201
|
Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. PLANT PHYSIOLOGY 2014; 164:735-47. [PMID: 24390391 PMCID: PMC3912102 DOI: 10.1104/pp.113.231308] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Grain number, plant height, and heading date7 (Ghd7) has been regarded as an important regulator of heading date and yield potential in rice (Oryza sativa). In this study, we investigated functions of Ghd7 in rice growth, development, and environmental response. As a long-day dependent negative regulator of heading date, the degree of phenotypic effect of Ghd7 on heading date and yield traits is quantitatively related to the transcript level and is also influenced by both environmental conditions and genetic backgrounds. Ghd7 regulates yield traits through modulating panicle branching independent of heading date. Ghd7 also regulates plasticity of tiller branching by mediating the PHYTOCHROME B-TEOSINTE BRANCHED1 pathway. Drought, abscisic acid, jasmonic acid, and high-temperature stress strongly repressed Ghd7 expression, whereas low temperature enhanced Ghd7 expression. Overexpression of Ghd7 increased drought sensitivity, whereas knock-down of Ghd7 enhanced drought tolerance. Gene chip analysis of expression profiles revealed that Ghd7 was involved in the regulation of multiple processes, including flowering time, hormone metabolism, and biotic and abiotic stresses. This study suggests that Ghd7 functions to integrate the dynamic environmental inputs with phase transition, architecture regulation, and stress response to maximize the reproductive success of the rice plant.
Collapse
|
202
|
Mathieu AS, Lutts S, Vandoorne B, Descamps C, Périlleux C, Dielen V, Van Herck JC, Quinet M. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:109-18. [PMID: 24331425 DOI: 10.1016/j.jplph.2013.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/10/2013] [Accepted: 09/15/2013] [Indexed: 05/20/2023]
Abstract
An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.
Collapse
Affiliation(s)
- Anne-Sophie Mathieu
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université catholique de Louvain, 5 (bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université catholique de Louvain, 5 (bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Bertrand Vandoorne
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université catholique de Louvain, 5 (bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Christophe Descamps
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université catholique de Louvain, 5 (bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Claire Périlleux
- Université de Liège, Département des Sciences de la Vie PhytoSYSTEMS, Laboratoire de Physiologie Végétale, 27 Boulevard du Rectorat (Bât 22), 4000 Liège, Belgium
| | - Vincent Dielen
- Chicoline - Research and Chicory Breeding, S.A. Warcoing, rue de la Sucrerie 2, B-7740 Warcoing, Belgium
| | - Jean-Claude Van Herck
- Chicoline - Research and Chicory Breeding, S.A. Warcoing, rue de la Sucrerie 2, B-7740 Warcoing, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute, Université catholique de Louvain, 5 (bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
203
|
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. Environmental stress and flowering time: the photoperiodic connection. PLANT SIGNALING & BEHAVIOR 2014; 9:e29036. [PMID: 25763486 PMCID: PMC4091191 DOI: 10.4161/psb.29036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 05/19/2023]
Abstract
Plants maximize their chances to survive adversities by reprogramming their development according to environmental conditions. Adaptive variations in the timing to flowering reflect the need for plants to set seeds under the most favorable conditions. A complex network of genetic pathways allows plants to detect and integrate external (e.g., photoperiod and temperature) and/or internal (e.g., age) information to initiate the floral transition. Furthermore different types of environmental stresses play an important role in the floral transition. The emerging picture is that stress conditions often affect flowering through modulation of the photoperiodic pathway. In this review we will discuss different modes of cross talk between stress signaling and photoperiodic flowering, highlighting the central role of the florigen genes in this process.
Collapse
Affiliation(s)
- Matteo Riboni
- Department of Biosciences; Università degli Studi di Milano; Milan, Italy
| | | | - Massimo Galbiati
- Department of Biosciences; Università degli Studi di Milano; Milan, Italy
- Fondazione Filarete; Milan, Italy
| | - Chiara Tonelli
- Department of Biosciences; Università degli Studi di Milano; Milan, Italy
| | - Lucio Conti
- Department of Biosciences; Università degli Studi di Milano; Milan, Italy
- Correspondence to: Lucio Conti,
| |
Collapse
|
204
|
Terrasson E, Buitink J, Righetti K, Ly Vu B, Pelletier S, Zinsmeister J, Lalanne D, Leprince O. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. FRONTIERS IN PLANT SCIENCE 2013; 4:497. [PMID: 24376450 PMCID: PMC3859232 DOI: 10.3389/fpls.2013.00497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.
Collapse
Affiliation(s)
- Emmanuel Terrasson
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Buitink
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Karima Righetti
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Benoit Ly Vu
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Sandra Pelletier
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Zinsmeister
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - David Lalanne
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Olivier Leprince
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| |
Collapse
|
205
|
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. THE PLANT CELL 2013; 25:3785-807. [PMID: 24179129 PMCID: PMC3877795 DOI: 10.1105/tpc.113.115428] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/14/2013] [Indexed: 05/06/2023]
Abstract
Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes flowering locus t, suppressor of overexpression of CO1, and leafy, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that dehydration response element B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB domain protein 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought.
Collapse
Affiliation(s)
- Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Huihong Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bin Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Sarah M. Assmann
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|