201
|
Damásio ARL, Ribeiro LFC, Ribeiro LF, Furtado GP, Segato F, Almeida FBR, Crivellari AC, Buckeridge MS, Souza TACB, Murakami MT, Ward RJ, Prade RA, Polizeli MLTM. Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:461-7. [PMID: 22230786 DOI: 10.1016/j.bbapap.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-β-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60°C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan β-1,3 or β-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in β-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3°C and 81.3°C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60°C, the enzymatic assays demonstrated that XegA is more active in its monomeric state.
Collapse
Affiliation(s)
- André R L Damásio
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Bond JJ, Dunne JC, Kwan FYS, Li D, Zhang K, Leahy SC, Kelly WJ, Attwood GT, Jordan TW. Carbohydrate transporting membrane proteins of the rumen bacterium, Butyrivibrio proteoclasticus. J Proteomics 2011; 75:3138-44. [PMID: 22200676 DOI: 10.1016/j.jprot.2011.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/19/2011] [Accepted: 12/06/2011] [Indexed: 11/24/2022]
Abstract
The research was aimed at finding which membrane proteins of the rumen bacterium Butyrivibrio proteoclasticus are involved in the uptake of carbohydrates resulting from extracellular enzymatic degradation of hemicellulose and fructan. The proteomic analysis of cells grown with fructose or xylan as the sole substrate identified 13 membrane proteins predicted to function as carbohydrate transporters. One protein detected was the membrane component of a fructose-specific phosphoenolpyruvate:sugar phosphotransferase system believed to be involved in the fructose uptake following extracellular fructan breakdown. The other 12 proteins were all ABC transport system substrate-binding proteins, nine of which belong to functional category COG1653 that includes proteins predicted to transport oligosaccharides. Four of the SBPs were significantly upregulated in xylan grown cells, and three of these were found in polysaccharide utilisation loci where they are clustered with other genes involved in hemicellulose breakdown and metabolism. It is possible that the carbon source available regulates a wider network of genes. The information on the mechanisms used by rumen bacteria to take up carbohydrates from their environment may improve our understanding of the ruminant digestion and facilitate strategies for improved pasture and stored feed utilisation.
Collapse
Affiliation(s)
- Jude J Bond
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Yang X, Ye CY, Bisaria A, Tuskan GA, Kalluri UC. Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:675-87. [PMID: 21958710 DOI: 10.1016/j.plantsci.2011.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/01/2010] [Accepted: 01/27/2011] [Indexed: 05/17/2023]
Abstract
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
204
|
Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 2011; 286:41993-42001. [PMID: 21994937 DOI: 10.1074/jbc.m111.301051] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family.
Collapse
Affiliation(s)
- Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Yael Balazs
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000
| | - Margarita Volkinshtein
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Yael Grimpel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000.
| |
Collapse
|
205
|
Nobile PM, Wattebled F, Quecini V, Girardi CL, Lormeau M, Laurens F. Identification of a novel α-L-arabinofuranosidase gene associated with mealiness in apple. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4309-21. [PMID: 21561950 DOI: 10.1093/jxb/err146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In order to investigate the genetic bases of the physiological syndrome mealiness that causes abnormal fruit softening and juice loss in apples, an integrative approach was devised, consisting of sensory, instrumental, biochemical, genetic, and genomic methods. High levels of activity of α-L-arabinofuranosidase (α-AFase), a hydrolase acting on the pectic component of the cell walls, were found in individuals exhibiting the mealiness phenotype in a segregating population. The expression levels of the previously uncharacterized apple AF gene MdAF3 are higher in fruits from plants consistently showing mealiness symptons and high α-AFase activity. The transcription of MdAF3 is differentially regulated in distinct genomic contexts and appears to be independent of ethylene. Thus, it is likely to be controlled by endogenous developmental mechanisms associated with fruit ripening. The use of integrative approaches has allowed the identification of a novel contributor to the mealiness phenotype in apple and it has been possible to overcome the problems posed by the unavailability of near-isogenic lines to dissect the genetic bases of a complex physiological trait in woody perennial species.
Collapse
Affiliation(s)
- Paula Macedo Nobile
- INRA, Centre d'Angers, 42, Rue Georges Morel, BP 57, 49071, Beaucouzé Cedex, France
| | | | | | | | | | | |
Collapse
|
206
|
Moréra S, Vigouroux A, Stubbs KA. A potential fortuitous binding of inhibitors of an inverting family GH9 β-glycosidase derived from isofagomine. Org Biomol Chem 2011; 9:5945-7. [PMID: 21785782 DOI: 10.1039/c1ob05766a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using structural insight, the binding mode of isofagomine-derived inhibitors with family GH9 glycosidases is achieved via the study of Alicyclobacillus acidocaldarius (AaCel9A) endoglucanase. In contrast to what was observed in the first report using these compounds with inverting glycosidases from family GH6, these inhibitors do not adopt a distorted conformation in the active site.
Collapse
Affiliation(s)
- Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
207
|
Cuyvers S, Dornez E, Delcour JA, Courtin CM. Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit Rev Biotechnol 2011; 32:93-107. [DOI: 10.3109/07388551.2011.561537] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
208
|
Sukharnikov LO, Cantwell BJ, Podar M, Zhulin IB. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 2011; 29:473-9. [PMID: 21683463 DOI: 10.1016/j.tibtech.2011.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023]
Abstract
The key material for bioethanol production is cellulose, which is one of the main components of the plant cell wall. Enzymatic depolymerization of cellulose is an essential step in bioethanol production, and can be accomplished by fungal and bacterial cellulases. Most of the biochemically characterized bacterial cellulases come from only a few cellulose-degrading bacteria, thus limiting our knowledge of a range of cellulolytic activities that exist in nature. The recent explosion of genomic data offers a unique opportunity to search for novel cellulolytic activities; however, the absence of clear understanding of structural and functional features that are important for reliable computational identification of cellulases precludes their exploration in the genomic datasets. Here, we explore the diversity of cellulases and propose a genomic approach to overcome this bottleneck.
Collapse
Affiliation(s)
- Leonid O Sukharnikov
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | |
Collapse
|
209
|
Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S, Ichinose H, Lewis RJ, Viksø-Nielsen A, Gilbert HJ, Marles-Wright J. The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J Biol Chem 2011; 286:15483-95. [PMID: 21339299 PMCID: PMC3083193 DOI: 10.1074/jbc.m110.215962] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/16/2011] [Indexed: 11/06/2022] Open
Abstract
Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific α-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave α-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific α-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed β-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for α-1,2-l-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.
Collapse
Affiliation(s)
- Alan Cartmell
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lauren S. McKee
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maria J. Peña
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Johan Larsbrink
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Harry Brumer
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Satoshi Kaneko
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Hitomi Ichinose
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Richard J. Lewis
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jon Marles-Wright
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
210
|
Abbott DW, Boraston A. Structural analysis of a putative family 32 carbohydrate-binding module from the Streptococcus pneumoniae enzyme EndoD. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:429-33. [PMID: 21505233 PMCID: PMC3080142 DOI: 10.1107/s1744309111001874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022]
Abstract
EndoD is an architecturally complex endo-β-1,4-N-acetylglucosamidase from Streptococcus pneumoniae that cleaves the chitobiose core of N-linked glycans and contributes to pneumococcal virulence. Although the glycoside hydrolase family 85 catalytic module has been structurally and functionally characterized, nothing is known about the ancillary modules and how they contribute to the overall function of the enzyme. Presented here is the 2.0 Å resolution structure of a family 32 carbohydrate-binding module of EndoD, SpCBM32, solved by single-wavelength anomalous dispersion. The putative binding site of this protein is a charge-neutral relatively flat region on the protein surface that contains one prominently exposed tryptophan residue that extends into the solvent. These topographical features are discussed in the biological context of EndoD activity and a hypothesis is made about the complex structure of its potential carbohydrate ligand.
Collapse
Affiliation(s)
- D. Wade Abbott
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Alisdair Boraston
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
211
|
Han Y, Chen H. Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase. BIORESOURCE TECHNOLOGY 2011; 102:4787-92. [PMID: 21300542 DOI: 10.1016/j.biortech.2011.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 05/23/2023]
Abstract
Plant cell wall is the most abundant substrate for bioethanol production, and plants also represent a key resource for glycoside hydrolase (GH). To exploit efficient way for bioethanol production with lower cellulase loading, the potential of plant GH for lignocellulose bioconversion was evaluated. The GH activity for cell wall proteins (CWPs) was detected from fresh corn stover (FCS), and the synergism of which with Trichoderma reesei cellulase was also observed. The properties for the GH of FCS make it a promising enzyme additive for lignocellulose biodegradation. To make use of the plant GH, novel technology for hydrolysis and ethanol fermentation was developed with corn stover as substrate. Taking steam-exploded corn stover as substrate for hydrolysis and ethanol fermentation, compared with T. reesei cellulase loaded alone, the final glucose and ethanol accumulation increased by 60% and 63% respectively with GH of FCS as an addition.
Collapse
Affiliation(s)
- Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
212
|
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.
Collapse
|
213
|
Brás JLA, Cartmell A, Carvalho ALM, Verzé G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romão MJ, Fontes CMGA, Gilbert HJ. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 2011; 108:5237-42. [PMID: 21393568 PMCID: PMC3069175 DOI: 10.1073/pnas.1015006108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium thermocellum is a well-characterized cellulose-degrading microorganism. The genome sequence of C. thermocellum encodes a number of proteins that contain type I dockerin domains, which implies that they are components of the cellulose-degrading apparatus, but display no significant sequence similarity to known plant cell wall-degrading enzymes. Here, we report the biochemical properties and crystal structure of one of these proteins, designated CtCel124. The protein was shown to be an endo-acting cellulase that displays a single displacement mechanism and acts in synergy with Cel48S, the major cellulosomal exo-cellulase. The crystal structure of CtCel124 in complex with two cellotriose molecules, determined to 1.5 Å, displays a superhelical fold in which a constellation of α-helices encircle a central helix that houses the catalytic apparatus. The catalytic acid, Glu96, is located at the C-terminus of the central helix, but there is no candidate catalytic base. The substrate-binding cleft can be divided into two discrete topographical domains in which the bound cellotriose molecules display twisted and linear conformations, respectively, suggesting that the enzyme may target the interface between crystalline and disordered regions of cellulose.
Collapse
Affiliation(s)
- Joana L. A. Brás
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Alan Cartmell
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Ana Luísa M. Carvalho
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Genny Verzé
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100 Israel; and
| | - Yael Vazana
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100 Israel; and
| | - Márcia A. S. Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Supriya Ratnaparkhe
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - Maria J. Romão
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos M. G. A. Fontes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Harry J. Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| |
Collapse
|
214
|
Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ. Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 2011; 286:16814-23. [PMID: 21454649 DOI: 10.1074/jbc.m111.225037] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
215
|
Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CMGA, Gilbert HJ. Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 2011; 286:22510-20. [PMID: 21378160 DOI: 10.1074/jbc.m110.217315] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The enzymes that catalyze this process include xylanases that degrade xylan, a β-1,4-xylose polymer that is decorated with various sugars. Although xylanases efficiently hydrolyze unsubstituted xylans, these enzymes are unable to access highly decorated forms of the polysaccharide, such as arabinoxylans that contain arabinofuranose decorations. Here, we show that a Clostridium thermocellum enzyme, designated CtXyl5A, hydrolyzes arabinoxylans but does not attack unsubstituted xylans. Analysis of the reaction products generated by CtXyl5A showed that all the oligosaccharides contain an O3 arabinose linked to the reducing end xylose. The crystal structure of the catalytic module (CtGH5) of CtXyl5A, appended to a family 6 noncatalytic carbohydrate-binding module (CtCBM6), showed that CtGH5 displays a canonical (α/β)(8)-barrel fold with the substrate binding cleft running along the surface of the protein. The catalytic apparatus is housed in the center of the cleft. Adjacent to the -1 subsite is a pocket that could accommodate an l-arabinofuranose-linked α-1,3 to the active site xylose, which is likely to function as a key specificity determinant. CtCBM6, which adopts a β-sandwich fold, recognizes the termini of xylo- and gluco-configured oligosaccharides, consistent with the pocket topology displayed by the ligand-binding site. In contrast to typical modular glycoside hydrolases, there is an extensive hydrophobic interface between CtGH5 and CtCBM6, and thus the two modules cannot function as independent entities.
Collapse
Affiliation(s)
- Márcia A S Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Cuyvers S, Dornez E, Rezaei MN, Pollet A, Delcour JA, Courtin CM. Secondary substrate binding strongly affects activity and binding affinity of Bacillus subtilis and Aspergillus niger GH11 xylanases. FEBS J 2011; 278:1098-111. [PMID: 21261814 DOI: 10.1111/j.1742-4658.2011.08023.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The secondary substrate binding site (SBS) of Bacillus subtilis and Aspergillus niger glycoside hydrolase family 11 xylanases was studied by site-directed mutagenesis and evaluation of activity and binding properties of mutant enzymes on different substrates. Modification of the SBS resulted in an up to three-fold decrease in the relative activity of the enzymes on polymeric versus oligomeric substrates and highlighted the importance of several amino acids in the SBS forming hydrogen bonds or hydrophobic stacking interactions with substrates. Weakening of the SBS increased K(d) values by up to 70-fold in binding affinity tests using natural substrates. The impact that modifications in the SBS have both on activity and on binding affinity towards polymeric substrates clearly shows that such structural elements can increase the efficiency of these single domain enzymes on their natural substrates.
Collapse
Affiliation(s)
- Sven Cuyvers
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
217
|
Abstract
Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).
Collapse
|
218
|
Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One 2010; 5:e15635. [PMID: 21179425 PMCID: PMC3003705 DOI: 10.1371/journal.pone.0015635] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022] Open
Abstract
Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.
Collapse
|
219
|
Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 2010; 77:237-46. [PMID: 21037302 DOI: 10.1128/aem.01761-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates. Although PaMan5A and PaMan26A displayed similar specificities toward a range of mannan substrates, they differed in their end products, suggesting differences in substrate binding. The N-terminal CBM35 module of PaMan26A displayed dual binding specificity toward xylan and mannan. PaXyn11A harboring a C-terminal CBM1 module efficiently degraded wheat arabinoxylan, releasing mainly xylobiose as end product. PaAbf51A and PaAbf62A arabinose-debranching enzymes exhibited differences in activity toward arabinose-containing substrates. Further investigation of the contribution made by each P. anserina auxiliary enzyme to the saccharification of wheat straw and spruce demonstrated that the endo-acting hemicellulases (PaXyn11A, PaMan5A, and PaMan26A) individually supplemented the secretome of the industrial T. reesei CL847 strain. The most striking effect was obtained with PaMan5A that improved the release of total sugars by 28% and of glucose by 18%, using spruce as lignocellulosic substrate.
Collapse
|
220
|
Mba Medie F, Vincentelli R, Drancourt M, Henrissat B. Mycobacterium tuberculosis Rv1090 and Rv1987 encode functional β-glucan-targeting proteins. Protein Expr Purif 2010; 75:172-6. [PMID: 20826214 DOI: 10.1016/j.pep.2010.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.
Collapse
Affiliation(s)
- Felix Mba Medie
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236, IRD 198, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
221
|
Eklöf JM, Brumer H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. PLANT PHYSIOLOGY 2010; 153:456-66. [PMID: 20421457 PMCID: PMC2879796 DOI: 10.1104/pp.110.156844] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/23/2010] [Indexed: 05/18/2023]
|