201
|
Small RNA binding-site multiplicity involved in translational regulation of a polycistronic mRNA. Proc Natl Acad Sci U S A 2012; 109:E2691-8. [PMID: 22988087 DOI: 10.1073/pnas.1207927109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In animal systems, mRNAs subject to posttranscriptional regulation by small RNAs (sRNAs) often possess multiple binding sites with imperfect complementarity to a given sRNA. In contrast, small RNA-mRNA interactions in bacteria and plants typically involve a single binding site. In a previous study, we demonstrated that the Escherichia coli sRNA SgrS base pairs with a site in the coding region of the first gene of a polycistronic message, manXYZ. This interaction was shown to be responsible for translational repression of manX and to contribute to destabilization of the manXYZ mRNA. In the current study, we report that translational repression of the manY and manZ genes by SgrS requires a second binding site located in the manX-manY intergenic region. Pairing at this site can repress translation of manY and manZ even when mRNA degradation is blocked. Base pairing between SgrS and the manX site does not affect translation of manY or manZ. Pairing at both sites is required for optimal SgrS-mediated degradation of the full-length manXYZ mRNA and for a particular stress phenotype. These results suggest that bacterial sRNAs may use target-site multiplicity to enhance the efficiency and stringency of regulation. Moreover, use of multiple binding sites may be particularly important for coordinating regulation of multiple genes encoded in operons.
Collapse
|
202
|
Horstmann N, Orans J, Valentin-Hansen P, Shelburne SA, Brennan RG. Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Res 2012; 40:11023-35. [PMID: 22965117 PMCID: PMC3505971 DOI: 10.1093/nar/gks809] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hfq is a post-transcriptional regulator that plays a key role in bacterial gene expression by binding AU-rich sequences and A-tracts to facilitate the annealing of sRNAs to target mRNAs and to affect RNA stability. To understand how Hfq from the Gram-positive bacterium Staphylococcus aureus (Sa) binds A-tract RNA, we determined the crystal structure of an Sa Hfq–adenine oligoribonucleotide complex. The structure reveals a bipartite RNA-binding motif on the distal face that is composed of a purine nucleotide-specificity site (R-site) and a non-discriminating linker site (L-site). The (R–L)-binding motif, which is also utilized by Bacillus subtilis Hfq to bind (AG)3A, differs from the (A–R–N) tripartite poly(A) RNA-binding motif of Escherichia coli Hfq whereby the Sa Hfq R-site strongly prefers adenosine, is more aromatic and permits deeper insertion of the adenine ring. R-site adenine-stacking residue Phe30, which is conserved among Gram-positive bacterial Hfqs, and an altered conformation about β3 and β4 eliminate the adenosine-specificity site (A-site) and create the L-site. Binding studies show that Sa Hfq binds (AU)3A ≈ (AG)3A ≥ (AC)3A > (AA)3A and L-site residue Lys33 plays a significant role. The (R–L) motif is likely utilized by Hfqs from most Gram-positive bacteria to bind alternating (A–N)n RNA.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
203
|
Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 2012; 40:10964-79. [PMID: 22965121 PMCID: PMC3510493 DOI: 10.1093/nar/gks847] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report on the characterization and target analysis of the small (s)RNA162 in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5′ fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA162 (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA162 is crucial for target interactions. Furthermore, our results indicate that sRNA162-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 5′ end of sRNA162 targets the 5′-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA162 acts as an antisense (as)RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.
Collapse
Affiliation(s)
- Dominik Jäger
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
204
|
Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. An atlas of Hfq-bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 2012; 31:4005-19. [PMID: 22922465 DOI: 10.1038/emboj.2012.229] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/19/2012] [Indexed: 01/07/2023] Open
Abstract
The small RNAs associated with the protein Hfq constitute one of the largest classes of post-transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free-standing genes. Here, deep sequencing of Hfq-bound transcripts from multiple stages of growth of Salmonella typhimurium revealed a plethora of new small RNA species from within mRNA loci, including DapZ, which overlaps with the 3' region of the biosynthetic gene, dapB. Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and is controlled by HilD, the master regulator of Salmonella invasion genes. DapZ carries a short G/U-rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB-like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq-dependent trans-acting RNA. Our atlas of Hfq targets suggests that the 3' regions of mRNA genes constitute a rich reservoir that provides the Hfq network with new regulatory small RNAs.
Collapse
Affiliation(s)
- Yanjie Chao
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
205
|
Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 2012; 47:943-53. [PMID: 22902561 PMCID: PMC3469820 DOI: 10.1016/j.molcel.2012.07.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
Numerous small non-coding RNAs (sRNAs) in bacteria modulate rates of translation initiation and degradation of target mRNAs, which they recognize through base-pairing facilitated by the RNA chaperone Hfq. Recent evidence indicates that the ternary complex of Hfq, sRNA and mRNA guides endoribonuclease RNase E to initiate turnover of both the RNAs. We show that a sRNA not only guides RNase E to a defined site in a target RNA, but also allosterically activates the enzyme by presenting a monophosphate group at the 5′-end of the cognate-pairing “seed.” Moreover, in the absence of the target the 5′-monophosphate makes the sRNA seed region vulnerable to an attack by RNase E against which Hfq confers no protection. These results suggest that the chemical signature and pairing status of the sRNA seed region may help to both ‘proofread’ recognition and activate mRNA cleavage, as part of a dynamic process involving cooperation of RNA, Hfq and RNase E.
Collapse
Affiliation(s)
- Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | | | | | | | | |
Collapse
|
206
|
Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36. [PMID: 22949045 DOI: 10.1007/s00253-012-4325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023]
Abstract
A paradigm shift in our thinking about the intricacies of the host-parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France.
| | | | | | | | | | | |
Collapse
|
207
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
208
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
209
|
Salim NN, Faner MA, Philip JA, Feig AL. Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY. Nucleic Acids Res 2012; 40:8021-32. [PMID: 22661574 PMCID: PMC3439879 DOI: 10.1093/nar/gks392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hfq is an important RNA-binding protein that helps bacteria adapt to stress. Its primary function is to promote pairing between trans-acting small non-coding RNAs (sRNAs) and their target mRNAs. Identification of essential Hfq-binding motifs in up-stream regions of rpoS and fhlA led us to ask the question whether these elements are a common occurrence among other Hfq-dependent mRNAs as well. Here, we confirm the presence of a similar (ARN)x motif in glmS RNA, a gene controlled by two sRNAs (GlmZ and GlmY) in an Hfq-dependent manner. GlmZ represents a canonical sRNA:mRNA pairing system, whereas GlmY is non-canonical, interfacing with the RNA processing protein YhbJ. We show that glmS interacts with both Hfq-binding surfaces in the absence of sRNAs. Even though two (ARN)x motifs are present, using a glmS:gfp fusion system, we determined that only one specific (ARN)x element is essential for regulation. Furthermore, we show that residues 66–72 in the C-terminal extension of Escherichia coli Hfq are essential for activation of GlmS expression by GlmY, but not with GlmZ. This result shows that the C-terminal extension of Hfq may be required for some forms of non-canonical sRNA regulation involving ancillary components such as additional RNAs or proteins.
Collapse
Affiliation(s)
- Nilshad N Salim
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
210
|
Desnoyers G, Massé E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 2012; 26:726-39. [PMID: 22474262 DOI: 10.1101/gad.182493.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RNA chaperone Hfq is mostly known to help small regulatory RNAs (sRNAs) interact with target mRNAs to block initiating ribosomes. In this model, whereas the sRNA is directly competing with initiating 30S ribosomal subunits, Hfq plays only an indirect role, allowing optimal sRNA-mRNA pairing. Here we report that Hfq is recruited by a sRNA, Spot42, to bind to a precise AU-rich region in the vicinity of the translation initiation region (TIR) of sdhC mRNA and competes directly with 30S ribosomal subunits. We show that the sRNA Spot42 binds sdhC too far upstream of the TIR to directly repress translation initiation in vitro and in vivo. Contrary to the canonical model of sRNA regulation, this suggests a new mechanism where Hfq is directly involved in the translational repression of the target mRNA and where the sRNA acts only as a recruitment factor.
Collapse
Affiliation(s)
- Guillaume Desnoyers
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | |
Collapse
|
211
|
Ishikawa H, Otaka H, Maki K, Morita T, Aiba H. The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3' poly(U) tail. RNA (NEW YORK, N.Y.) 2012; 18:1062-74. [PMID: 22454537 PMCID: PMC3334693 DOI: 10.1261/rna.031575.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/24/2012] [Indexed: 05/23/2023]
Abstract
Hfq-dependent sRNAs contain, at least, an mRNA base-pairing region, an Hfq-binding site, and a Rho-independent terminator. Recently, we found that the terminator poly(U) of Escherichia coli sRNAs is essential for Hfq binding and therefore for riboregulation. In this study, we tried to identify additional components within Hfq-binding sRNAs required for efficient Hfq binding by using SgrS as a model. We demonstrate by mutational and biochemical studies that an internal hairpin and an immediately upstream U-rich sequence also are required for efficient Hfq binding. We propose that the functional Hfq-binding module of SgrS consists of an internal hairpin preceded by a U-rich sequence and a Rho-independent terminator with a long poly(U) tail. We also show that the Rho-independent terminator alone can act as a functional Hfq-binding module when it is preceded by an internal U-rich sequence. The 3' region of most known sRNAs share the features corresponding to either a double- or single-hairpin-type Hfq-binding module. We also demonstrate that increasing the spacing between the base-pairing region and the Hfq-binding module reduces or impairs the silencing ability. These findings allowed us to design synthetic Hfq-binding sRNAs to target desired mRNAs.
Collapse
Affiliation(s)
- Hirokazu Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hironori Otaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kimika Maki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| |
Collapse
|
212
|
Amarasinghe JJ, Connell TD, Scannapieco FA, Haase EM. Novel iron-regulated and Fur-regulated small regulatory RNAs in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2012; 27:327-49. [PMID: 22958383 DOI: 10.1111/j.2041-1014.2012.00645.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Iron can regulate biofilm formation via non-coding small RNA (sRNA). To determine if iron-regulated sRNAs are involved in biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans, total RNA was isolated from bacteria cultured with iron supplementation or chelation. Transcriptional analysis demonstrated that the expression of four sRNA molecules (JA01-JA04) identified by bioinformatics was significantly upregulated in iron-limited medium compared with iron-rich medium. A DNA fragment encoding each sRNA promoter was able to titrate Escherichia coli ferric uptake regulator (Fur) from a Fur-repressible reporter fusion in an iron uptake regulator titration assay. Cell lysates containing recombinant AaFur shifted the mobility of sRNA-specific DNAs in a gel shift assay. Potential targets of these sRNAs, determined in silico, included genes involved in biofilm formation. The A. actinomycetemcomitans overexpressing JA03 sRNA maintained a rough phenotype on agar, but no longer adhered to uncoated polystyrene or glass, although biofilm determinant gene expression was only modestly decreased. In summary, these sRNAs have the ability to modulate biofilm formation, but their functional target genes remain to be confirmed.
Collapse
Affiliation(s)
- J J Amarasinghe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
213
|
Andrade JM, Pobre V, Matos AM, Arraiano CM. The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA (NEW YORK, N.Y.) 2012; 18:844-55. [PMID: 22355164 PMCID: PMC3312570 DOI: 10.1261/rna.029413.111] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/05/2012] [Indexed: 05/22/2023]
Abstract
The transient existence of small RNAs free of binding to the RNA chaperone Hfq is part of the normal dynamic lifecycle of a sRNA. Small RNAs are extremely labile when not associated with Hfq, but the mechanism by which Hfq stabilizes sRNAs has been elusive. In this work we have found that polynucleotide phosphorylase (PNPase) is the major factor involved in the rapid degradation of small RNAs, especially those that are free of binding to Hfq. The levels of MicA, GlmY, RyhB, and SgrS RNAs are drastically increased upon PNPase inactivation in Hfq(-) cells. In the absence of Hfq, all sRNAs are slightly shorter than their full-length species as result of 3'-end trimming. We show that the turnover of Hfq-free small RNAs is growth-phase regulated, and that PNPase activity is particularly important in stationary phase. Indeed, PNPase makes a greater contribution than RNase E, which is commonly believed to be the main enzyme in the decay of small RNAs. Lack of poly(A) polymerase I (PAP I) is also found to affect the rapid degradation of Hfq-free small RNAs, although to a lesser extent. Our data also suggest that when the sRNA is not associated with Hfq, the degradation occurs mainly in a target-independent pathway in which RNase III has a reduced impact. This work demonstrated that small RNAs free of Hfq binding are preferably degraded by PNPase. Overall, our data highlight the impact of 3'-exonucleolytic RNA decay pathways and re-evaluates the degradation mechanisms of Hfq-free small RNAs.
Collapse
Affiliation(s)
- José M. Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Ana M. Matos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Corresponding author.E-mail .
| |
Collapse
|
214
|
Corcoran CP, Podkaminski D, Papenfort K, Urban JH, Hinton JCD, Vogel J. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol Microbiol 2012; 84:428-45. [PMID: 22458297 DOI: 10.1111/j.1365-2958.2012.08031.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicF is a textbook example of a small regulatory RNA (sRNA) that acts on a trans-encoded target mRNA through imperfect base pairing. Discovery of MicF as a post-transcriptional repressor of the major Escherichia coli porin OmpF established the paradigm for a meanwhile common mechanism of translational inhibition, through antisense sequestration of a ribosome binding site. However, whether MicF regulates additional genes has remained unknown for almost three decades. Here, we have harnessed the new superfolder variant of GFP for reporter-gene fusions to validate newly predicted targets of MicF in Salmonella. We show that the conserved 5' end of MicF acts by seed pairing to repress the mRNAs of global transcriptional regulator Lrp, and periplasmic protein YahO, while a second targeting region is also required to regulate the mRNA of the lipid A-modifying enzyme LpxR. Interestingly, MicF targets lpxR at both the ribosome binding site and deep within the coding sequence. MicF binding in the coding sequence of lpxR decreases mRNA stability through exacerbating the use of a native RNase E site proximal to the short MicF-lpxR duplex. Altogether, this study assigns the classic MicF sRNA to the growing class of Hfq-associated regulators that use diverse mechanisms to impact multiple loci.
Collapse
Affiliation(s)
- Colin P Corcoran
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
215
|
Guantes R, Cayrol B, Busi F, Arluison V. Positive regulatory dynamics by a small noncoding RNA: speeding up responses under temperature stress. MOLECULAR BIOSYSTEMS 2012; 8:1707-15. [PMID: 22456827 DOI: 10.1039/c2mb05479e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent discoveries of noncoding regulatory RNAs have led to further understanding of the elements controlling genetic expression. In E. coli, most of those ncRNAs for which functional knowledge is available were shown to be dependent on the Hfq RNA chaperone and to act as inhibitors of translation by base pairing with their mRNA target. Nevertheless, there are also some examples where the sRNA plays a role of a translational activator, structurally enhancing ribosome binding to mRNA. In this work, we seek to understand the dynamics of DsrA-based positive regulation of rpoS mRNA, encoding the σ(S) RNA polymerase subunit, and to understand how it helps to mitigate environmental stress in bacteria. Our analysis is based on the first absolute quantification of the copy number of both the sRNA and of its corresponding mRNA in combination with mathematical models for post-transcriptional regulation. We show that on average, DsrA is present at a ratio of 3 to 24 copies per cell, while an rpoS transcript is present at a level of 1 to 4 copies per cell, both levels increasing when temperature is decreased. Our analysis supports the idea that temperature dependency of DsrA degradation is not a crucial condition for the attainment of observed DsrA steady levels, but highlights that this may have a marked influence on the dynamics of the regulation, notably to speed up the time of recovery to normal RNA levels after ending the stress signal. Further, our analysis also reveals how reversibility of RNA complex formation and σ(S)-regulated degradation act to reduce intrinsic noise in σ(S) induction. Taking into account the importance of this master regulator, which allows E. coli as well as other important pathogens to survive their environment, the present work contributes to complete the panel of multiple signals used to regulate bacterial transcription.
Collapse
Affiliation(s)
- Raúl Guantes
- Department of Condensed Matter Physics and Materials Science Institute Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
216
|
Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 2012; 38:276-99. [DOI: 10.3109/1040841x.2012.664540] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
217
|
Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J Bacteriol 2012; 194:2520-30. [PMID: 22427626 DOI: 10.1128/jb.00009-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Some bacteria experience stress when glucose-6-phosphate or analogues like α-methyl glucoside-6-phosphate (αMG6P) accumulate in the cell. In Escherichia coli, the small SgrS RNA is vital to recovery from glucose-phosphate stress; the growth of sgrS mutants is strongly inhibited by αMG. SgrS helps to restore growth in part through inhibiting translation of the ptsG mRNA, which encodes the major glucose transporter EIICB(Glc). While the regulatory mechanism of SgrS has been characterized, little is known about how glucose-phosphate stress connects to other aspects of cell physiology. In the present study, we discovered that mutation of pitA, which encodes the low-affinity transporter of inorganic phosphate, partially suppresses the αMG growth defect of an sgrS mutant. Induction of the stress response was also reduced in the sgrS pitA mutant compared to its sgrS parent. Microarray analysis suggested that expression of phosphate (Pho) regulon genes is increased in the sgrS pitA mutant compared to the sgrS parent. Consistent with this, we found increased PhoA (alkaline phosphatase) activity in the sgrS pitA mutant compared to the sgrS strain. Further, direct induction of the Pho regulon (in a pitA(+) background) also resulted in partial suppression of the sgrS growth defect. The suppression was reversed when Pho induction was prevented by mutation of phoB, which encodes the Pho transcriptional activator. Deletion of individual Pho structural genes in suppressed strains did not identify a single gene responsible for suppression. Altogether, this work describes one of the first studies of glucose-phosphate stress physiology and suggests a novel connection of carbon and phosphate metabolism.
Collapse
|
218
|
The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases. J Bacteriol 2012; 194:2586-93. [PMID: 22427629 DOI: 10.1128/jb.05567-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Bacillus subtilis ferric uptake regulator (Fur) protein regulates iron homeostasis and directly represses more than 20 operons. Fur indirectly regulates many more genes, including those controlled by the small, noncoding RNA FsrA. FsrA translationally represses numerous target genes and, for at least some targets, appears to function in conjunction with one or more of three small, basic proteins, known as FbpA, FbpB, and FbpC. The lactate-inducible lutABC operon encodes iron sulfur-containing enzymes required for growth on lactate. We here demonstrate that a fur mutant strain grows poorly on lactate due to FsrA-dependent repression of LutABC synthesis. Growth is restored in an fsrA mutant and also partially restored by mutation of the fbpAB operon. Genetic studies indicate that the 48-amino-acid FbpB protein but not FbpA contributes to regulation of lutABC. FbpB may function, at least in part, by increasing the efficiency of FsrA targeting to the lutABC mRNA, since the role of FbpB can be bypassed by modest upregulation of FsrA. These results provide support for a model in which FbpB, and perhaps other Fbp proteins, contributes along with FsrA to the translational regulation of gene expression.
Collapse
|
219
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:256-76. [PMID: 21344039 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30605, USA
| | | |
Collapse
|
220
|
Mika F, Busse S, Possling A, Berkholz J, Tschowri N, Sommerfeldt N, Pruteanu M, Hengge R. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol Microbiol 2012; 84:51-65. [PMID: 22356413 PMCID: PMC3465796 DOI: 10.1111/j.1365-2958.2012.08002.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RprA is a small regulatory RNA known to weakly affect the translation of σS (RpoS) in Escherichia coli. Here we demonstrate that csgD, which encodes a stationary phase-induced biofilm regulator, as well as ydaM, which encodes a diguanylate cyclase involved in activating csgD transcription, are novel negatively controlled RprA targets. As shown by extensive mutational analysis, direct binding of RprA to the 5′-untranslated and translational initiation regions of csgD mRNA inhibits translation and reduces csgD mRNA levels. In the case of ydaM mRNA, RprA base-pairs directly downstream of the translational start codon. In a feedforward loop, RprA can thus downregulate > 30 YdaM/CsgD-activated genes including those for adhesive curli fimbriae. However, during early stationary phase, when csgD transcription is strongly activated, the synthesis of csgD mRNA exceeds that of RprA, which allows the accumulation of CsgD protein. This situation is reversed when csgD transcription is shut off – for instance, later in stationary phase or during biofilm formation – or by conditions that further activate RprA expression via the Rcs two-component system. Thus, antagonistic regulation of csgD and RprA at the mRNA level integrates cell envelope stress signals with global gene expression during stationary phase and biofilm formation.
Collapse
Affiliation(s)
- Franziska Mika
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Pernitzsch SR, Sharma CM. Transcriptome complexity and riboregulation in the human pathogen Helicobacter pylori. Front Cell Infect Microbiol 2012; 2:14. [PMID: 22919606 PMCID: PMC3417511 DOI: 10.3389/fcimb.2012.00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/02/2012] [Indexed: 12/21/2022] Open
Abstract
The Gram-negative Epsilonproteobacterium Helicobacter pylori is considered as one of the major human pathogens and many studies have focused on its virulence mechanisms as well as genomic diversity. In contrast, only very little is known about post-transcriptional regulation and small regulatory RNAs (sRNAs) in this spiral-shaped microaerophilic bacterium. Considering the absence of the common RNA chaperone Hfq, which is a key-player in post-transcriptional regulation in enterobacteria, H. pylori was even regarded as an organism without riboregulation. However, analysis of the H. pylori primary transcriptome using RNA-seq revealed a very complex transcriptional output from its small genome. Furthermore, the identification of a wealth of sRNAs as well as massive antisense transcription indicates that H. pylori uses riboregulation for its gene expression control. The ongoing functional characterization of sRNAs along with the identification of associated RNA binding proteins will help to understand their potential roles in Helicobacter virulence and stress response. Moreover, research on riboregulation in H. pylori will provide new insights into its virulence mechanisms and will also help to shed light on post-transcriptional regulation in other Epsilonproteobacteria, including widespread and emerging pathogens such as Campylobacter.
Collapse
Affiliation(s)
- Sandy R Pernitzsch
- Research Center for Infectious Diseases, University of Würzburg Würzburg, Germany
| | | |
Collapse
|
222
|
Abstract
Northern blots are extremely useful to monitor the steady state level of small regulatory RNAs (sRNAs) as well as their target mRNAs. In combination with the drug rifampicin, which blocks cellular transcription, Northern blots can be used to determine the stability of sRNAs and mRNAs. Here we describe a protocol to assess the activity of the sRNA RyhB on the stability of targeted mRNAs sodB, fumA, and iscRSUA. We also describe how to identify a sRNA-induced initial cleavage site on a target mRNA. This protocol can be used for any sRNAs and their target mRNAs.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Electron Transport
- Electrophoresis, Polyacrylamide Gel
- Phenol/chemistry
- RNA Probes/chemistry
- RNA Probes/genetics
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/isolation & purification
- RNA, Small Untranslated/metabolism
- Rifampin/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Guillaume Desnoyers
- Department of Biochemistry, University of Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
223
|
Fröhlich KS, Papenfort K, Berger AA, Vogel J. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 2011; 40:3623-40. [PMID: 22180532 PMCID: PMC3333887 DOI: 10.1093/nar/gkr1156] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, σ(S) (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by σ(S). We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3'-RACE, an experimental approach that promises to be of use in predicting other sRNA-target interactions in bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
224
|
From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 2011; 45:105-45. [DOI: 10.1017/s003358351100014x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe RNA degradosome is a massive multi-enzyme assembly that occupies a nexus in RNA metabolism and post-transcriptional control of gene expression inEscherichia coliand many other bacteria. Powering RNA turnover and quality control, the degradosome serves also as a machine for processing structured RNA precursors during their maturation. The capacity to switch between destructive and processing modes involves cooperation between degradosome components and is analogous to the process of RNA surveillance in other domains of life. Recruitment of components and cellular compartmentalisation of the degradosome are mediated through small recognition domains that punctuate a natively unstructured segment within a scaffolding core. Dynamic in conformation, variable in composition and non-essential under certain laboratory conditions, the degradosome has nonetheless been maintained throughout the evolution of many bacterial species, due most likely to its diverse contributions in global cellular regulation. We describe the role of the degradosome and its components in RNA decay pathways inE. coli, and we broadly compare these pathways in other bacteria as well as archaea and eukaryotes. We discuss the modular architecture and molecular evolution of the degradosome, its roles in RNA degradation, processing and quality control surveillance, and how its activity is regulated by non-coding RNA. Parallels are drawn with analogous machinery in organisms from all life domains. Finally, we conjecture on roles of the degradosome as a regulatory hub for complex cellular processes.
Collapse
|
225
|
Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2011; 2:491-506. [DOI: 10.1515/bmc.2011.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis. In bacteria, the half-lives of individual mRNAs can differ by as much as two orders of magnitude, ranging from seconds to an hour. Most of what we know today about the diverse mechanisms of mRNA decay and maturation in prokaryotes comes from studies of the two model organisms Escherichia coli and Bacillus subtilis. Their evolutionary distance provided a large picture of potential pathways and enzymes involved in mRNA turnover. Among them are three ribonucleases, two of which have been discovered only recently, which have a truly general role in the initiating events of mRNA degradation: RNase E, RNase J and RNase Y. Their enzymatic characteristics probably determine the strategies of mRNA metabolism in the organism in which they are present. These ribonucleases are coded, alone or in various combinations, in all prokaryotic genomes, thus reflecting how mRNA turnover has been adapted to different ecological niches throughout evolution.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Harald Putzer
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
226
|
The Vibrio cholerae mannitol transporter is regulated posttranscriptionally by the MtlS small regulatory RNA. J Bacteriol 2011; 194:598-606. [PMID: 22101846 DOI: 10.1128/jb.06153-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae continues to pose a health threat in many developing nations and regions of the world struck by natural disasters. It is a pathogen that rapidly adapts to aquatic environments and the human small intestine. Small regulatory RNAs (sRNAs) may contribute to this adaptability. Specifically, the mannitol operon sRNA (MtlS sRNA; previously designated the IGR7 sRNA) is transcribed antisense to the 5' untranslated region of the mtl operon, encoding the mannitol-specific phosphotransferase system. Mannitol is a six-carbon sugar alcohol that accumulates in the human small intestine, the primary site of V. cholerae colonization. To better understand the V. cholerae mtl operon at a molecular level, we investigated mtlA expression in the presence of various carbon sources and the role of the MtlS sRNA. We observed that MtlA protein is present only in cells grown on mannitol sugar, whereas MtlS sRNA is expressed during growth on all sugars other than mannitol. In contrast, mtlA mRNA is expressed in similar amounts regardless of the carbon source used for bacterial growth. These observations suggest that the regulation of MtlA protein expression is a posttranscriptional event. We further demonstrate that MtlS sRNA overexpression repressed MtlA synthesis without affecting the stability of the messenger and that this process is largely independent of Hfq. We propose a model in which, when carbon sources other than mannitol are present, MtlS sRNA is transcribed, base pairs with the 5' untranslated region of the mtlA mRNA, occluding the ribosome binding site, and inhibits the synthesis of the mannitol-specific phosphotransferase system.
Collapse
|
227
|
Someya T, Baba S, Fujimoto M, Kawai G, Kumasaka T, Nakamura K. Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Res 2011; 40:1856-67. [PMID: 22053080 PMCID: PMC3287200 DOI: 10.1093/nar/gkr892] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)(3)A that are recognized by BsHfq and crystal structures of the BsHfq-(AG)(3)A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)(3)A. In particular, R32 appears to interact with G bases in (AG)(3)A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein-RNA interaction patterns engaged in the R32 residues of BsHfq-(AG)(3)A differ from those of EcHfq-poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA.
Collapse
Affiliation(s)
- Tatsuhiko Someya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
228
|
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA. Cell response of Escherichia coli
to cisplatin-induced stress. Proteomics 2011; 11:4174-88. [DOI: 10.1002/pmic.201100203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/08/2022]
|
229
|
Abstract
RNase E has an important role in mRNA turnover and stable RNA processing, although the reason for its essentiality is unknown. We isolated conditional mutants of RNase E to provide genetic tools to probe its essential function. In Salmonella enterica serovar Typhimurium, an extreme slow-growth phenotype caused by mutant EF-Tu (Gln125Arg, tufA499) can be rescued by mutants of RNase E that have reduced activity. We exploited this phenotype to select mutations in RNase E and screened these for temperature sensitivity (TS) for growth. Four different TS mutations were identified, all in the N-terminal domain of RNase E: Gly66→Cys, Ile207→Ser, Ile207→Asn, and Ala327→Pro. We also selected second-site mutations in RNase E that reversed temperature sensitivity. The complete set of RNase E mutations (53 primary mutations including the TS mutations, and 23 double mutations) were analyzed for their possible effects on the structure and function of RNase E by using the available three-dimensional (3-D) structures. Most single mutations were predicted to destabilize the structure, while second-site mutations that reversed the TS phenotype were predicted to restore stability to the structure. Three isogenic strain pairs carrying single or double mutations in RNase E (TS, and TS plus second-site mutation) were tested for their effects on the degradation, accumulation, and processing of mRNA, rRNA, and tRNA. The greatest defect was observed on rne mRNA autoregulation, and this correlated with the ability to rescue the tufA499-associated slow-growth phenotype. This is consistent with the RNase E mutants being defective in initial binding or subsequent cleavage of an mRNA critical for fast growth.
Collapse
|
230
|
Adamson DN, Lim HN. Essential requirements for robust signaling in Hfq dependent small RNA networks. PLoS Comput Biol 2011; 7:e1002138. [PMID: 21876666 PMCID: PMC3158044 DOI: 10.1371/journal.pcbi.1002138] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess networks of small RNAs (sRNAs) that are important for modulating gene expression. At the center of many of these sRNA networks is the Hfq protein. Hfq's role is to quickly match cognate sRNAs and target mRNAs from among a large number of possible combinations and anneal them to form duplexes. Here we show using a kinetic model that Hfq can efficiently and robustly achieve this difficult task by minimizing the sequestration of sRNAs and target mRNAs in Hfq complexes. This sequestration can be reduced by two non-mutually exclusive kinetic mechanisms. The first mechanism involves heterotropic cooperativity (where sRNA and target mRNA binding to Hfq is influenced by other RNAs bound to Hfq); this cooperativity can selectively decrease singly-bound Hfq complexes and ternary complexes with non-cognate sRNA-target mRNA pairs while increasing cognate ternary complexes. The second mechanism relies on frequent RNA dissociation enabling the rapid cycling of sRNAs and target mRNAs among different Hfq complexes; this increases the probability the cognate ternary complex forms before the sRNAs and target mRNAs degrade. We further demonstrate that the performance of sRNAs in isolation is not predictive of their performance within a network. These findings highlight the importance of experimentally characterizing duplex formation in physiologically relevant contexts with multiple RNAs competing for Hfq. The model will provide a valuable framework for guiding and interpreting these experiments. Bacteria have small RNAs (sRNAs) which are important modulators of gene expression. Many of these sRNAs require the Hfq protein to mediate their binding to specific target mRNAs which alters the translation and/or degradation of the mRNAs. The Hfq protein has a difficult task; it has to correctly pair cognate sRNAs and target mRNAs from among a large number of possible combinations and anneal them before the RNAs degrade. Furthermore, the process must be robust to changes in the number and types of sRNAs and target mRNAs that are transcribed and changes in the Hfq concentration. Here we show that Hfq can most successfully achieve its task when sRNAs and target mRNAs are not unnecessarily sequestered in Hfq complexes. The cell can accomplish this via cooperative binding of sRNAs and target mRNAs to Hfq and/or by rapid RNA dissociation from Hfq complexes. These findings reveal the requirements for efficient and robust sRNA signaling which are important for understanding the regulation of gene expression in diverse cell processes, for devising strategies that inhibit Hfq activity during pathogenesis and for the rational construction of synthetic circuits.
Collapse
Affiliation(s)
- David N. Adamson
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Han N. Lim
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
231
|
Abstract
Hfq is an RNA-binding protein that is common to diverse bacterial lineages and has key roles in the control of gene expression. By facilitating the pairing of small RNAs with their target mRNAs, Hfq affects the translation and turnover rates of specific transcripts and contributes to complex post-transcriptional networks. These functions of Hfq can be attributed to its ring-like oligomeric architecture, which presents two non-equivalent binding surfaces that are capable of multiple interactions with RNA molecules. Distant homologues of Hfq occur in archaea and eukaryotes, reflecting an ancient origin for the protein family and hinting at shared functions. In this Review, we describe the salient structural and functional features of Hfq and discuss possible mechanisms by which this protein can promote RNA interactions to catalyse specific and rapid regulatory responses in vivo.
Collapse
Affiliation(s)
- Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Joseph-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
232
|
Identification and Role of Regulatory Non-Coding RNAs in Listeria monocytogenes. Int J Mol Sci 2011; 12:5070-9. [PMID: 21954346 PMCID: PMC3179153 DOI: 10.3390/ijms12085070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 11/16/2022] Open
Abstract
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
Collapse
|
233
|
Richards GR, Vanderpool CK. Molecular call and response: the physiology of bacterial small RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:525-31. [PMID: 21843668 DOI: 10.1016/j.bbagrm.2011.07.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/30/2022]
Abstract
The vital role of bacterial small RNAs (sRNAs) in cellular regulation is now well-established. Although many diverse mechanisms by which sRNAs bring about changes in gene expression have been thoroughly described, comparatively less is known about their biological roles and effects on cell physiology. Nevertheless, for some sRNAs, insight has been gained into the intricate regulatory interplay that is required to sense external environmental and internal metabolic cues and turn them into physiological outcomes. Here, we review examples of regulation by selected sRNAs, emphasizing signals and regulators required for sRNA expression, sRNA regulatory targets, and the resulting consequences for the cell. We highlight sRNAs involved in regulation of the processes of iron homeostasis (RyhB, PrrF, and FsrA) and carbon metabolism (Spot 42, CyaR, and SgrS).
Collapse
Affiliation(s)
- Gregory R Richards
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
234
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
235
|
PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 2011; 108:13059-64. [PMID: 21788484 DOI: 10.1073/pnas.1107050108] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs.
Collapse
|
236
|
Salvail H, Massé E. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:26-36. [PMID: 21793218 DOI: 10.1002/wrna.102] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron (Fe) is a double-edged sword for most living organisms. Although it is essential for the catalytic activity of a large number of enzymes, ferrous iron (Fe(2+) ) becomes cytotoxic in the presence of normal respiratory by-products such as H(2) O(2) . Because of this toxicity, intracellular iron concentrations ought to be regulated by elaborated homeostasis systems that, despite decades of extensive studies, have not yet revealed all of their surprising arrays of mechanistic details. Within the last few years, our understanding of iron metabolism has revealed that posttranscriptional regulation represents a major contribution to iron homeostasis in a host of organisms. While the small RNA RyhB regulates iron homeostasis in bacteria, its functional homolog protein Cth2 performs a similar task in yeasts. Recent advances in the elucidation of the mechanism of action and functions of RyhB have been made in Escherichia coli. In addition, other RyhB-like small RNAs have been identified in several bacterial species, such as Pseudomonas aeruginosa, Salmonella enterica, Vibrio cholerae, Neisseria meningitidis, and Shigella spp. These recent findings have shed light on the complexity of iron homeostasis.
Collapse
Affiliation(s)
- Hubert Salvail
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
237
|
Chiang MK, Lu MC, Liu LC, Lin CT, Lai YC. Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PLoS One 2011; 6:e22248. [PMID: 21779404 PMCID: PMC3136514 DOI: 10.1371/journal.pone.0022248] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022] Open
Abstract
Klebsiella pneumoniae is responsible for a wide range of clinical symptoms. How this bacterium adapts itself to ever-changing host milieu is still a mystery. Recently, small non-coding RNAs (sRNAs) have received considerable attention for their functions in fine-tuning gene expression at a post-transcriptional level to promote bacterial adaptation. Here we demonstrate that Hfq, an RNA-binding protein, which facilitates interactions between sRNAs and their mRNA targets, is critical for K. pneumoniae virulence. A K. pneumoniae mutant lacking hfq (Δhfq) failed to disseminate into extra-intestinal organs and was attenuated on induction of a systemic infection in a mouse model. The absence of Hfq was associated with alteration in composition of envelope proteins, increased production of capsular polysaccharides, and decreased resistance to H2O2, heat shock, and UV irradiation. Microarray-based transcriptome analyses revealed that 897 genes involved in numerous cellular processes were deregulated in the Δhfq strain. Interestingly, Hfq appeared to govern expression of many genes indirectly by affecting sigma factor RpoS and RpoE, since 19.5% (175/897) and 17.3% (155/897) of Hfq-dependent genes belong to the RpoE- and RpoS-regulon, respectively. These results indicate that Hfq regulates global gene expression at multiple levels to modulate the physiological fitness and virulence potential of K. pneumoniae.
Collapse
Affiliation(s)
- Ming-Ko Chiang
- Department of Life Science, National Chung-Cheng University, Chia-Yi, Taiwan
| | | | | | | | | |
Collapse
|
238
|
Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:818-36. [PMID: 21976285 DOI: 10.1002/wrna.94] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
239
|
De Lay N, Gottesman S. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA (NEW YORK, N.Y.) 2011; 17:1172-89. [PMID: 21527671 PMCID: PMC3096048 DOI: 10.1261/rna.2531211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/21/2011] [Indexed: 05/22/2023]
Abstract
In Escherichia coli, many small noncoding regulatory RNAs (sRNAs) post-transcriptionally regulate gene expression by base-pairing to mRNAs in a process that is mediated by the RNA chaperone Hfq. Binding of the sRNA to the mRNA can lead to increased or decreased mRNA stability and/or translation. It is not known if proteins other than Hfq are necessary for this process. In order to identify additional genes required for the post-transcriptional regulation of gene expression by Hfq-dependent sRNAs, we developed a novel combined genetic selection and screen for mutants defective in sRNA regulation. In our combined genetic selection and screen, we isolated hfq mutants and mutants in pnp, encoding polynucleotide phosphorylase (PNPase). We show that loss-of-function mutations in pnp result in a decreased stability of several sRNAs including RyhB, SgrS, and CyaR and also decrease both the negative and positive regulation by sRNAs. The defect in stability of CyaR and in negative and positive regulation are suppressed by deletion mutations in RNase E. Altogether, our results suggest that the lack of sRNA-mediated regulation in the absence of an active form of PNPase is due to the rapid turnover of sRNA resulting from an increase in RNase E activity and/or an increase in access of other ribonucleases to sRNAs.
Collapse
Affiliation(s)
- Nicholas De Lay
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
240
|
Gabor E, Göhler AK, Kosfeld A, Staab A, Kremling A, Jahreis K. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 2011; 90:711-20. [PMID: 21621292 DOI: 10.1016/j.ejcb.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The phosphoenolpyruvate-(PEP)-dependent-carbohydrate:phosphotransferase systems (PTSs) of enteric bacteria constitute a complex transport and sensory system. Such a PTS usually consists of two cytoplasmic energy-coupling proteins, Enzyme I (EI) and HPr, and one of more than 20 different carbohydrate-specific membrane proteins named Enzyme II (EII), which catalyze the uptake and concomitant phosphorylation of numerous carbohydrates. The most prominent representative is the glucose-PTS, which uses a PTS-typical phosphorylation cascade to transport and phosphorylate glucose. All components of the glucose-PTS interact with a large number of non-PTS proteins to regulate the carbohydrate flux in the bacterial cell. Several aspects of the glucose-PTS have been intensively investigated in various research projects of many groups. In this article we will review our recent findings on a Glc-PTS-dependent metalloprotease, on the interaction of EIICB(Glc) with the regulatory peptide SgrT, on the structure of the membrane spanning C-domain of the glucose transporter and on the modeling approaches of ptsG regulation, respectively, and discuss them in context of general PTS research.
Collapse
Affiliation(s)
- Elisabeth Gabor
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Genetics, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
241
|
|
242
|
Morita T, Aiba H. RNase E action at a distance: degradation of target mRNAs mediated by an Hfq-binding small RNA in bacteria. Genes Dev 2011; 25:294-8. [PMID: 21325130 DOI: 10.1101/gad.2030311] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A major class of bacterial small RNAs (sRNAs), along with RNA-binding protein Hfq and endoribonuclease RNase E, acts on target mRNAs through base-pairing, leading to translational repression and rapid degradation of the mRNAs. In this issue of Genes & Development, Prévost and colleagues (pp. 385-396) demonstrate by using the well-characterized sRNA RyhB that RNase E cleavage at sites distal from the pairing region triggers degradation of target mRNAs. The study has provided an important insight into the initial events of sRNA-induced degradation of target mRNAs.
Collapse
Affiliation(s)
- Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | | |
Collapse
|
243
|
Mulley G, White JP, Karunakaran R, Prell J, Bourdes A, Bunnewell S, Hill L, Poole PS. Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol 2011; 80:149-67. [PMID: 21276099 DOI: 10.1111/j.1365-2958.2011.07565.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutation of gltB (encoding glutamate oxoglutarate amidotransferase or GOGAT) in RU2307 increased the intracellular Gln:Glu ratio and inhibited amino acid transport via Aap and Bra. The mechanism probably involves global post-translational inhibition independent of Ntr. Transport was separately restored by increased gene expression of Aap or heterologous transporters. Likewise, second site suppressor mutations in the RNA chaperone Hfq elevated transport by Aap and Bra by increasing mRNA levels. Microarrays showed Hfq regulates 34 ABC transporter genes, including aap, bra and opp. The genes coding for integral membrane proteins and ABC subunits aapQMP braDEFGC were more strongly elevated in the hfq mutants than solute-binding proteins (aapJ braC). aapQMP and braDEFG are immediately downstream of stem-loops, indicating Hfq attenuates downstream translation and stability of mRNA, explaining differential expression of ABC genes. RU2307 nodulated peas and bacteria grew down infection threads, but bacteroid development was arrested and N(2) was not fixed. This probably results from an inability to synthesize or transport amino acids. However, GOGAT and GOGAT/AldA double mutants carrying suppressor mutations that increased amino acid uptake fixed N(2) on pea plants. Thus de novo ammonium assimilation into amino acids is unnecessary in bacteroids demonstrating sufficient amino acids are supplied by plants.
Collapse
Affiliation(s)
- G Mulley
- Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Updegrove TB, Correia JJ, Chen Y, Terry C, Wartell RM. The stoichiometry of the Escherichia coli Hfq protein bound to RNA. RNA (NEW YORK, N.Y.) 2011; 17:489-500. [PMID: 21205841 PMCID: PMC3039148 DOI: 10.1261/rna.2452111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
The Escherichia coli RNA binding protein Hfq is involved in many aspects of post-transcriptional gene expression. Tight binding of Hfq to polyadenylate sequences at the 3' end of mRNAs influences exonucleolytic degradation, while Hfq binding to small noncoding RNAs (sRNA) and their targeted mRNAs facilitate their hybridization which in turn effects translation. Hfq binding to an A-rich tract in the 5' leader region of the rpoS mRNA and to the sRNA DsrA have been shown to be important for DsrA enhanced translation initiation of this mRNA. The complexes of Hfq-A(18) and Hfq-DsrA provide models for understanding how Hfq interacts with these two RNA sequence/structure motifs. Different methods have reported different values for the stoichiometry of Hfq-A(18) and Hfq-DsrA. In this work, mass spectrometry and analytical ultracentrifugation provide direct evidence that the strong binding mode of the Hfq hexamer (Hfq(6)) for A(18) and domain II of DsrA (DsrA(DII)) involve 1:1 complexes. This stoichiometry was also supported by fluorescence anisotropy and a competition gel mobility shift experiment using wild-type and truncated Hfq. More limited studies of Hfq binding to DsrA as well as to the sRNAs RprA, OxyS, and an 18-nt segment of OxyS were also consistent with 1:1 stoichiometry. Mass spectrometry of cross-linked samples of Hfq(6), A(18), and DsrA(DII) exhibit intensity corresponding to a ternary 1:1:1 complex; however, the small intensity of this peak and fluorescence anisotropy experiments did not provide evidence that this ternary complex is stable in solution.
Collapse
Affiliation(s)
- Taylor B Updegrove
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
245
|
Man S, Cheng R, Miao C, Gong Q, Gu Y, Lu X, Han F, Yu W. Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res 2011; 39:e50. [PMID: 21296758 PMCID: PMC3082891 DOI: 10.1093/nar/gkr034] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recently, many small non-coding RNAs (sRNAs) with important regulatory roles have been identified in bacteria. As their eukaryotic counterparts, a major class of bacterial trans-encoded sRNAs acts by basepairing with target mRNAs, resulting in changes in translation and stability of the mRNA. RNA interference (RNAi) has become a powerful gene silencing tool in eukaryotes. However, such an effective RNA silencing tool remains to be developed for prokaryotes. In this study, we described first the use of artificial trans-encoded sRNAs (atsRNAs) for specific gene silencing in bacteria. Based on the common structural characteristics of natural sRNAs in Gram-negative bacteria, we developed the designing principle of atsRNA. Most of the atsRNAs effectively suppressed the expression of exogenous EGFP gene and endogenous uidA gene in Escherichia coli. Further studies demonstrated that the mRNA base pairing region and AU rich Hfq binding site were crucial for the activity of atsRNA. The atsRNA-mediated gene silencing was Hfq dependent. The atsRNAs led to gene silencing and RNase E dependent degradation of target mRNA. We also designed a series of atsRNAs which targeted the toxic genes in Staphyloccocus aureus, but found no significant interfering effect. We established an effective method for specific gene silencing in Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Man
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Prévost K, Desnoyers G, Jacques JF, Lavoie F, Massé E. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev 2011; 25:385-96. [PMID: 21289064 DOI: 10.1101/gad.2001711] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.
Collapse
Affiliation(s)
- Karine Prévost
- Department of Biochemistry, RNA Group, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
247
|
Sharwood RE, Hotto AM, Bollenbach TJ, Stern DB. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro. RNA (NEW YORK, N.Y.) 2011; 17:230-43. [PMID: 21148395 PMCID: PMC3022273 DOI: 10.1261/rna.2336611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/08/2010] [Indexed: 05/21/2023]
Abstract
Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3'-to-5' exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNA(Arg), raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S-AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1.
Collapse
Affiliation(s)
- Robert E Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
248
|
Balbontín R, Fiorini F, Figueroa-Bossi N, Casadesús J, Bossi L. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol Microbiol 2011; 78:380-94. [PMID: 20979336 DOI: 10.1111/j.1365-2958.2010.07342.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prokaryotic regulatory small RNAs act by a conserved mechanism and yet display a stunning structural variability. In the present study, we used mutational analysis to dissect the functional anatomy of RybB, a σ(E)-dependent sRNA that regulates the synthesis of major porins in Escherichia coli and Salmonella. Mutations in the chromosomal rybB locus that altered the expression of an ompC-lac fusion were identified. Some of the mutations cluster within a seven-nucleotide segment at the 5' end of the sRNA and affect its ability to pair with a sequence 40 nucleotides upstream from ompC translation start site. Other mutations map near the 3' end of RybB, destabilizing the sRNA or altering its binding to Hfq. The 5' end of RybB is also involved in ompD regulation. In this case, the sRNA can choose between two mutually exclusive pairing sites within the translated portion of the mRNA. Some of the RybB 5' end mutations affect the choice between the two sites, resulting in regulatory responses that diverge from those observed in ompC. Further analysis of RybB target specificity identified chiP (ybfM), a gene encoding an inducible chitoporin, as an additional member of the RybB regulon. Altogether, our results indicate that an heptameric 'seed' sequence is sufficient to confer susceptibility to RybB regulation.
Collapse
Affiliation(s)
- Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | |
Collapse
|
249
|
Benjamin JAM, Desnoyers G, Morissette A, Salvail H, Massé E. Dealing with oxidative stress and iron starvation in microorganisms: an overview. Can J Physiol Pharmacol 2011; 88:264-72. [PMID: 20393591 DOI: 10.1139/y10-014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron starvation and oxidative stress are 2 hurdles that bacteria must overcome to establish an infection. Pathogenic bacteria have developed many strategies to efficiently infect a broad range of hosts, including humans. The best characterized systems make use of regulatory proteins to sense the environment and adapt accordingly. For example, iron-sulfur clusters are critical for sensing the level and redox state of intracellular iron. The regulatory small RNA (sRNA) RyhB has recently been shown to play a central role in adaptation to iron starvation, while the sRNA OxyS coordinates cellular response to oxidative stress. These regulatory sRNAs are well conserved in many bacteria and have been shown to be essential for establishing a successful infection. An overview of the different strategies used by bacteria to cope with iron starvation and oxidative stress is presented here.
Collapse
Affiliation(s)
- Julie-Anna M Benjamin
- Department of Biochemistry, RNA Group, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
250
|
Rice JB, Vanderpool CK. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 2011; 39:3806-19. [PMID: 21245045 PMCID: PMC3089445 DOI: 10.1093/nar/gkq1219] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A number of bacterial small RNAs (sRNAs) act as global regulators of stress responses by controlling expression of multiple genes. The sRNA SgrS is expressed in response to glucose–phosphate stress, a condition associated with disruption of glycolytic flux and accumulation of sugar–phosphates. SgrS has been shown to stimulate degradation of the ptsG mRNA, encoding the major glucose transporter. This study demonstrates that SgrS regulates the genes encoding the mannose and secondary glucose transporter, manXYZ. Analysis of manXYZ mRNA stability and translation in the presence and absence of SgrS indicate that manXYZ is regulated by SgrS under stress conditions and when SgrS is ectopically expressed. In vitro footprinting and in vivo mutational analyses showed that SgrS base pairs with manXYZ within the manX coding sequence to prevent manX translation. Regulation of manX did not require the RNase E degradosome complex, suggesting that the primary mechanism of regulation is translational. An Escherichia coli ptsG mutant strain that is manXYZ+ experiences stress when exposed to the glucose analogs α-methyl glucoside or 2-deoxyglucose. A ptsG manXYZ double mutant is resistant to the stress, indicating that PTS transporters encoded by both SgrS targets are involved in taking up substrates that cause stress.
Collapse
Affiliation(s)
- Jennifer B Rice
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|