201
|
Nakhjavani FA, Emaneini M, Hosseini H, Iman-Eini H, Aligholi M, Jabalameli F, Haghi-Ashtiani MT, Taherikalani M, Mirsalehian A. Molecular analysis of typical and atypical enteropathogenic Escherichia coli (EPEC) isolated from children with diarrhoea. J Med Microbiol 2012; 62:191-195. [PMID: 23065543 DOI: 10.1099/jmm.0.046516-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diarrhoea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. To investigate the incidence, antimicrobial resistance and genetic relationships of enteropathogenic Escherichia coli (EPEC) in children with diarrhoea, a total of 612 stool specimens were collected in Tehran, Iran, and cultured to isolate strains of EPEC. The disc diffusion method was used to determine the susceptibility of the isolates according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The presence of eae, stx and bfp-A genes was determined by PCR. The genetic relationships between EPEC isolates were determined by pulsed-field gel electrophoresis (PFGE). Out of the 412 strains of E. coli obtained from 612 diarrhoeal stool specimens, 23 (5.6 %) were identified as EPEC, of which seven (30.4 %) were classified as typical strains of EPEC and 16 (69.6 %) were classified as atypical. Out of the 23 EPEC isolates, 69.5 % were resistant to ampicillin, 39.1 % were resistant to tetracycline and cotrimoxazole, 30.4 % were resistant to cefpodoxime, ceftazidime, ceftriaxone and aztreonam, and 26.1 % were resistant to imipenem. The isolates were classified into 21 pulsotypes by PFGE profiles. The present study shows that typical and atypical EPEC isolates displayed considerable heterogeneity in PFGE profiles and EPEC infections were only sporadic in Tehran. Overall 69 % of isolates were resistant to at least one of the antibiotics tested.
Collapse
Affiliation(s)
- Farrokh Akbari Nakhjavani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Hossein Hosseini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Hossein Iman-Eini
- School of ECE, College of Engineering, University of Tehran, PO Box 11365-4563, Tehran 14174, Iran
| | - Marzieh Aligholi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Mohammad Taghi Haghi-Ashtiani
- Department of Pathology, Children's Medical Center, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| | - Morovat Taherikalani
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam 69315, Iran
| | - Akbar Mirsalehian
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, PO Box 14155-6447, Tehran 14174, Iran
| |
Collapse
|
202
|
Jafari A, Aslani MM, Bouzari S. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2012; 4:102-17. [PMID: 23066484 PMCID: PMC3465535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diarrheagenic Escherichia coli have developed different strategies for establishment of infection in their host. Understanding these pathogenic mechanisms has led to the development of specific diagnostic tools for identification and categorization of E. coli strains into different pathotypes. This review aims to provide an overview of the various categories of diarrheagenic Escherichia coli and the data obtained in Iran pertaining to these pathotypes.
Collapse
Affiliation(s)
- A Jafari
- Molecular Biology Unit, Pasteur Institute of Iran, Tehran
| | - MM Aslani
- Bacteriology Department, Pasteur Institute of Iran, Tehran,Corresponding author: Aslani MM, Address: Molecular Biology Unit, Pasteur Institute of Iran. National Escherichia coli Reference Laboratory (NERL). Tel: +98-21-66953311-20. E-mail:
| | - S Bouzari
- Molecular Biology Unit, Pasteur Institute of Iran, Tehran,National Escherichia coli Reference Laboratory (NERL),Corresponding author: Bouzari S, Address: Molecular Biology Unit, Pasteur Institute of Iran. National Escherichia coli Reference Laboratory (NERL). Tel: +98-21-66953311-20. E-mail:
| |
Collapse
|
203
|
Enzootic enteropathogenic Escherichia coli infection in laboratory rabbits. J Clin Microbiol 2012; 50:2353-8. [PMID: 22573597 DOI: 10.1128/jcm.00832-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is the most important cause of persistent diarrhea in children, particularly in developing countries. Animals serve as pathogenic E. coli reservoirs, and compelling evidence for cross-species EPEC transmission exists. In this report, enzootic EPEC infection associated with up to 10.5% diarrhea-associated morbidity in a large laboratory Dutch Belted rabbit colony was investigated. These rabbits were obtained from a commercial vendor and had acute diarrhea following shipment. Fecal culture of 20 rabbits yielded 48 E. coli isolates, 83% of which were eae positive. Repetitive sequence-based PCR (REP-PCR) and serologic analysis identified a single disease-associated EPEC O145:H2 strain. In sampled rabbits, EPEC-positive culture and the presence of diarrhea were significantly associated. This strain displayed a localized adherence-like HEp-2 cell adherence pattern, as seen in diarrheic human infant EPEC isolates. Treatment was instituted with the fluoroquinolone antibiotic enrofloxacin, to which all isolates were susceptible. Preshipment parenteral enrofloxacin administration reduced diarrhea-associated morbidity 22-fold and mortality 12-fold in subsequent deliveries. This report emphasizes the zoonotic potential of animal EPEC strains and the need for virulence determinant-based screening of E. coli isolates from diarrheic animals.
Collapse
|
204
|
Aroeti B, Friedman G, Zlotkin-Rivkin E, Donnenberg MS. Retraction of enteropathogenic E. coli type IV pili promotes efficient host cell colonization, effector translocation and tight junction disruption. Gut Microbes 2012; 3:267-71. [PMID: 22572833 PMCID: PMC3427219 DOI: 10.4161/gmic.19814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type IV pili (Tfp) play a primary role in mediating the adherence of pathogenic bacteria to their hosts. The pilus filament can retract with an immense force. However, the role of this activity in microbial pathogenesis has not been rigorously explored. Experiments performed on volunteers suggested that the retraction capacity of enteropathogenic Escherichia coli (EPEC) Tfp is required for full virulence. Here we review our recent study(1) in which we showed that the retraction capacity of the EPEC Tfp facilitates tight-junction disruption and actin-rich pedestal formation by promoting efficient bacterial protein effector translocation into epithelial host cells. We also present new data using live imaging confocal microscopy suggesting that EPEC adheres to monolayers in microcolonies and that Tfp retraction facilitates significant changes in the microcolony shape, which may be critical for efficient effector delivery. Our studies hence suggest novel insights into the role of pili retraction in EPEC pathogenesis.
Collapse
Affiliation(s)
- Benjamin Aroeti
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel,Correspondence to: Benjamin Aroeti,
| | - Gil Friedman
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - Michael S. Donnenberg
- Division of Infectious Diseases; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
205
|
Taniuchi M, Walters CC, Gratz J, Maro A, Kumburu H, Serichantalergs O, Sethabutr O, Bodhidatta L, Kibiki G, Toney DM, Berkeley L, Nataro JP, Houpt ER. Development of a multiplex polymerase chain reaction assay for diarrheagenic Escherichia coli and Shigella spp. and its evaluation on colonies, culture broths, and stool. Diagn Microbiol Infect Dis 2012; 73:121-8. [PMID: 22541788 DOI: 10.1016/j.diagmicrobio.2012.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022]
Abstract
Detection of diarrheagenic Escherichia coli (DEC) typically depends on identification of virulence genes from stool cultures, not on stool itself. We developed a multiplex polymerase chain reaction (PCR) assay that detects key DEC virulence genes (stx1, stx2, eae, bfpA, ipaH, LT, STh, aaiC, aatA). The assay involved a multiplex PCR reaction followed by detection of amplicon(s) using Luminex beads. The assay was evaluated on over 100 colony and broth specimens. We then evaluated the assay using DNA extracted from stool, colony pools, and Gram-negative broths, using stool spiked with known quantities of DEC. Performance of the assay on stool DNA was most quantitative, while stool broth DNA offered the lowest limit of detection. The assay was prospectively evaluated on clinical specimens in Tanzania. Stool DNA yielded higher sensitivity than colony pools compared with broth DNA as the standard. We propose using this assay to screen for DEC directly in stool or stool broths.
Collapse
Affiliation(s)
- Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, Ding S, Ju H. A Rapid and Sensitive Aptamer-Based Electrochemical Biosensor for Direct Detection of Escherichia Coli O111. ELECTROANAL 2012. [DOI: 10.1002/elan.201100700] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|