcripts for cell elongation, photosynthetic development, secondary metabolism, stress resistance, and nutrition transport toward the leaf distal. Those transcriptome transformations correlated well with the changes of relative water content, biomass accumulation, and cellulose crystal degree and were supported by quantitative polymerase chain reaction data. These results revealed a developmental gradient of the bamboo linear growth leaf, which offers a foundation to elucidate and engineer leaf development in bamboo, an economically valuable plant.
Collapse
Affiliation(s)
- Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ming Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, China
| |
Collapse
|
238
|
Zhang Y, Mao F, Mu H, Huang M, Bao Y, Wang L, Wong NK, Xiao S, Dai H, Xiang Z, Ma M, Xiong Y, Zhang Z, Zhang L, Song X, Wang F, Mu X, Li J, Ma H, Zhang Y, Zheng H, Simakov O, Yu Z. The genome of Nautilus pompilius illuminates eye evolution and biomineralization. Nat Ecol Evol 2021; 5:927-938. [PMID: 33972735 PMCID: PMC8257504 DOI: 10.1038/s41559-021-01448-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Nautilus is the sole surviving externally shelled cephalopod from the Palaeozoic. It is unique within cephalopod genealogy and critical to understanding the evolutionary novelties of cephalopods. Here, we present a complete Nautilus pompilius genome as a fundamental genomic reference on cephalopod innovations, such as the pinhole eye and biomineralization. Nautilus shows a compact, minimalist genome with few encoding genes and slow evolutionary rates in both non-coding and coding regions among known cephalopods. Importantly, multiple genomic innovations including gene losses, independent contraction and expansion of specific gene families and their associated regulatory networks likely moulded the evolution of the nautilus pinhole eye. The conserved molluscan biomineralization toolkit and lineage-specific repetitive low-complexity domains are essential to the construction of the nautilus shell. The nautilus genome constitutes a valuable resource for reconstructing the evolutionary scenarios and genomic innovations that shape the extant cephalopods.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Huawei Mu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Minwei Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Nai-Kei Wong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Mingli Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Zhang
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lvping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaoyuan Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xiyu Mu
- Biomarker Technologies Corporation, Beijing, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | | | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
239
|
Chen S, Xu X, Ma Z, Liu J, Zhang B. Organ-Specific Transcriptome Analysis Identifies Candidate Genes Involved in the Stem Specialization of Bermudagrass ( Cynodon dactylon L.). Front Genet 2021; 12:678673. [PMID: 34249097 PMCID: PMC8260954 DOI: 10.3389/fgene.2021.678673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
As an important warm-season turfgrass and forage grass species with wide applications, bermudagrass (Cynodon dactylon L.) simultaneously has shoot, stolon and rhizome, three types of stems with different physiological functions. To better understand how the three types of stems differentiate and specialize, we generated an organ-specific transcriptome dataset of bermudagrass encompassing 114,169 unigenes, among which 100,878 and 65,901 could be assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) terms, respectively. Using the dataset, we comprehensively analyzed the gene expression of different organs, especially the shoot, stolon and rhizome. The results indicated that six organs of bermudagrass all contained more than 52,000 significantly expressed unigenes, however, only 3,028 unigenes were enrich-expressed in different organs. Paired comparison analyses further indicated that 11,762 unigenes were differentially expressed in the three types of stems. Gene enrichment analysis revealed that 39 KEGG pathways were enriched with the differentially expressed unigenes (DEGs). Specifically, 401 DEGs were involved in plant hormone signal transduction, whereas 1,978 DEGs were transcription factors involved in gene expression regulation. Furthermore, in agreement with the starch content and starch synthase assay results, DEGs encoding starch synthesis-related enzymes all showed the highest expression level in the rhizome. These results not only provided new insights into the specialization of stems in bermudagrass but also made solid foundation for future gene functional studies in this important grass species and other stoloniferous/rhizomatous plants.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziyan Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
240
|
Yin M, Chu S, Shan T, Zha L, Peng H. Full-length transcriptome sequences by a combination of sequencing platforms applied to isoflavonoid and triterpenoid saponin biosynthesis of Astragalus mongholicus Bunge. PLANT METHODS 2021; 17:61. [PMID: 34130711 PMCID: PMC8207730 DOI: 10.1186/s13007-021-00762-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Astragalus mongholicus Bunge is an important medicinal plant used in traditional Chinese medicine. It is rich in isoflavonoids and triterpenoid saponins. Although these active constituents of A. mongholicus have been discovered for a long time, the genetic basis of isoflavonoid and triterpenoid saponin biosynthesis in this plant is virtually unknown because of the lack of a reference genome. Here, we used a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to identify genes involved in the biosynthetic pathway of secondary metabolites in A. mongholicus. RESULTS In this study, NGS, SMRT sequencing, and targeted compound analysis were combined to investigate the association between isoflavonoid and triterpenoid saponin content, and specific gene expression in the root, stem, and leaves of A. mongholicus. Overall, 643,812 CCS reads were generated, yielding 121,107 non-redundant transcript isoforms with an N50 value of 2124 bp. Based on these highly accurate transcripts, 104,756 (86.50%) transcripts were successfully annotated by any of the seven databases (NR, NT, Swissprot, KEGG, KOG, Pfam and GO). Levels of four isoflavonoids and four astragalosides (triterpenoid saponins) were determined. Forty-four differentially expressed genes (DEGs) involved in isoflavonoid biosynthesis and 44 DEGs from 16 gene families that encode enzymes involved in triterpenoid saponin biosynthesis were identified. Transcription factors (TFs) associated with isoflavonoid and triterpenoid saponin biosynthesis, including 72 MYBs, 53 bHLHs, 64 AP2-EREBPs, and 11 bZIPs, were also identified. The above transcripts showed different expression trends in different plant organs. CONCLUSIONS This study provides important genetic information on the A. mongholicus genes that are essential for isoflavonoid and triterpenoid saponin biosynthesis, and provides a basis for developing the medicinal value of this plant.
Collapse
Affiliation(s)
- Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, 2019RU57, Beijing, 100700, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Tingyu Shan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liangping Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, 2019RU57, Beijing, 100700, China.
| |
Collapse
|
241
|
Miao BB, Niu SF, Wu RX, Liang ZB, Tang BG, Zhai Y, Xu XQ. Gene Expression Profile and Co-Expression Network of Pearl Gentian Grouper under Cold Stress by Integrating Illumina and PacBio Sequences. Animals (Basel) 2021; 11:ani11061745. [PMID: 34208015 PMCID: PMC8230743 DOI: 10.3390/ani11061745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In this study, we investigated the liver transcriptomic responses of pearl gentian grouper towards cold stress. Some cold-related key genes and biological pathways were screened, of which energy-related metabolic pathways and genes had higher expression levels under cold stress. This suggested that energy homeostasis plays a crucial role in the physiological adjustments of pearl gentian grouper when exposed to the cold stress environment. Our results will expedite the understanding of different fishes adaptive mechanisms to profound environmental temperature changes and provide insights into the molecular breeding of cold-tolerant pearl gentian grouper varieties. Abstract Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) is a fish of high commercial value in the aquaculture industry in Asia. However, this hybrid fish is not cold-tolerant, and its molecular regulation mechanism underlying cold stress remains largely elusive. This study thus investigated the liver transcriptomic responses of pearl gentian grouper by comparing the gene expression of cold stress groups (20, 15, 12, and 12 °C for 6 h) with that of control group (25 °C) using PacBio SMRT-Seq and Illumina RNA-Seq technologies. In SMRT-Seq analysis, a total of 11,033 full-length transcripts were generated and used as reference sequences for further RNA-Seq analysis. In RNA-Seq analysis, 3271 differentially expressed genes (DEGs), two low-temperature specific modules (tan and blue modules), and two significantly expressed gene sets (profiles 0 and 19) were screened by differential expression analysis, weighted gene co-expression networks analysis (WGCNA), and short time-series expression miner (STEM), respectively. The intersection of the above analyses further revealed some key genes, such as PCK, ALDOB, FBP, G6pC, CPT1A, PPARα, SOCS3, PPP1CC, CYP2J, HMGCR, CDKN1B, and GADD45Bc. These genes were significantly enriched in carbohydrate metabolism, lipid metabolism, signal transduction, and endocrine system pathways. All these pathways were linked to biological functions relevant to cold adaptation, such as energy metabolism, stress-induced cell membrane changes, and transduction of stress signals. Taken together, our study explores an overall and complex regulation network of the functional genes in the liver of pearl gentian grouper, which could benefit the species in preventing damage caused by cold stress.
Collapse
Affiliation(s)
- Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
- Correspondence:
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Yun Zhai
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Xue-Qi Xu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| |
Collapse
|
242
|
Zhou Y, Yang P, Xie S, Shi M, Huang J, Wang Z, Chen X. Comparative Transcriptome Analysis Reveals Sex-Based Differences during the Development of the Adult Parasitic Wasp Cotesia vestalis (Hymenoptera: Braconidae). Genes (Basel) 2021; 12:genes12060896. [PMID: 34200644 PMCID: PMC8228208 DOI: 10.3390/genes12060896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
The endoparasitic wasp Cotesia vestalis is an important biological agent for controlling the population of Plutella xylostella, a major pest of cruciferous crops worldwide. Though the genome of C. vestalis has recently been reported, molecular mechanisms associated with sexual development have not been comprehensively studied. Here, we combined PacBio Iso-Seq and Illumina RNA-Seq to perform genome-wide profiling of pharate adult and adult development of male and female C. vestalis. Taking advantage of Iso-Seq full-length reads, we identified 14,466 novel transcripts as well as 8770 lncRNAs, with many lncRNAs showing a sex- and stage-specific expression pattern. The differentially expressed gene (DEG) analyses showed 2125 stage-specific and 326 sex-specific expressed genes. We also found that 4819 genes showed 11,856 alternative splicing events through combining the Iso-Seq and RNA-Seq data. The results of comparative analyses showed that most genes were alternatively spliced across developmental stages, and alternative splicing (AS) events were more prevalent in females than in males. Furthermore, we identified six sex-determining genes in this parasitic wasp and verified their sex-specific alternative splicing profiles. Specifically, the characterization of feminizer and doublesex splicing between male and female implies a conserved regulation mechanism of sexual development in parasitic wasps.
Collapse
Affiliation(s)
- Yuenan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Pei Yang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Shuang Xie
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Jianhua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zhizhi Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Z.W.); (X.C.)
| | - Xuexin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Z.W.); (X.C.)
| |
Collapse
|
243
|
Luo J, Li R, Xu X, Niu H, Zhang Y, Wang C. SMRT and Illumina RNA Sequencing and Characterization of a Key NAC Gene LoNAC29 during the Flower Senescence in Lilium oriental 'Siberia'. Genes (Basel) 2021; 12:genes12060869. [PMID: 34204040 PMCID: PMC8227295 DOI: 10.3390/genes12060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Lily (Lilium spp.) is an important cut flower around the world. Flower senescence in lilies is characterized by the wilting and abscission of tepals, which results in a decrease in flower quality and huge economic loss. However, the mechanism underlying flower senescence in lilies is largely unknown. In this study, single-molecule, real-time (SMRT) and Illumina sequencing were carried out in L. oriental ‘Siberia’. Sequencing yielded 73,218 non-redundant transcripts, with an N50 of 3792 bp. These data were further integrated with three published transcriptomes through cogent analysis, which yielded 62,960 transcripts, with an increase in N50 of 3935 bp. Analysis of differentially expressed genes showed that 319 transcription factors were highly upregulated during flower senescence. The expression of twelve NAC genes and eleven senescence-associated genes (SAGs) showed that LoNAC29 and LoSAG39 were highly expressed in senescent flowers. Transient overexpression of LoNAC29 and LoSAG39 in tepals of lily notably accelerated flower senescence, and the promoter activity of LoSAG39 was strongly induced by LoNAC29. This work supported new evidence for the molecular mechanism of flower senescence and provided better sequence data for further study in lilies.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Xintong Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Hairui Niu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Yujie Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87282010
| |
Collapse
|
244
|
Freire B, Ladra S, Paramá JR, Salmela L. Inference of viral quasispecies with a paired de Bruijn graph. Bioinformatics 2021; 37:473-481. [PMID: 32926162 DOI: 10.1093/bioinformatics/btaa782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 03/11/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION RNA viruses exhibit a high mutation rate and thus they exist in infected cells as a population of closely related strains called viral quasispecies. The viral quasispecies assembly problem asks to characterize the quasispecies present in a sample from high-throughput sequencing data. We study the de novo version of the problem, where reference sequences of the quasispecies are not available. Current methods for assembling viral quasispecies are either based on overlap graphs or on de Bruijn graphs. Overlap graph-based methods tend to be accurate but slow, whereas de Bruijn graph-based methods are fast but less accurate. RESULTS We present viaDBG, which is a fast and accurate de Bruijn graph-based tool for de novo assembly of viral quasispecies. We first iteratively correct sequencing errors in the reads, which allows us to use large k-mers in the de Bruijn graph. To incorporate the paired-end information in the graph, we also adapt the paired de Bruijn graph for viral quasispecies assembly. These features enable the use of long-range information in contig construction without compromising the speed of de Bruijn graph-based approaches. Our experimental results show that viaDBG is both accurate and fast, whereas previous methods are either fast or accurate but not both. In particular, viaDBG has comparable or better accuracy than SAVAGE, while being at least nine times faster. Furthermore, the speed of viaDBG is comparable to PEHaplo but viaDBG is able to retrieve also low abundance quasispecies, which are often missed by PEHaplo. AVAILABILITY AND IMPLEMENTATION viaDBG is implemented in C++ and it is publicly available at https://bitbucket.org/bfreirec1/viadbg. All datasets used in this article are publicly available at https://bitbucket.org/bfreirec1/data-viadbg/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Borja Freire
- Department of Computer Science and Information Technologies, Facultade de Informática, Universidade da Coruña, Centro de investigación CITIC, A Coruña, Spain
| | - Susana Ladra
- Department of Computer Science and Information Technologies, Facultade de Informática, Universidade da Coruña, Centro de investigación CITIC, A Coruña, Spain
| | - Jose R Paramá
- Department of Computer Science and Information Technologies, Facultade de Informática, Universidade da Coruña, Centro de investigación CITIC, A Coruña, Spain
| | - Leena Salmela
- Department of Computer Science, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
245
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome sequence analysis of Eimeria necatrix unsporulated oocysts and sporozoites identifies genes involved in cellular invasion. Vet Parasitol 2021; 296:109480. [PMID: 34120030 DOI: 10.1016/j.vetpar.2021.109480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022]
Abstract
Eimeria necatrix is one of the most pathogenic chicken coccidia and causes avian coccidiosis, an enteric disease of major economic importance worldwide. Eimeria parasites have complex developmental life cycles, with an exogenous phase in the environment and an endogenous phase in the chicken intestine. Oocysts excreted by chickens rapidly undergo meiosis and cell division to form eight haploid sporozoites (SZ). SZ liberated from sporocysts in the chicken intestine migrate to their preferred site of development to initiate cellular invasion. To date, almost nothing is known about the proteins that mediate parasite invasion in E. necatrix. In order to discover genes with functions involved in cellular invasion, the transcriptome profiles of E. necatrix unsporulated oocysts (UO) and SZ were analyzed using a combination of third-generation single-molecule real-time sequencing (TGS) and second-generation sequencing (SGS) followed by qRT-PCR validation. Correction of TGS long reads by SGS short reads resulted in 34,932 (UO) and 23,040 (SZ) consensus isoforms. After subsequent assembly, a total of 4949 and 4254 genes were identified from UO and SZ libraries, respectively. A total of 8376 genes were identified as differentially expressed genes (DEGs) between SZ and UO. Compared to UO, 4057 genes were upregulated and 4319 genes were downregulated in SZ. Approximately 1399 and 1758 genes were defined as stage-specific genes in SZ and UO, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 2978 upregulated SZ genes were clustered into 29 GO terms, and 857 upregulated SZ genes were associated with 26 KEGG pathways. We also predicted a further 50 upregulated SZ genes and 73 upregulated UO genes encoding microneme proteins, apical membrane antigens, rhoptry neck proteins, rhoptry proteins, dense granule proteins, heat shock proteins, calcium-dependent protein kinases, cyclin-dependent kinases, cGMP-dependent protein kinase, and glycosylphosphatidylinositol-anchored surface antigens. Our data reveal new features of the E. necatrix transcriptional landscape and provide resources for the development of novel vaccine candidates against E. necatrix infection.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China.
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
246
|
High-Quality Reference Genome Sequence for the Oomycete Vegetable Pathogen Phytophthora capsici Strain LT1534. Microbiol Resour Announc 2021; 10:e0029521. [PMID: 34042486 PMCID: PMC8201633 DOI: 10.1128/mra.00295-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.
Collapse
|
247
|
Yu M, Chen H, Liu Q, Huang J, Semagn K, Liu D, Li Y, Yang B, He Y, Sui C, Hou D, Wei J. Analysis of unigenes involved in lateral root development in Bupleurum chinense and B. scorzonerifolium. PLANTA 2021; 253:128. [PMID: 34037846 DOI: 10.1007/s00425-021-03644-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
We identified IAA13 negatively associated with lateral root number by comparing the differential expressed genes between Bupleurum chinense and B. scorzonerifolium. Dried roots of the genus Bupleurum L. are used as a herbal medicine for diseases in Asia. Bupleurum chinense has a greater number of lateral roots than B. scorzonerifolium, but the genetic mechanisms for such differences are largely unknown. We (a) compared the transcriptome profiles of the two species and (b) identified a subset of candidate genes involved in auxin signal transduction and explored their functions in lateral root development. By isoform sequencing (Iso-Seq) analyses of the whole plant, more unigenes were found in B. scorzonerifolium (118,868) than in B. chinense (93,485). Given the overarching role of indole-3-acetic acid (IAA) as one of the major regulators of lateral root development, we identified 539 unigenes associated with auxin signal transduction. Fourteen and 44 unigenes in the pathway were differentially expressed in B. chinense and B. scorzonerifolium, respectively, and 3 unigenes (LAX2, LAX4, and IAA13) were expressed in both species. The number of lateral root primordia increased after exogenous auxin application at 8 h and 12 h in B. scorzonerifolium and B. chinense, respectively. Since overexpression of IAA13 in Arabidopsis reduced the number of lateral roots, we hypothesized that IAA13 is involved in the reduction of the number of lateral roots in B. scorzonerifolium.
Collapse
Affiliation(s)
- Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
- Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Qian Liu
- Yibin Inspection and Testing Centre for Food and Medicine, Yibin, 644000, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Kassa Semagn
- Africa Rice Center (AfricaRice), M'bé Research Station, 01 B.P. 2551, Bouaké, Côte d'Ivoire
| | - Dan Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
- Institute of Biomass Energy, Neijiang Academy of Agricultural Sciences of Sichuan Province, 401 Huayuantan Road, Neijiang, 641000, Sichuan, China
| | - Yuchan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Bin Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yilian He
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Chun Sui
- Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dabin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China.
| | - Jianhe Wei
- Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
248
|
Yan H, Zhou H, Luo H, Fan Y, Zhou Z, Chen R, Luo T, Li X, Liu X, Li Y, Qiu L, Wu J. Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development. BMC PLANT BIOLOGY 2021; 21:228. [PMID: 34022806 PMCID: PMC8140441 DOI: 10.1186/s12870-021-02989-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/27/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although extensive breeding efforts are ongoing in sugarcane (Saccharum officinarum L.), the average yield is far below the theoretical potential. Tillering is an important component of sugarcane yield, however, the molecular mechanism underlying tiller development is still elusive. The limited genomic data in sugarcane, particularly due to its complex and large genome, has hindered in-depth molecular studies. RESULTS Herein, we generated full-length (FL) transcriptome from developing leaf and tiller bud samples based on PacBio Iso-Seq. In addition, we performed RNA-seq from tiller bud samples at three developmental stages (T0, T1 and T2) to uncover key genes and biological pathways involved in sugarcane tiller development. In total, 30,360 and 20,088 high-quality non-redundant isoforms were identified in leaf and tiller bud samples, respectively, representing 41,109 unique isoforms in sugarcane. Likewise, we identified 1063 and 1037 alternative splicing events identified in leaf and tiller bud samples, respectively. We predicted the presence of coding sequence for 40,343 isoforms, 98% of which was successfully annotated. Comparison with previous FL transcriptomes in sugarcane revealed 2963 unreported isoforms. In addition, we characterized 14,946 SSRs from 11,700 transcripts and 310 lncRNAs. By integrating RNA-seq with the FL transcriptome, 468 and 57 differentially expressed genes (DEG) were identified in T1vsT0 and T2vsT0, respectively. Strong up-regulation of several pyruvate phosphate dikinase and phosphoenolpyruvate carboxylase genes suggests enhanced carbon fixation and protein synthesis to facilitate tiller growth. Similarly, up-regulation of linoleate 9S-lipoxygenase and lipoxygenase genes in the linoleic acid metabolism pathway suggests high synthesis of key oxylipins involved in tiller growth and development. CONCLUSIONS Collectively, we have enriched the genomic data available in sugarcane and provided candidate genes for manipulating tiller formation and development, towards productivity enhancement in sugarcane.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Hanmin Luo
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Yegeng Fan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Rongfa Chen
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Ting Luo
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Xujuan Li
- Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, East Lingquan Road 172, Kaiyun, 661600, Yunnan, China
| | - Xinlong Liu
- Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, East Lingquan Road 172, Kaiyun, 661600, Yunnan, China
| | - Yangrui Li
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China.
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China.
| |
Collapse
|
249
|
Dias GB, Altammami MA, El-Shafie HAF, Alhoshani FM, Al-Fageeh MB, Bergman CM, Manee MM. Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Sci Rep 2021; 11:9987. [PMID: 33976235 PMCID: PMC8113489 DOI: 10.1038/s41598-021-89091-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is an economically-important invasive species that attacks multiple species of palm trees around the world. A better understanding of gene content and function in R. ferrugineus has the potential to inform pest control strategies and thereby mitigate economic and biodiversity losses caused by this species. Using 10x Genomics linked-read sequencing, we produced a haplotype-resolved diploid genome assembly for R. ferrugineus from a single heterozygous individual with modest sequencing coverage (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼ 62x). Benchmarking against conserved single-copy Arthropod orthologs suggests both pseudo-haplotypes in our R. ferrugineus genome assembly are highly complete with respect to gene content, and do not suffer from haplotype-induced duplication artifacts present in a recently published hybrid assembly for this species. Annotation of the larger pseudo-haplotype in our assembly provides evidence for 23,413 protein-coding loci in R. ferrugineus, including over 13,000 predicted proteins annotated with Gene Ontology terms and over 6000 loci independently supported by high-quality Iso-Seq transcriptomic data. Our assembly also includes 95% of R. ferrugineus chemosensory, detoxification and neuropeptide-related transcripts identified previously using RNA-seq transcriptomic data, and provides a platform for the molecular analysis of these and other functionally-relevant genes that can help guide management of this widespread insect pest.
Collapse
Affiliation(s)
- Guilherme B Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Musaad A Altammami
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Hamadttu A F El-Shafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Fahad M Alhoshani
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Mohamed B Al-Fageeh
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Casey M Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Manee M Manee
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia.
| |
Collapse
|
250
|
Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol 2021; 19:93. [PMID: 33952264 PMCID: PMC8097969 DOI: 10.1186/s12915-021-01031-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. Results Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. Conclusions This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01031-2.
Collapse
|