201
|
Sun Y, Fu Y, Li Y, Xu A. Genome-wide alternative polyadenylation in animals: insights from high-throughput technologies. J Mol Cell Biol 2012; 4:352-61. [DOI: 10.1093/jmcb/mjs041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
202
|
Li Y, Sun Y, Fu Y, Li M, Huang G, Zhang C, Liang J, Huang S, Shen G, Yuan S, Chen L, Chen S, Xu A. Dynamic landscape of tandem 3' UTRs during zebrafish development. Genome Res 2012; 22:1899-1906. [PMID: 22955139 PMCID: PMC3460185 DOI: 10.1101/gr.128488.111] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
Tandem 3' untranslated regions (UTRs), produced by alternative polyadenylation (APA) in the terminal exon of a gene, could have critical roles in regulating gene networks. Here we profiled tandem poly(A) events on a genome-wide scale during the embryonic development of zebrafish (Danio rerio) using a recently developed SAPAS method. We showed that 43% of the expressed protein-coding genes have tandem 3' UTRs. The average 3' UTR length follows a V-shaped dynamic pattern during early embryogenesis, in which the 3' UTRs are first shortened at zygotic genome activation, and then quickly lengthened during gastrulation. Over 4000 genes are found to switch tandem APA sites, and the distinct functional roles of these genes are indicated by Gene Ontology analysis. Three families of cis-elements, including miR-430 seed, U-rich element, and canonical poly(A) signal, are enriched in 3' UTR-shortened/lengthened genes in a stage-specific manner, suggesting temporal regulation coordinated by APA and trans-acting factors. Our results highlight the regulatory role of tandem 3' UTR control in early embryogenesis and suggest that APA may represent a new epigenetic paradigm of physiological regulations.
Collapse
Affiliation(s)
- Yuxin Li
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Yu Sun
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Mengzhen Li
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Chenxu Zhang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Jiahui Liang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Gaoyang Shen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Liangfu Chen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| |
Collapse
|
203
|
Akman BH, Can T, Erson-Bensan AE. Estrogen-induced upregulation and 3'-UTR shortening of CDC6. Nucleic Acids Res 2012; 40:10679-88. [PMID: 22977174 PMCID: PMC3510512 DOI: 10.1093/nar/gks855] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
3′-Untranslated region (UTR) shortening of mRNAs via alternative polyadenylation (APA) has important ramifications for gene expression. By using proximal APA sites and switching to shorter 3′-UTRs, proliferating cells avoid miRNA-mediated repression. Such APA and 3′-UTR shortening events may explain the basis of some of the proto-oncogene activation cases observed in cancer cells. In this study, we investigated whether 17 β-estradiol (E2), a potent proliferation signal, induces APA and 3′-UTR shortening to activate proto-oncogenes in estrogen receptor positive (ER+) breast cancers. Our initial probe based screen of independent expression arrays suggested upregulation and 3′-UTR shortening of an essential regulator of DNA replication, CDC6 (cell division cycle 6), upon E2 treatment. We further confirmed the E2- and ER-dependent upregulation and 3′UTR shortening of CDC6, which lead to increased CDC6 protein levels and higher BrdU incorporation. Consequently, miRNA binding predictions and dual luciferase assays suggested that 3′-UTR shortening of CDC6 was a mechanism to avoid 3′-UTR-dependent negative regulations. Hence, we demonstrated CDC6 APA induction by the proliferative effect of E2 in ER+ cells and provided new insights into the complex regulation of APA. E2-induced APA is likely to be an important but previously overlooked mechanism of E2-responsive gene expression.
Collapse
Affiliation(s)
- Begum H Akman
- Department of Biological Sciences, METU (Middle East Technical University), Universiteler Mah, Dumlupınar Blv. No. 1, 06800 Çankaya, Ankara, Turkey
| | | | | |
Collapse
|
204
|
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi AM, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR. Landscape of transcription in human cells. Nature 2012; 489:101-8. [PMID: 22955620 PMCID: PMC3684276 DOI: 10.1038/nature11233] [Citation(s) in RCA: 3930] [Impact Index Per Article: 302.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.
Collapse
Affiliation(s)
- Sarah Djebali
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Carrie A. Davis
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Angelika Merkel
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Alex Dobin
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Timo Lassmann
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Ali M. Mortazavi
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
- University of California Irvine, Dept of. Developmental and Cell Biology, 2300 Biological Sciences III, Irving, CA USA 92697
| | - Andrea Tanzer
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Wei Lin
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Felix Schlesinger
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Chenghai Xue
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Georgi K. Marinov
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Jainab Khatun
- Boise State University, College of Arts & Sciences, 1910 University Dr. Boise, ID USA 83725
| | - Brian A. Williams
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Chris Zaleski
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Joel Rozowsky
- Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520
| | - Maik Röder
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Felix Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire United Kingdom CB10 1SA
| | - Rehab F. Abdelhamid
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Tyler Alioto
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Igor Antoshechkin
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Michael T. Baer
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Nadav S. Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Philippe Batut
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Kimberly Bell
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Ian Bell
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - Sudipto Chakrabortty
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Xian Chen
- University of North Carolina at Chapel Hill, Department of Biochemistry & Biophysics, 120 Mason Farm Rd., Chapel Hill, NC USA 27599
| | - Jacqueline Chrast
- University of Lausanne, Center for Integrative Genomics, Genopode building, Lausanne, Switzerland 1015
| | - Joao Curado
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Thomas Derrien
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Erica Dumais
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - Jacqueline Dumais
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - Radha Duttagupta
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - Emilie Falconnet
- University of Geneva Medical School, Department of Genetic Medicine and Development and iGE3 Institute of Genetics and Genomics of Geneva, 1 rue Michel-Servet, Geneva, Switzerland 1015
| | - Meagan Fastuca
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Kata Fejes-Toth
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Pedro Ferreira
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Sylvain Foissac
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - Melissa J. Fullwood
- Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, #02-01, Genome, Singapore, Singapore 138672
| | - Hui Gao
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| | - David Gonzalez
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Assaf Gordon
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Harsha Gunawardena
- University of North Carolina at Chapel Hill, Department of Biochemistry & Biophysics, 120 Mason Farm Rd., Chapel Hill, NC USA 27599
| | - Cedric Howald
- University of Lausanne, Center for Integrative Genomics, Genopode building, Lausanne, Switzerland 1015
| | - Sonali Jha
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Rory Johnson
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Philipp Kapranov
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
- St. Laurent Institute, One Kendall Square, Cambridge, MA
| | - Brandon King
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Colin Kingswood
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Oscar J. Luo
- Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, #02-01, Genome, Singapore, Singapore 138672
| | - Eddie Park
- University of California Irvine, Dept of. Developmental and Cell Biology, 2300 Biological Sciences III, Irving, CA USA 92697
| | - Kimberly Persaud
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Jonathan B. Preall
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Paolo Ribeca
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Brian Risk
- Boise State University, College of Arts & Sciences, 1910 University Dr. Boise, ID USA 83725
| | - Daniel Robyr
- University of Geneva Medical School, Department of Genetic Medicine and Development and iGE3 Institute of Genetics and Genomics of Geneva, 1 rue Michel-Servet, Geneva, Switzerland 1015
| | - Michael Sammeth
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Lorian Schaffer
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Lei-Hoon See
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Atif Shahab
- Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, #02-01, Genome, Singapore, Singapore 138672
| | - Jorgen Skancke
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ana Maria Suzuki
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Hazuki Takahashi
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Hagen Tilgner
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Diane Trout
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Nathalie Walters
- University of Lausanne, Center for Integrative Genomics, Genopode building, Lausanne, Switzerland 1015
| | - Huaien Wang
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - John Wrobel
- Boise State University, College of Arts & Sciences, 1910 University Dr. Boise, ID USA 83725
| | - Yanbao Yu
- University of North Carolina at Chapel Hill, Department of Biochemistry & Biophysics, 120 Mason Farm Rd., Chapel Hill, NC USA 27599
| | - Xiaoan Ruan
- Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, #02-01, Genome, Singapore, Singapore 138672
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire United Kingdom CB10 1SA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520
- Department of Computer Science, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520
| | - Tim Hubbard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire United Kingdom CB10 1SA
| | - Alexandre Reymond
- University of Lausanne, Center for Integrative Genomics, Genopode building, Lausanne, Switzerland 1015
| | - Stylianos E. Antonarakis
- University of Geneva Medical School, Department of Genetic Medicine and Development and iGE3 Institute of Genetics and Genomics of Geneva, 1 rue Michel-Servet, Geneva, Switzerland 1015
| | - Gregory Hannon
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
| | - Morgan C. Giddings
- Boise State University, College of Arts & Sciences, 1910 University Dr. Boise, ID USA 83725
- University of North Carolina at Chapel Hill, Department of Biochemistry & Biophysics, 120 Mason Farm Rd., Chapel Hill, NC USA 27599
| | - Yijun Ruan
- Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, #02-01, Genome, Singapore, Singapore 138672
| | - Barbara Wold
- California Institute of Technology, Division of Biology, 91125. 2 Beckman Institute, Pasadena, CA USA 91125
| | - Piero Carninci
- RIKEN Yokohama Institute, RIKEN Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan 230-0045
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88 . Barcelona, Catalunya, Spain 08003
| | - Thomas R. Gingeras
- Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Rd. Cold Spring Harbor, NY, USA 11742
- Affymetrix, Inc, 3380 Central Expressway, Santa Clara, CA. USA 95051
| |
Collapse
|
205
|
Lin Y, Li Z, Ozsolak F, Kim SW, Arango-Argoty G, Liu TT, Tenenbaum SA, Bailey T, Monaghan AP, Milos PM, John B. An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res 2012; 40:8460-71. [PMID: 22753024 PMCID: PMC3458571 DOI: 10.1093/nar/gks637] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022] Open
Abstract
We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3' untranslated regions, independent of the cell type. The shortest 3' untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell-cell and cell-extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3' untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.
Collapse
Affiliation(s)
- Yuefeng Lin
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Zhihua Li
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Fatih Ozsolak
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sang Woo Kim
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Gustavo Arango-Argoty
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Teresa T. Liu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Scott A. Tenenbaum
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Timothy Bailey
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - A. Paula Monaghan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Patrice M. Milos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Bino John
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, College of Nanoscale Science and Engineering, University at Albany-Suny, Albany, NY, USA, Institute for Molecular Bioscience, the University of Queensland, Queensland, Australia and Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
206
|
Yoon OK, Hsu TY, Im JH, Brem RB. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 2012; 8:e1002882. [PMID: 22916029 PMCID: PMC3420953 DOI: 10.1371/journal.pgen.1002882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3'-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3' untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3' gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3' regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3' motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3' cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3'-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3'-end variation: the usage of distinct 3'-end processing signals and the effects of 3' sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3'-end positions with inferred 3' regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.
Collapse
Affiliation(s)
- Oh Kyu Yoon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
207
|
Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, Carvalho B, Meijer GA, Agami R. Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 2012; 18:5256-66. [PMID: 22874640 DOI: 10.1158/1078-0432.ccr-12-0543] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alternative cleavage and polyadenylation (APA) of mRNAs is a phenomenon that alters 3'-untranslated region length leading to altered posttranscriptional regulation of gene expression. Changing APA patterns have been shown to result in misregulation of genes involved in carcinogenesis; therefore, we hypothesized that altered APA contributes to progression of colorectal cancer, and that measurement of APA may lead to discovery of novel biomarkers. EXPERIMENTAL DESIGN We used next-generation sequencing to directly measure global patterns of APA changes during colorectal carcinoma progression in 15 human patient samples. Results were validated in a larger cohort of 50 patients, including 5 normal/carcinoma pairs from individuals. RESULTS We discovered numerous genes presenting progressive changes in APA. Genes undergoing untranslated region (3'UTR) shortening were enriched for functional groups such as cell-cycle and nucleic acid-binding and processing factors, and those undergoing 3'UTR lengthening or alternative 3'UTR usage were enriched for categories such as cell-cell adhesion and extracellular matrix. We found indications that APA changes result from differential processing of transcripts because of increased expression of cleavage and polyadenylation factors. Quantitative PCR analysis in a larger series of human patient samples, including matched pairs, confirmed APA changes in DMKN, PDXK, and PPIE genes. CONCLUSIONS Our results suggest that genes undergoing altered APA during human cancer progression may be useful novel biomarkers and potentially targeted for disease prevention and treatment. We propose that the strategy presented here may be broadly useful in discovery of novel biomarkers for other types of cancer and human disease.
Collapse
|
208
|
de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C, Dickson G, den Dunnen JT, van der Maarel SM, Raz V, 't Hoen PAC. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res 2012; 40:9089-101. [PMID: 22772983 PMCID: PMC3467053 DOI: 10.1093/nar/gks655] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The choice for a polyadenylation site determines the length of the 3′-untranslated region (3′-UTRs) of an mRNA. Inclusion or exclusion of regulatory sequences in the 3′-UTR may ultimately affect gene expression levels. Poly(A) binding protein nuclear 1 (PABPN1) is involved in polyadenylation of pre-mRNAs. An alanine repeat expansion in PABPN1 (exp-PABPN1) causes oculopharyngeal muscular dystrophy (OPMD). We hypothesized that previously observed disturbed gene expression patterns in OPMD muscles may have been the result of an effect of PABPN1 on alternative polyadenylation, influencing mRNA stability, localization and translation. A single molecule polyadenylation site sequencing method was developed to explore polyadenylation site usage on a genome-wide level in mice overexpressing exp-PABPN1. We identified 2012 transcripts with altered polyadenylation site usage. In the far majority, more proximal alternative polyadenylation sites were used, resulting in shorter 3′-UTRs. 3′-UTR shortening was generally associated with increased expression. Similar changes in polyadenylation site usage were observed after knockdown or overexpression of expanded but not wild-type PABPN1 in cultured myogenic cells. Our data indicate that PABPN1 is important for polyadenylation site selection and that reduced availability of functional PABPN1 in OPMD muscles results in use of alternative polyadenylation sites, leading to large-scale deregulation of gene expression.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Center for Human and Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Elkon R, Drost J, van Haaften G, Jenal M, Schrier M, Oude Vrielink JAF, Agami R. E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol 2012; 13:R59. [PMID: 22747694 PMCID: PMC3491381 DOI: 10.1186/gb-2012-13-7-r59] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.
Collapse
|
210
|
Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B, Furger A. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq. Nucleic Acids Res 2012; 40:6304-18. [PMID: 22467213 PMCID: PMC3401467 DOI: 10.1093/nar/gks282] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023] Open
Abstract
Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.
Collapse
Affiliation(s)
- Simon Haenni
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Zhe Ji
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Mainul Hoque
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Nigel Rust
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Helen Sharpe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Ralf Eberhard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Cathy Browne
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Michael O. Hengartner
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Bin Tian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - André Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| |
Collapse
|
211
|
Kwon SM, Cho H, Choi JH, Jee BA, Jo Y, Woo HG. Perspectives of integrative cancer genomics in next generation sequencing era. Genomics Inform 2012; 10:69-73. [PMID: 23105932 PMCID: PMC3480879 DOI: 10.5808/gi.2012.10.2.69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022] Open
Abstract
The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research.
Collapse
Affiliation(s)
- So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | | | | | | | | | |
Collapse
|
212
|
Capshew CR, Dusenbury KL, Hundley HA. Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 2012; 40:8637-45. [PMID: 22735697 PMCID: PMC3458544 DOI: 10.1093/nar/gks590] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With over one million copies, Alu elements are the most abundant repetitive elements in the human genome. When transcribed, interaction between two Alus that are in opposite orientation gives rise to double-stranded RNA (dsRNA). Although the presence of dsRNA in the cell was previously thought to only occur during viral infection, it is now known that cells express many endogenous small dsRNAs, such as short interfering RNA (siRNAs) and microRNA (miRNAs), which regulate gene expression. It is possible that long dsRNA structures formed from Alu elements influence gene expression. Here, we report that human mRNAs containing inverted Alu elements are present in the mammalian cytoplasm. The presence of these long intramolecular dsRNA structures within 3′-UTRs decreases translational efficiency, and although the structures undergo extensive editing in vivo, the effects on translation are independent of the presence of inosine. As inverted Alus are predicted to reside in >5% of human protein-coding genes, these intramolecular dsRNA structures are important regulators of gene expression.
Collapse
Affiliation(s)
- Claire R Capshew
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
213
|
The Poly(A)-Binding Protein Nuclear 1 Suppresses Alternative Cleavage and Polyadenylation Sites. Cell 2012; 149:538-53. [DOI: 10.1016/j.cell.2012.03.022] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/15/2011] [Accepted: 03/02/2012] [Indexed: 11/22/2022]
|
214
|
Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol Cell Biol 2012; 32:1468-82. [PMID: 22354987 DOI: 10.1128/mcb.06536-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue-specific alternative splicing is achieved through the coordinated assembly of RNA binding proteins at specific sites to enhance or silence splicing at nearby splice sites. We used high-throughput sequencing (RNA-Seq) to investigate the complete spectrum of alternative splicing events that are regulated by the epithelium-specific splicing regulatory proteins ESRP1 and ESRP2. We also combined this analysis with direct RNA sequencing (DRS) to reveal ESRP-mediated regulation of alternative polyadenylation. To define binding motifs that mediate direct regulation of splicing and polyadenylation by ESRP, SELEX-Seq analysis was performed, coupling traditional SELEX with high-throughput sequencing. Identification and scoring of high-affinity ESRP1 binding motifs within ESRP target genes allowed the generation of RNA maps that define the position-dependent activity of the ESRPs in regulating cassette exons and alternative 3' ends. These extensive analyses provide a comprehensive picture of the functions of the ESRPs in an epithelial posttranscriptional gene expression program.
Collapse
|
215
|
Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol Syst Biol 2012; 8:570. [PMID: 22333974 PMCID: PMC3293631 DOI: 10.1038/msb.2011.100] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
A genome-wide microRNA (miRNome) screen coupled with high-throughput monitoring of protein levels reveals complex, modular miRNA regulation of the EGFR-driven cell-cycle network, and identifies new miRNAs that can suppress breast cancer cell proliferation. ![]()
We interrogated, for the first time, a mammalian oncogenic signaling network with the miRNome and report the outputs at the protein level. Whole-genome microRNA (miRNA) effects on a given protein are generally mild, supporting a fine-tuning role for miRNAs, and these effects are dominated by sequence-matching mechanisms. We developed a novel network-analysis methodology with a bipartite graph model to identify proteins co-regulated by miRNAs. Besides the sequence-based mechanism, our results demonstrated that miRNAs simultaneously regulate several proteins belonging to the same functional module. We identified three miRNAs, miR-124, miR-147 and miR-193a-3p, as novel tumor suppressors that co-regulate EGFR-driven cell-cycle network proteins, and inhibit cell-cycle progression and proliferation in breast cancer. Our results demonstrate the potential to steer miRNA research toward the network level, underlining the need for systematic approaches before positioning miRNAs as drugs or drug targets.
The EGFR-driven cell-cycle pathway has been extensively studied due to its pivotal role in breast cancer proliferation and pathogenesis. Although several studies reported regulation of individual pathway components by microRNAs (miRNAs), little is known about how miRNAs coordinate the EGFR protein network on a global miRNA (miRNome) level. Here, we combined a large-scale miRNA screening approach with a high-throughput proteomic readout and network-based data analysis to identify which miRNAs are involved, and to uncover potential regulatory patterns. Our results indicated that the regulation of proteins by miRNAs is dominated by the nucleotide matching mechanism between seed sequences of the miRNAs and 3′-UTR of target genes. Furthermore, the novel network-analysis methodology we developed implied the existence of consistent intrinsic regulatory patterns where miRNAs simultaneously co-regulate several proteins acting in the same functional module. Finally, our approach led us to identify and validate three miRNAs (miR-124, miR-147 and miR-193a-3p) as novel tumor suppressors that co-target EGFR-driven cell-cycle network proteins and inhibit cell-cycle progression and proliferation in breast cancer.
Collapse
|
216
|
Lembo A, Di Cunto F, Provero P. Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer. PLoS One 2012; 7:e31129. [PMID: 22347440 PMCID: PMC3275581 DOI: 10.1371/journal.pone.0031129] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/03/2012] [Indexed: 02/06/2023] Open
Abstract
A major part of the post-transcriptional regulation of gene expression is affected by trans-acting elements, such as microRNAs, binding the 3' untraslated region (UTR) of their target mRNAs. Proliferating cells partly escape this type of negative regulation by expressing shorter 3' UTRs, depleted of microRNA binding sites, compared to non-proliferating cells. Using large-scale gene expression datasets, we show that a similar phenomenon takes place in breast and lung cancer: tumors expressing shorter 3' UTRs tend to be more aggressive and to result in shorter patient survival. Moreover, we show that a gene expression signature based only on the expression ratio of alternative 3' UTRs is a strong predictor of survival in both tumors. Genes undergoing 3'UTR shortening in aggressive tumors of the two tissues significantly overlap, and several of them are known to be involved in tumor progression. However the pattern of 3' UTR shortening in aggressive tumors in vivo is clearly distinct from analogous patterns involved in proliferation and transformation.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
217
|
Opening Pandora's Box—the new biology of driver mutations and clonal evolution in cancer as revealed by next generation sequencing. Curr Opin Genet Dev 2012; 22:3-9. [DOI: 10.1016/j.gde.2012.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/06/2023]
|
218
|
Miura P, Amirouche A, Clow C, Bélanger G, Jasmin BJ. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem 2011; 120:230-8. [PMID: 22081998 DOI: 10.1111/j.1471-4159.2011.07583.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is required for efficient skeletal-muscle regeneration and perturbing its expression causes abnormalities in the proliferation and differentiation of skeletal muscle cells. In this study, we investigated the mechanism of BDNF suppression that occurs during myogenic differentiation. BDNF is expressed at the mRNA level as two isoforms that differ in the length of their 3'UTRs as a result of alternative cleavage and polyadenylation. Sequence analysis revealed the presence of three miR-206 target sites in the long BDNF 3'UTR (BDNF-L), whereas only one site was found in the short mRNA BDNF 3'UTR (BDNF-S). miR-206 is known to regulate the differentiation of C2C12 myoblasts and its expression is induced during the transition from myoblasts to myotubes. We thus examined whether miR-206-mediated suppression is responsible for the expression pattern of BDNF during myogenic differentiation. BDNF-L was suppressed to a greater extent than BDNF-S during differentiation of C2C12 myoblasts. Transfection of a miR-206 precursor decreased activity of reporters representative of the BDNF-L 3'UTR, but not BDNF-S 3'UTR, and repressed endogenous BDNF mRNA levels. This suppression was found to be dependent on the presence of multiple miR-206 target sites in the BDNF-L 3'UTR. Conversely, suppression of miR-206 levels resulted in de-repression of BDNF 3'UTR reporter activity and increased endogenous BDNF-L mRNA levels. A receptor for BDNF, p75(NTR) , was also suppressed during differentiation and in response to miR-206, but this appeared to not be entirely mediated via a miR-206 target site its 3'UTR. Based on these observations, BDNF represents a novel target through which miR-206 controls the initiation and maintenance of the differentiated state of muscle cells. These results further suggest that miR-206 might play a role in regulating retrograde signaling of BDNF at the neuromuscular junction.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular & Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
219
|
Gordon JMB, Shikov S, Kuehner JN, Liriano M, Lee E, Stafford W, Poulsen MB, Harrison C, Moore C, Bohm A. Reconstitution of CF IA from overexpressed subunits reveals stoichiometry and provides insights into molecular topology. Biochemistry 2011; 50:10203-14. [PMID: 22026644 DOI: 10.1021/bi200964p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Yeast cleavage factor I (CF I) is an essential complex of five proteins that binds signal sequences at the 3' end of yeast mRNA. CF I is required for correct positioning of a larger protein complex, CPF, which contains the catalytic subunits executing mRNA cleavage and polyadenylation. CF I is composed of two parts, CF IA and Hrp1. The CF IA has only four subunits, Rna14, Rna15, Pcf11, and Clp1, but the structural organization has not been fully established. Using biochemical and biophysical methods, we demonstrate that CF IA can be reconstituted from bacterially expressed proteins and that it has 2:2:1:1 stoichiometry of its four proteins, respectively. We also describe mutations that disrupt the dimer interface of Rna14 while preserving the other subunit interactions. On the basis of our results and existing interaction data, we present a topological model for heterohexameric CF IA and its association with RNA and Hrp1.
Collapse
Affiliation(s)
- James M B Gordon
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
221
|
Liu B, Fu Y, Wang Z, Zhou S, Sun Y, Wu Y, Xu A. HLA-DRB1 may be antagonistically regulated by the coordinately evolved promoter and 3'-UTR under stabilizing selection. PLoS One 2011; 6:e25794. [PMID: 22028790 PMCID: PMC3196528 DOI: 10.1371/journal.pone.0025794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/11/2011] [Indexed: 11/18/2022] Open
Abstract
HLA-DRB1 is the most polymorphic MHC (major histocompatibility complex) class II gene in human, and plays a crucial role in the development and function of the immune system. Extensive polymorphisms exist in the promoter and 3'-UTR of HLA-DRB1, especially a LTR (Long terminal repeat) element in the promoter, which may be involved in the expression regulation. However, it remains unknown how the polymorphisms in the whole promoter region and 3'-UTR to regulate the gene expression. In this study, we investigated the extensive polymorphisms in the HLA-DRB1 promoter and 3'-UTR, and how these polymorphisms affect the gene expression in both independent and jointly manners. It was observed that most of the haplotypes in the DRB1 promoter and 3'-UTR were clustered into 4 conserved lineages (H1, H2, H3 and H4), and showed high linkage disequilibrium. Compared with H1 and H2 lineage, a LTR element in the promoter of H3 and H4 lineage significantly suppressed the promoter activity, whereas the activity of the linked 3'-UTR increased, leading to no apparent difference in the final expression product between H1/H2 and H3/H4 lineage. Nevertheless, compared with the plasmid with a promoter and 3'-UTR from the same lineage, the recombinant plasmid with a promoter from H2 and a 3'-UTR from H3 showed about double fold increased luciferase activity, Conversely, the recombinant plasmid with a promoter from H3 and a 3'-UTR from H2 resulted in about 2-fold decreased luciferase activity. These results indicate that the promoter and 3'-UTR of HLA-DRB1 may antagonistically regulate the gene expression, which may be subjected to stabilizing selection. These findings may provide a novel insight into the mechanisms of the diseases associated with HLA-DRB1 genes.
Collapse
Affiliation(s)
- Benrong Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Zhifen Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Sisi Zhou
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Yuping Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutic Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| |
Collapse
|