201
|
Bi S, Tong NH. Monte Carlo algorithm for free energy calculation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013310. [PMID: 26274310 DOI: 10.1103/physreve.92.013310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 06/04/2023]
Abstract
We propose a Monte Carlo algorithm for the free energy calculation based on configuration space sampling. An upward or downward temperature scan can be used to produce F(T). We implement this algorithm for the Ising model on a square lattice and triangular lattice. Comparison with the exact free energy shows an excellent agreement. We analyze the properties of this algorithm and compare it with the Wang-Landau algorithm, which samples in energy space. This method is applicable to general classical statistical models. The possibility of extending it to quantum systems is discussed.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Physics, Renmin University of China, 100872 Beijing, China
- Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices (Renmin University of China)
| | - Ning-Hua Tong
- Department of Physics, Renmin University of China, 100872 Beijing, China
- Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices (Renmin University of China)
| |
Collapse
|
202
|
Higo J, Dasgupta B, Mashimo T, Kasahara K, Fukunishi Y, Nakamura H. Virtual-system-coupled adaptive umbrella sampling to compute free-energy landscape for flexible molecular docking. J Comput Chem 2015; 36:1489-501. [DOI: 10.1002/jcc.23948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Junichi Higo
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Bhaskar Dasgupta
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Tadaaki Mashimo
- Technology Research Association for Next Generation Natural Products Chemistry; 2-3-26 Aomi Koto-Ku Tokyo 135-0064 Japan
- Information, Mathematical Science and Bioinformatics Co., Ltd.; 4-21-1, Higashiikebukuro Toshima-ku Tokyo 170-0013 Japan
| | - Kota Kasahara
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST); 2-3-26 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
203
|
Saheb V. Theoretical studies on the kinetics of hydrogen abstraction reactions of H and CH3 radicals from CH3OCH3 and some of their H/D isotopologues. J Phys Chem A 2015; 119:4711-7. [PMID: 25873440 DOI: 10.1021/acs.jpca.5b00911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrogen abstraction reactions by H and CH3 radicals from CH3OCH3 and some of their H/D isotopologues are studied by semiclassical transition state theory. Many high-level density functional, ab initio, and combinatory quantum chemical methods, including B3LYP, BB1K, MP2, MP4, CCSD(T), CBS-Q, and G4 methods, are employed to compute the energies and rovibrational properties of the stationary points for the title reactions. Xij vibrational anharmonicity coefficients, used in semiclassical transition state theory, are computed at the B3LYP, BB1K, and MP2 levels of theory. Thermal rate coefficients and kinetic isotope effects are computed over the temperature range from 200 to 2500 K and compared with available experimental data. The computed rate constants for the title reactions are represented as the equation k(T) = ATn exp[−E(T + T0)/(T2 + T02)].
Collapse
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Shahid-Bahonar University of Kerman, Kerman 76169, Iran
| |
Collapse
|
204
|
Vítek A, Kalus R. Phase transitions in free water nanoparticles. Theoretical modeling of [H2O]48 and [H2O]118. Phys Chem Chem Phys 2015; 17:10532-7. [PMID: 25804607 DOI: 10.1039/c4cp04909h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classical parallel-tempering Monte Carlo simulations of [H2O]48 and [H2O]118 have been performed in the isothermal-isobaric ensemble and a two-dimensional multiple-histogram method has been used to calculate the heat capacity of the two clusters. A semiempirical procedure is proposed for the inclusion of quantum effects and transformed heat capacity profiles are compared with state-of-the-art experimental data [C. Hock et al., Phys. Rev. Lett., 2009, 103, 073401]. A very good agreement is achieved. A detailed analysis of the simulation data is provided to gain an insight into the nature of the phase change which takes place in the two clusters at T ≈ 100 K.
Collapse
Affiliation(s)
- Aleš Vítek
- IT4Innovations National Supercomputing Center, VSB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic.
| | | |
Collapse
|
205
|
Alexeev AV, Maltseva DV, Ivanov VA, Klushin LI, Skvortsov AM. Force-extension curves for broken-rod macromolecules: Dramatic effects of different probing methods for two and three rods. J Chem Phys 2015; 142:164905. [PMID: 25933789 DOI: 10.1063/1.4919295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study force-extension curves of a single semiflexible chain consisting of several rigid rods connected by flexible spacers. The atomic force microscopy and laser optical or magnetic tweezers apparatus stretching these rod-coil macromolecules are discussed. In addition, the stretching by external isotropic force is analyzed. The main attention is focused on computer simulation and analytical results. We demonstrate that the force-extension curves for rod-coil chains composed of two or three rods of equal length differ not only quantitatively but also qualitatively in different probe methods. These curves have an anomalous shape for a chain of two rods. End-to-end distributions of rod-coil chains are calculated by Monte Carlo method and compared with analytical equations. The influence of the spacer's length on the force-extension curves in different probe methods is analyzed. The results can be useful for interpreting experiments on the stretching of rod-coil block-copolymers.
Collapse
Affiliation(s)
- A V Alexeev
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia
| | - D V Maltseva
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia
| | - V A Ivanov
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia
| | - L I Klushin
- Department of Physics, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - A M Skvortsov
- Chemical-Pharmaceutical Academy, Prof. Popova 14, 197022 St. Petersburg, Russia
| |
Collapse
|
206
|
Bieler NS, Hünenberger PH. On the ambiguity of conformational states: A B&S-LEUS simulation study of the helical conformations of decaalanine in water. J Chem Phys 2015; 142:165102. [DOI: 10.1063/1.4918548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
207
|
An efficient algorithm to perform local concerted movements of a chain molecule. PLoS One 2015; 10:e0118342. [PMID: 25825903 PMCID: PMC4380501 DOI: 10.1371/journal.pone.0118342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
The devising of efficient concerted rotation moves that modify only selected local portions of chain molecules is a long studied problem. Possible applications range from speeding the uncorrelated sampling of polymeric dense systems to loop reconstruction and structure refinement in protein modeling. Here, we propose and validate, on a few pedagogical examples, a novel numerical strategy that generalizes the notion of concerted rotation. The usage of the Denavit-Hartenberg parameters for chain description allows all possible choices for the subset of degrees of freedom to be modified in the move. They can be arbitrarily distributed along the chain and can be distanced between consecutive monomers as well. The efficiency of the methodology capitalizes on the inherent geometrical structure of the manifold defined by all chain configurations compatible with the fixed degrees of freedom. The chain portion to be moved is first opened along a direction chosen in the tangent space to the manifold, and then closed in the orthogonal space. As a consequence, in Monte Carlo simulations detailed balance is easily enforced without the need of using Jacobian reweighting. Moreover, the relative fluctuations of the degrees of freedom involved in the move can be easily tuned. We show different applications: the manifold of possible configurations is explored in a very efficient way for a protein fragment and for a cyclic molecule; the "local backbone volume", related to the volume spanned by the manifold, reproduces the mobility profile of all-α helical proteins; the refinement of small protein fragments with different secondary structures is addressed. The presented results suggest our methodology as a valuable exploration and sampling tool in the context of bio-molecular simulations.
Collapse
|
208
|
Vogel T, Gross J, Bachmann M. Thermodynamics of the adsorption of flexible polymers on nanowires. J Chem Phys 2015; 142:104901. [DOI: 10.1063/1.4913959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Vogel
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jonathan Gross
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
- Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá , Mato Grosso, Brazil
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
209
|
Slobinsky D, Pugnaloni LA. Wang-Landau algorithm for entropic sampling of arch-based microstates in the volume ensemble of static granular packings. PAPERS IN PHYSICS 2015. [DOI: 10.4279/pip.070001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
210
|
Hart GR, Ferguson AL. Error catastrophe and phase transition in the empirical fitness landscape of HIV. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032705. [PMID: 25871142 DOI: 10.1103/physreve.91.032705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 06/04/2023]
Abstract
We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
211
|
Zierenberg J, Fytas NG, Janke W. Parallel multicanonical study of the three-dimensional Blume-Capel model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032126. [PMID: 25871073 DOI: 10.1103/physreve.91.032126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 06/04/2023]
Abstract
We study the thermodynamic properties of the three-dimensional Blume-Capel model on the simple cubic lattice by means of computer simulations. In particular, we implement a parallelized variant of the multicanonical approach and perform simulations by keeping a constant temperature and crossing the phase boundary along the crystal-field axis. We obtain numerical data for several temperatures in both the first- and second-order regime of the model. Finite-size scaling analyses provide us with transition points and the dimensional scaling behavior in the numerically demanding first-order regime, as well as a clear verification of the expected Ising universality in the respective second-order regime. Finally, we discuss the scaling behavior in the vicinity of the tricritical point.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Nikolaos G Fytas
- Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, United Kingdom
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
212
|
Velazquez L, Castro-Palacio JC. Extended canonical Monte Carlo methods: Improving accuracy of microcanonical calculations using a reweighting technique. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033308. [PMID: 25871247 DOI: 10.1103/physreve.91.033308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Velazquez and Curilef [J. Stat. Mech. (2010); J. Stat. Mech. (2010)] have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application of a reweighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multihistograms method of Ferrenberg and Swendsen [Phys. Rev. Lett. 63, 1195 (1989)]. As an example of application, we reconsider the study of the four-state Potts model on the square lattice L×L with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site qL during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power law qL(L)∝(1/L)z with exponent z≃0.26±0.02. Discussed is the compatibility of these results with the continuous character of temperature-driven phase transition when L→+∞.
Collapse
Affiliation(s)
- L Velazquez
- Departamento de Física, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile
| | - J C Castro-Palacio
- Department of Chemistry, University of Basel, Klingelbergstr. 80, 4056 Basel, Switzerland
| |
Collapse
|
213
|
Oyarzún B, van Westen T, Vlugt TJH. Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures. J Chem Phys 2015; 142:064903. [DOI: 10.1063/1.4907639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
214
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. Protein–Protein Interactions Affect Alpha Helix Stability in Crowded Environments. J Phys Chem B 2015; 119:2956-67. [DOI: 10.1021/jp512630s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| |
Collapse
|
215
|
Wüst T, Reith D, Virnau P. Sequence determines degree of knottedness in a coarse-grained protein model. PHYSICAL REVIEW LETTERS 2015; 114:028102. [PMID: 25635563 DOI: 10.1103/physrevlett.114.028102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Indexed: 06/04/2023]
Abstract
Knots are abundant in globular homopolymers but rare in globular proteins. To shed new light on this long-standing conundrum, we study the influence of sequence on the formation of knots in proteins under native conditions within the framework of the hydrophobic-polar lattice protein model. By employing large-scale Wang-Landau simulations combined with suitable Monte Carlo trial moves we show that even though knots are still abundant on average, sequence introduces large variability in the degree of self-entanglements. Moreover, we are able to design sequences which are either almost always or almost never knotted. Our findings serve as proof of concept that the introduction of just one additional degree of freedom per monomer (in our case sequence) facilitates evolution towards a protein universe in which knots are rare.
Collapse
Affiliation(s)
- Thomas Wüst
- Scientific IT Services, ETH Zürich, 8092 Zürich, Switzerland
| | - Daniel Reith
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| |
Collapse
|
216
|
Shao Q. Important roles of hydrophobic interactions in folding and charge interactions in misfolding of α-helix bundle protein. RSC Adv 2015. [DOI: 10.1039/c4ra14265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An enhanced-sampling molecular dynamics simulation is presented to quantitatively demonstrate the important roles of hydrophobic and charge interactions in the folding and misfolding of α-helix bundle protein, respectively.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
217
|
Taylor MP, Luettmer-Strathmann J. Partition function zeros and finite size scaling for polymer adsorption. J Chem Phys 2014; 141:204906. [PMID: 25429961 DOI: 10.1063/1.4902252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mark P. Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | |
Collapse
|
218
|
Saheb V, Dayani Yazdi S. Hydrogen abstraction reactions of hydroxyl radicals with 1,1,2,2-tetrachloroethane, 1,1,1,2-tetrachloroethane and pentachloroethane studied by using semi-classical transition state theory. Mol Phys 2014. [DOI: 10.1080/00268976.2014.924632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
219
|
Whitmer JK, Chiu CC, Joshi AA, de Pablo JJ. Basis function sampling: a new paradigm for material property computation. PHYSICAL REVIEW LETTERS 2014; 113:190602. [PMID: 25415892 DOI: 10.1103/physrevlett.113.190602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 06/04/2023]
Abstract
Wang-Landau sampling, and the associated class of flat histogram simulation methods have been remarkably helpful for calculations of the free energy in a wide variety of physical systems. Practically, convergence of these calculations to a target free energy surface is hampered by reliance on parameters which are unknown a priori. Here, we derive and implement a method built upon orthogonal functions which is fast, parameter-free, and (importantly) geometrically robust. The method is shown to be highly effective in achieving convergence. An important feature of this method is its ability to attain arbitrary levels of description for the free energy. It is thus ideally suited to in silico measurement of elastic moduli and other material properties related to free energy perturbations. We demonstrate the utility of such applications by applying our method to calculate the Frank elastic constants of the Lebwohl-Lasher model of liquid crystals.
Collapse
Affiliation(s)
- Jonathan K Whitmer
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Chi-cheng Chiu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Abhijeet A Joshi
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
220
|
Du W, Bolhuis PG. Sampling the equilibrium kinetic network of Trp-cage in explicit solvent. J Chem Phys 2014; 140:195102. [PMID: 24852564 DOI: 10.1063/1.4874299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employed the single replica multiple state transition interface sampling (MSTIS) approach to sample the kinetic (un)folding network of Trp-cage mini-protein in explicit water. Cluster analysis yielded 14 important metastable states in the network. The MSTIS simulation thus resulted in a full 14 × 14 rate matrix. Analysis of the kinetic rate matrix indicates the presence of a near native intermediate state characterized by a fully formed alpha helix, a slightly disordered proline tail, a broken salt-bridge, and a rotated arginine residue. This intermediate was also found in recent IR experiments. Moreover, the predicted rate constants and timescales are in agreement with previous experiments and simulations.
Collapse
Affiliation(s)
- Weina Du
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Peter G Bolhuis
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
221
|
Saheb V, Pourhaghighi NY. Theoretical Kinetics Studies on the Reaction of CF3CF═CF2 with Hydroxyl Radical. J Phys Chem A 2014; 118:9941-50. [DOI: 10.1021/jp5055099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
222
|
Comer J, Gumbart JC, Hénin J, Lelièvre T, Pohorille A, Chipot C. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J Phys Chem B 2014; 119:1129-51. [PMID: 25247823 PMCID: PMC4306294 DOI: 10.1021/jp506633n] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
In the host of numerical schemes
devised to calculate free energy
differences by way of geometric transformations, the adaptive biasing
force algorithm has emerged as a promising route to map complex free-energy
landscapes. It relies upon the simple concept that as a simulation
progresses, a continuously updated biasing force is added to the equations
of motion, such that in the long-time limit it yields a Hamiltonian
devoid of an average force acting along the transition coordinate
of interest. This means that sampling proceeds uniformly on a flat
free-energy surface, thus providing reliable free-energy estimates.
Much of the appeal of the algorithm to the practitioner is in its
physically intuitive underlying ideas and the absence of any requirements
for prior knowledge about free-energy landscapes. Since its inception
in 2001, the adaptive biasing force scheme has been the subject of
considerable attention, from in-depth mathematical analysis of convergence
properties to novel developments and extensions. The method has also
been successfully applied to many challenging problems in chemistry
and biology. In this contribution, the method is presented in a comprehensive,
self-contained fashion, discussing with a critical eye its properties,
applicability, and inherent limitations, as well as introducing novel
extensions. Through free-energy calculations of prototypical molecular
systems, many methodological aspects are examined, from stratification
strategies to overcoming the so-called hidden barriers in orthogonal
space, relevant not only to the adaptive biasing force algorithm but
also to other importance-sampling schemes. On the basis of the discussions
in this paper, a number of good practices for improving the efficiency
and reliability of the computed free-energy differences are proposed.
Collapse
Affiliation(s)
- Jeffrey Comer
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche CNRS n°7565, Université de Lorraine , B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
223
|
Šimėnas M, Ibenskas A, Tornau EE. Phase transition properties of the Bell-Lavis model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042124. [PMID: 25375455 DOI: 10.1103/physreve.90.042124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 06/04/2023]
Abstract
Using Monte Carlo calculations we analyze the order and the universality class of phase transitions into a low-density (honeycomb) phase of a triangular antiferromagnetic three-state Bell-Lavis model. The results are obtained in a whole interval of chemical potential μ corresponding to the honeycomb phase. Our results demonstrate that the phase transitions might be attributed to the three-state Potts universality class for all μ values except for the edges of the honeycomb phase existence. At the honeycomb phase and the low-density gas phase boundary the transitions become of the first order. At another, honeycomb-to-frustrated phase boundary, we observe the approach to the crossover from the three-state Potts to the Ising model universality class. We also obtain the Schottky anomaly in the specific heat close to this edge. We show that the intermediate planar phase, found in a very similar antiferromagnetic triangular Blume-Capel model, does not occur in the Bell-Lavis model.
Collapse
Affiliation(s)
- M Šimėnas
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, Goštauto 11, LT-01108 Vilnius, Lithuania
| | - A Ibenskas
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, Goštauto 11, LT-01108 Vilnius, Lithuania
| | - E E Tornau
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, Goštauto 11, LT-01108 Vilnius, Lithuania
| |
Collapse
|
224
|
Luettmer-Strathmann J, Binder K. Transitions of tethered chain molecules under tension. J Chem Phys 2014; 141:114911. [DOI: 10.1063/1.4895729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Jutta Luettmer-Strathmann
- Department of Physics and Department of Chemistry, The University of Akron, Akron, Ohio 44325-4001, USA
| | - Kurt Binder
- Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
225
|
Shi G, Vogel T, Wüst T, Li YW, Landau DP. Effect of single-site mutations on hydrophobic-polar lattice proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033307. [PMID: 25314564 DOI: 10.1103/physreve.90.033307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 06/04/2023]
Abstract
We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground-state energies and degeneracies, as well as other thermodynamic and structural quantities, may be either largely unaffected or may change significantly due to mutation.
Collapse
Affiliation(s)
- Guangjie Shi
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Thomas Vogel
- Theoretical Division (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
226
|
Wang J, Peng S, Cossins BP, Liao X, Chen K, Shao Q, Zhu X, Shi J, Zhu W. Mapping central α-helix linker mediated conformational transition pathway of calmodulin via simple computational approach. J Phys Chem B 2014; 118:9677-85. [PMID: 25120210 DOI: 10.1021/jp507186h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of intrinsic structural flexibility of calmodulin protein on the mechanism of its allosteric conformational transition are investigated in this article. Using a novel in silico approach, the conformational transition pathways of intact calmodulin as well as the isolated N- and C- terminal domains are identified and energetically characterized. It is observed that the central α-helix linker amplifies the structural flexibility of intact Ca(2+)-free calmodulin, which might facilitate the transition of the two domains. As a result, the global conformational transition of Ca(2+)-free calmodulin is initiated by the barrierless transition of two domains and proceeds through the barrier associated unwinding and bending of the central α-helix linker. The binding of Ca(2+) cations to calmodulin further increases the structural flexibility of the C-terminal domain and results in a downhill transition pathway of which all regions transit in a concerted manner. On the other hand, the separation of the N- and C-terminal domains from calmodulin protein loses the mediating function of central α-helix linker, leading to more difficult conformational transitions of both domains. The present study provides novel insights into the correlation of the integrity of protein, the structural flexibility, and the mechanism of conformational transition of proteinlike calmodulin.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Vogel T, Li YW, Wüst T, Landau DP. Scalable replica-exchange framework for Wang-Landau sampling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:023302. [PMID: 25215846 DOI: 10.1103/physreve.90.023302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/03/2023]
Abstract
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Collapse
Affiliation(s)
- Thomas Vogel
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
228
|
Rocha JCS, Schnabel S, Landau DP, Bachmann M. Identifying transitions in finite systems by means of partition function zeros and microcanonical inflection-point analysis: a comparison for elastic flexible polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022601. [PMID: 25215750 DOI: 10.1103/physreve.90.022601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 06/03/2023]
Abstract
For the estimation of transition points of finite elastic, flexible polymers with chain lengths from 13 to 309 monomers, we compare systematically transition temperatures obtained by the Fisher partition function zeros approach with recent results from microcanonical inflection-point analysis. These methods rely on accurate numerical estimates of the density of states, which have been obtained by advanced multicanonical Monte Carlo sampling techniques. Both the Fisher zeros method and microcanonical inflection-point analysis yield very similar results and enable the unique identification of transition points in finite systems, which is typically impossible in the conventional canonical analysis of thermodynamic quantities.
Collapse
Affiliation(s)
- Julio C S Rocha
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA
| | - Stefan Schnabel
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100920, D-04009 Leipzig, Germany
| | - David P Landau
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA and Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil and Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
229
|
Singh P, Sarkar SK, Bandyopadhyay P. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b). J Chem Phys 2014; 141:015103. [DOI: 10.1063/1.4885726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Priya Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Subir K. Sarkar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| |
Collapse
|
230
|
Nath T, Rajesh R. Multiple phase transitions in extended hard-core lattice gas models in two dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012120. [PMID: 25122264 DOI: 10.1103/physreve.90.012120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 06/03/2023]
Abstract
We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition.
Collapse
Affiliation(s)
- Trisha Nath
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
231
|
Thermodynamic and conformational insights into the phase transition of a single flexible homopolymer chain using replica exchange Monte Carlo method. J Mol Model 2014; 20:2296. [PMID: 24961896 DOI: 10.1007/s00894-014-2296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The phase transition of a single flexible homopolymer chain in the limit condition of dilute solution is systematically investigated using a coarse-grained model. Replica exchange Monte Carlo method is used to enhance the performance of the conformation space exploration, and thus detailed investigation of phase behavior of the system can be provided. With the designed potentials, the coil-globule transition and the liquid-solid-like transition are identified, and the transition temperatures are measured with the conformational and thermodynamic analyses. Additionally, by extrapolating the coil-globule transition temperature, T Θ , and the liquid-solid-like transition temperature T(L → S) to the thermodynamic limit, N → ∞, we found no "tri-critical" point in the current model.
Collapse
|
232
|
Wang Z, Wang L, Chen Y, He X. Phase transition behaviours of a single dendritic polymer. SOFT MATTER 2014; 10:4142-4150. [PMID: 24752714 DOI: 10.1039/c3sm53179a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dendritic polymers with highly branching structures exhibit many unique properties. In this paper, a computational study using the Wang-Landau sampling technique is carried out to reveal the phase transition behaviours of dendritic homopolymers with various branching structures. Two types of dendritic homopolymers, dendrimers/dendrigrafts (D/D) and hyperbranched (HB) polymers are studied. It is found that with increasing degree of branching in the dendritic polymer, the liquid-solid (LS) transition temperature increases and the coil-globule (CG) transition becomes weak. Additionally, under similar degrees of branching and polymerization, D/D polymers have a higher LS transition temperature than HB polymers. The reason is that the D/D polymers have greater regularity in the radial distribution of the branching units, which facilitates monomer packing during the LS transition. The distinctive internal unit distribution at various temperatures is quantitatively analysed. Our results show the importance of dendritic polymer structure regularity in phase transition behaviours and are valuable in guiding the structural design of dendritic macromolecules for functionalization applications.
Collapse
Affiliation(s)
- Zilu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | | | | | | |
Collapse
|
233
|
Li YW, Vogel T, Wüst T, Landau DP. A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang-Landau sampling. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/510/1/012012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
234
|
Kamala Latha B, Jose R, Murthy KPN, Sastry VSS. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: entropic sampling study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:050501. [PMID: 25353730 DOI: 10.1103/physreve.89.050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Indexed: 06/04/2023]
Abstract
We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence N(B)-N(B1)-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.
Collapse
Affiliation(s)
- B Kamala Latha
- School of Physics, University of Hyderabad, Hyderabad 500046, Andhra Pradesh, India
| | - Regina Jose
- School of Physics, University of Hyderabad, Hyderabad 500046, Andhra Pradesh, India
| | - K P N Murthy
- School of Physics, University of Hyderabad, Hyderabad 500046, Andhra Pradesh, India
| | - V S S Sastry
- School of Physics, University of Hyderabad, Hyderabad 500046, Andhra Pradesh, India
| |
Collapse
|
235
|
Junghans C, Perez D, Vogel T. Molecular Dynamics in the Multicanonical Ensemble: Equivalence of Wang-Landau Sampling, Statistical Temperature Molecular Dynamics, and Metadynamics. J Chem Theory Comput 2014; 10:1843-7. [PMID: 26580515 DOI: 10.1021/ct500077d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We show a direct formal relationship between the Wang-Landau iteration [PRL 86, 2050 (2001)], metadynamics [PNAS 99, 12562 (2002)], and statistical temperature molecular dynamics (STMD) [PRL 97, 050601 (2006)] that are the major work-horses for sampling from generalized ensembles. We demonstrate that STMD, itself derived from the Wang-Landau method, can be made indistinguishable from metadynamics. We also show that Gaussian kernels significantly improve the performance of STMD, highlighting the practical benefits of this improved formal understanding.
Collapse
Affiliation(s)
- Christoph Junghans
- Theoretical Division T-1, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Danny Perez
- Theoretical Division T-1, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Thomas Vogel
- Theoretical Division T-1, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
236
|
|
237
|
Féraud G, Pino T, Falvo C, Parneix P, Combriat T, Bréchignac P. Intramolecular Processes Revealed Using UV-Laser-Induced IR-Fluorescence: A New Perspective on the "Channel Three" of Benzene. J Phys Chem Lett 2014; 5:1083-1090. [PMID: 26274453 DOI: 10.1021/jz402697u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radiative relaxation in the infrared (IR) is common following nonradiative electronic relaxation processes, but it is rarely measured. We present ultraviolet laser-induced infrared fluorescence (UV-LIIRF) excitation spectroscopy and dispersed UV-LIIRF spectroscopy of gas phase benzene vibronically excited around the onset of channel 3, using a homemade spectrometer. We found that the vibrational IR fluorescence yield is clearly higher when benzene is excited above the onset than when it is excited below. Significant changes in dispersed IR emission profiles resulting from excitations below and above the onset of channel 3 were also observed. These results suggest that isomerization of benzene toward fulvene occurs efficiently below the opening of channel 3 and confirm that channel 3 involves a photophysical relaxation pathway that efficiently competes with isomerization.
Collapse
Affiliation(s)
- G Féraud
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - T Pino
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - C Falvo
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - P Parneix
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - T Combriat
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| | - Ph Bréchignac
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex, France
| |
Collapse
|
238
|
Caparica AA. Wang-Landau sampling: a criterion for halting the simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:043301. [PMID: 24827359 DOI: 10.1103/physreve.89.043301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 06/03/2023]
Abstract
In this work we propose a criterion to finish the simulations of the Wang-Landau sampling. Instead of determining a final modification factor for all simulations and every sample size, we investigate the behavior of the temperature of the peak of the specific heat during the simulations and finish them when this value varies below a given limit. As a result, different runs stop at different final modification factors. We show that in place of the temperature of the peak of the specific heat one can adopt alternatively the integrated heat transfer as a reference quantity. We apply this technique to the two-dimensional Ising model and a homopolymer. We verify that for the Ising model the mean order of the final modification factors is roughly the same for all lattice sizes, but for the homopolymer the order of the final modification factors increases with increasing polymer sizes. The results show that the simulations can be halted much earlier than is conventional in Wang-Landau sampling, but manifold finite-size simulations are required in order to obtain accurate results. A brief application to the three-dimensional Ising model is also available.
Collapse
Affiliation(s)
- A A Caparica
- Instituto de Física, Universidade Federal de Goiás. C.P. 131, CEP 74001-970, Goiânia, GO, Brazil
| |
Collapse
|
239
|
Desgranges C, Delhommelle J. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties. J Chem Phys 2014; 140:104109. [DOI: 10.1063/1.4867498] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
240
|
Desgranges C, Delhommelle J. Thermodynamics of Phase Coexistence and Metal–Nonmetal Transition in Mercury: Assessment of Effective Potentials via Expanded Wang–Landau Simulations. J Phys Chem B 2014; 118:3175-82. [DOI: 10.1021/jp500577t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
241
|
Escobedo FA. Mapping coexistence lines via free-energy extrapolation: Application to order-disorder phase transitions of hard-core mixtures. J Chem Phys 2014; 140:094102. [DOI: 10.1063/1.4866764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
242
|
Torres-Knoop A, Balaji SP, Vlugt TJH, Dubbeldam D. A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. J Chem Theory Comput 2014; 10:942-52. [DOI: 10.1021/ct4009766] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ariana Torres-Knoop
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sayee Prasaad Balaji
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
243
|
Li Y, Wüst T, Landau D. Wang–Landau sampling of the interplay between surface adsorption and folding of HP lattice proteins. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.847273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
244
|
Hicks E, Desgranges C, Delhommelle J. Adsorption and diffusion of the antiparkinsonian drug amantadine in carbon nanotubes. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.841908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
245
|
Jacob PE, Ryder RJ. The Wang–Landau algorithm reaches the flat histogram criterion in finite time. ANN APPL PROBAB 2014. [DOI: 10.1214/12-aap913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
246
|
Zierenberg J, Marenz M, Janke W. Scaling Properties of Parallelized Multicanonical Simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.phpro.2014.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
247
|
Wang-Landau and Stochastic Approximation Monte Carlo for Semi-flexible Polymer Chains. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.phpro.2014.08.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
248
|
Xie YL, Chu P, Wang YL, Chen JP, Yan ZB, Liu JM. Wang-Landau sampling with logarithmic windows for continuous models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013311. [PMID: 24580364 DOI: 10.1103/physreve.89.013311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Indexed: 06/03/2023]
Abstract
We present a modified Wang-Landau sampling (MWLS) for continuous statistical models by partitioning the energy space into a set of windows with logarithmically shrinking width. To demonstrate its necessity and advantages, we apply this sampling to several continuous models, including the two-dimensional square XY spin model, triangular J1-J2 spin model, and Lennard-Jones cluster model. Given a finite number of bins for partitioning the energy space, the conventional Wang-Landau sampling may not generate sufficiently accurate density of states (DOS) around the energy boundaries. However, it is demonstrated that much more accurate DOS can be obtained by this MWLS, and thus a precise evaluation of the thermodynamic behaviors of the continuous models at extreme low temperature (kBT<0.1) becomes accessible. The present algorithm also allows efficient computation besides the highly reliable data sampling.
Collapse
Affiliation(s)
- Y L Xie
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - P Chu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Y L Wang
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - J P Chen
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Z B Yan
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - J-M Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
249
|
Koenig A, Desgranges C, Delhommelle J. Adsorption of hydrogen in covalent organic frameworks using expanded Wang–Landau simulations. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.841907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A.R.V. Koenig
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND58202, USA
| | - C. Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND58202, USA
| | - J. Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND58202, USA
| |
Collapse
|
250
|
Kumar V, Errington JR. Application of the interface potential approach to calculate the wetting properties of a water model system. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.817672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|