201
|
Li H, Sun J, Xu Y, Jiang H, Wu X, Li C. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. PLANT MOLECULAR BIOLOGY 2007; 65:655-65. [PMID: 17828375 DOI: 10.1007/s11103-007-9230-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 08/17/2007] [Indexed: 05/17/2023]
Abstract
The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress. Here, we report that a nuclear-localized basic helix-loop-helix (bHLH)-type protein, AtAIB, positively regulates ABA response in Arabidopsis. The expression of AtAIB was transitorily induced by ABA and PEG, although its transcripts were accumulated in various organs. We provided evidence showing that AtAIB has transcriptional activation activity in yeast. Knockdown of AtAIB expression caused reduced sensitivity to ABA, whereas overexpression of this gene led to elevated sensitivity to ABA in cotyledon greening and seedling root growth. Furthermore, soil-grown plants overexpressing AtAIB showed increased drought tolerance. Taken together, these results suggested that AtAIB functions as a transcription activator involved in the regulation of ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Hongmei Li
- State Key Laboratory of Plant Genomics, Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 5 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
202
|
Datta S, Hettiarachchi C, Johansson H, Holm M. SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. THE PLANT CELL 2007; 19:3242-55. [PMID: 17965270 PMCID: PMC2174709 DOI: 10.1105/tpc.107.054791] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/26/2007] [Accepted: 10/03/2007] [Indexed: 05/18/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and ELONGATED HYPOCOTYL5 (HY5) are two major regulators of light signaling in plants. Here, we identify SALT TOLERANCE HOMOLOG2 (STH2) as a gene that interacts genetically with both of these key regulators. STH2 encodes a B-box-containing protein that interacts physically with HY5 in yeast and in plant cells. Whereas STH2 is uniformly nuclear by itself, it shows a COP1-dependent localization to speckles when coexpressed with COP1. We identified two independent T-DNA insertion lines in STH2. Both alleles are hyposensitive to blue, red, and far-red light. The sth2 mutant, like hy5, shows an enhanced number of lateral roots and accumulates less anthocyanin. Analysis of double mutants between sth2 and hy5 indicates that STH2 has both HY5-dependent and -independent functions. Furthermore, besides partially suppressing the hypocotyl phenotype of dark-grown cop1 alleles, sth2 also suppresses the reduced number of lateral roots and high anthocyanin levels in light-grown cop1 alleles. Interestingly, we found that STH2 can activate transcription. Transient transfection assays in protoplasts using a LUC reporter driven by the chalcone isomerase promoter show that the B-boxes in STH2 and a functional G-box element in the promoter are required for this activity. In conclusion, we have identified STH2, a B-box protein in Arabidopsis thaliana, as a positive regulator of photomorphogenesis and report that the B-box domain plays a direct role in activating transcription in plants.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Cell and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
| | | | | | | |
Collapse
|
203
|
Zhai Q, Li CB, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:1061-71. [PMID: 17567636 DOI: 10.1093/pcp/pcm076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An Arabidopsis mutant line named hy1-101 was isolated because it shows stunted root growth on medium containing low concentrations of jasmonic acid (JA). Subsequent investigation indicated that even in the absence of JA, hy1-101 plants exhibit shorter roots and express higher levels of a group of JA-inducible defense genes. Here, we show that the hy1-101 mutant has increased production of JA and its jasmonate-related phenotype is suppressed by the coi1-1 mutation that interrupts JA signaling. Gene cloning and genetic complementation analyses revealed that the hy1-101 mutant contains a mutation in the HY1 gene, which encodes a heme oxygenase essential for phytochrome chromophore biosynthesis. These results support a hypothesis that phytochrome chromophore deficiency leads to overproduction of JA and activates COI1-dependent JA responses. Indeed, we show that, like hy1-101, independent alleles of the phytochrome chromophore-deficient mutants, including hy1-100 and hy2 (CS68), also show elevated JA levels and constant expression of JA-inducible defense genes. We further provide evidence showing that, on the other hand, JA inhibits the expression of a group of light-inducible and photosynthesis-related genes. Together, these data imply that the JA-signaled defense pathway and phytochrome chromophore-mediated light signaling might have antagonistic effects on each other.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. THE PLANT CELL 2007; 19:2225-45. [PMID: 17616737 PMCID: PMC1955694 DOI: 10.1105/tpc.106.048017] [Citation(s) in RCA: 724] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, 4067, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1590-600. [PMID: 17322342 PMCID: PMC1851835 DOI: 10.1104/pp.106.089904] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Different classes of biotic (e.g. plant hormones) and abiotic (e.g. different wavelengths of light) signals act through specific signal transduction mechanisms to coordinate higher plant development. While a great deal of progress has been made, full signal transduction chains have not yet been described for most blue light- or abscisic acid-mediated events. Based on data derived from T-DNA insertion mutants and yeast (Saccharomyces cerevisiae) two-hybrid and coprecipitation assays, we report a signal transduction chain shared by blue light and abscisic acid leading to light-harvesting chlorophyll a/b-binding protein expression in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The chain consists of GCR1 (the sole Arabidopsis protein coding for a potential G-protein-coupled receptor), GPA1 (the sole Arabidopsis Galpha-subunit), Pirin1 (PRN1; one of four members of an iron-containing subgroup of the cupin superfamily), and a nuclear factor Y heterotrimer comprised of A5, B9, and possibly C9. We also demonstrate that this mechanism is present in imbibed seeds wherein it affects germination rate.
Collapse
Affiliation(s)
- Katherine M Warpeha
- Laboratory for Molecular Biology, Department of Biological Sciences , University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
Plants have evolved complex and sophisticated transcriptional networks that mediate developmental changes in response to light. These light-regulated processes include seedling photomorphogenesis, seed germination and the shade-avoidance and photoperiod responses. Understanding the components and hierarchical structure of the transcriptional networks that are activated during these processes has long been of great interest to plant scientists. Traditional genetic and molecular approaches have proved powerful in identifying key regulatory factors and their positions within these networks. Recent genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors. These combined approaches provide new insights into light-regulated transcriptional networks.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, 165 Prospect Street, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
207
|
Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. THE PLANT CELL 2007; 19:731-49. [PMID: 17337630 PMCID: PMC1867377 DOI: 10.1105/tpc.106.047688] [Citation(s) in RCA: 724] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The transcription factor LONG HYPOCOTYL5 (HY5) acts downstream of multiple families of the photoreceptors and promotes photomorphogenesis. Although it is well accepted that HY5 acts to regulate target gene expression, in vivo binding of HY5 to any of its target gene promoters has yet to be demonstrated. Here, we used a chromatin immunoprecipitation procedure to verify suspected in vivo HY5 binding sites. We demonstrated that in vivo association of HY5 with promoter targets is not altered under distinct light qualities or during light-to-dark transition. Coupled with DNA chip hybridization using a high-density 60-nucleotide oligomer microarray that contains one probe for every 500 nucleotides over the entire Arabidopsis thaliana genome, we mapped genome-wide in vivo HY5 binding sites. This analysis showed that HY5 binds preferentially to promoter regions in vivo and revealed >3000 chromosomal sites as putative HY5 binding targets. HY5 binding targets tend to be enriched in the early light-responsive genes and transcription factor genes. Our data thus support a model in which HY5 is a high hierarchical regulator of the transcriptional cascades for photomorphogenesis.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Riemann M, Gutjahr C, Korte A, Riemann M, Danger B, Muramatsu T, Bayer U, Waller F, Furuya M, Nick P. GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:32-40. [PMID: 17048141 DOI: 10.1055/s-2006-924561] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The reaction of the rice mutant HEBIBA differs from that of wild-type rice in that the mutant responds inversely to red light and is defective in the light-triggered biosynthesis of jasmonic acid (JA). Using the wild type and the HEBIBA mutant of rice in a differential display screen, we attempted to identify genes that act in or near the convergence point of light and JA signalling. We isolated specifically regulated DNA fragments from approximately 10 000 displayed bands, and identified a new early light- and JA-induced gene. This gene encodes an enzyme containing a GDSL motif, showing 38 % identity at the amino acid level to lipase Arab-1 in Arabidopsis thaliana. The GDSL CONTAINING ENZYME RICE 1 gene (GER1) is rapidly induced by both red (R) and far-red (FR) light and by JA. The results are discussed with respect to a possible role for GER1 as a negative regulator of coleoptile elongation in the context of recent findings on the impact of JA on light signalling.
Collapse
Affiliation(s)
- M Riemann
- Botanisches Institut 1, Technische Universität Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap web tools for the analysis and identification of co-regulated genes. Nucleic Acids Res 2006; 35:D857-62. [PMID: 17148485 PMCID: PMC1761422 DOI: 10.1093/nar/gkl1006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at .
Collapse
Affiliation(s)
| | - Martin Schindler
- Software Systems Engineering Institute, Technische Universität Braunschweig, Mühlenpfordtstraße 23D-38106 Braunschweig, Germany
| | | | - Reinhard Hehl
- To whom correspondence should be addressed. Tel: +49 531 391 5772; Fax: +49 531 391 5765;
| |
Collapse
|
210
|
Benhamed M, Bertrand C, Servet C, Zhou DX. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. THE PLANT CELL 2006; 18:2893-903. [PMID: 17085686 PMCID: PMC1693931 DOI: 10.1105/tpc.106.043489] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.
Collapse
Affiliation(s)
- Moussa Benhamed
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université Paris Sud XI, 91405 Orsay, France.
| | | | | | | |
Collapse
|
211
|
Ross C, Shen QJ. Computational prediction and experimental verification of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2006; 62:233-46. [PMID: 16845480 DOI: 10.1007/s11103-006-9017-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/09/2006] [Indexed: 05/10/2023]
Abstract
Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.
Collapse
Affiliation(s)
- Christian Ross
- Bioinformatics Core, Department of Biological Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | |
Collapse
|
212
|
Shukla RK, Raha S, Tripathi V, Chattopadhyay D. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. PLANT PHYSIOLOGY 2006; 142:113-23. [PMID: 16844836 PMCID: PMC1557594 DOI: 10.1104/pp.106.081752] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 07/11/2006] [Indexed: 05/10/2023]
Abstract
The APETALA2 (AP2) domain defines a large family of DNA-binding proteins that play important roles in plant morphology, development, and stress response. We describe isolation and characterization of a gene (CAP2) from chickpea (Cicer arietinum) encoding a novel AP2-family transcription factor. Recombinant CAP2 protein bound specifically to C-repeat/dehydration-responsive element in gel-shift assay and transactivated reporter genes in yeast (Saccharomyces cerevisiae) one-hybrid assay. CAP2 appeared to be a single/low copy intronless gene, and the protein product localized in the nucleus. Transcript level of CAP2 increased by dehydration and by treatment with sodium chloride, abscisic acid, and auxin, but not by treatment with low temperature, salicylic acid, and jasmonic acid. The 35S promoter-driven expression of CAP2 in tobacco (Nicotiana tabacum) caused drastic increase in the leaf cell size, and, thereby, in leaf surface area and number of lateral roots. Transgenic plants demonstrated more tolerance to dehydration and salt stress than the wild-type plants. Transgenic plants expressed higher steady-state transcript levels of abiotic stress-response genes NtERD10B and NtERD10C and auxin-response genes IAA4.2 and IAA2.5. Taken together, our results indicated a mutual interrelation between plant growth-development and abiotic stress-response pathways and a probable involvement of CAP2 in both the signaling pathways.
Collapse
Affiliation(s)
- Rakesh K Shukla
- National Centre for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
213
|
Mallappa C, Yadav V, Negi P, Chattopadhyay S. A Basic Leucine Zipper Transcription Factor, G-box-binding Factor 1, Regulates Blue Light-mediated Photomorphogenic Growth in Arabidopsis. J Biol Chem 2006; 281:22190-22199. [PMID: 16638747 DOI: 10.1074/jbc.m601172200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several transcriptional regulators have been identified and demonstrated to play either positive or negative regulatory roles in seedling development. However, the regulatory coordination between hypocotyl elongation and cotyledon expansion during early seedling development in plants remains unknown. We report the identification of a Z-box binding factor (ZBF2) and its functional characterization in cryptochrome-mediated blue light signaling. ZBF2 encodes a G-box binding factor (GBF1), which is a basic leucine zipper transcription factor. Our DNA-protein interaction studies reveal that ZBF2/GBF1 also interacts with the Z-box light-responsive element of light-regulated promoters. Genetic analyses of gbf1 mutants and overexpression studies suggest that GBF1 acts as a repressor of blue light-mediated inhibition in hypocotyl elongation, however, it acts as a positive regulator of cotyledon expansion during photomorphogenic growth. Furthermore, whereas GBF1 acts as a positive regulator of lateral root formation, it differentially regulates the expression of light-inducible genes. Taken together, these results demonstrate that GBF1 is a unique transcriptional regulator of photomorphogenesis in blue light.
Collapse
Affiliation(s)
- Chandrashekara Mallappa
- National Centre for Plant Genome Research, Laboratory 101, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vandana Yadav
- National Centre for Plant Genome Research, Laboratory 101, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prem Negi
- National Centre for Plant Genome Research, Laboratory 101, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudip Chattopadhyay
- National Centre for Plant Genome Research, Laboratory 101, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
214
|
Chatterjee M, Sharma P, Khurana JP. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. PLANT PHYSIOLOGY 2006; 141:61-74. [PMID: 16531484 PMCID: PMC1459308 DOI: 10.1104/pp.105.076323] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cryptochromes are blue/ultraviolet-A light sensing photoreceptors involved in regulating various growth and developmental responses in plants. Investigations on the structure and functions of cryptochromes in plants have been largely confined to Arabidopsis (Arabidopsis thaliana), tomato (Lycopersicon esculentum), and pea (Pisum sativum). We report here the characterization of the cryptochrome 1 gene from Brassica napus (BnCRY1), an oilseed crop, and its functional validation in transgenics. The predicted BnCRY1 protein sequence shows a high degree of sequence identity (94%) to Arabidopsis CRY1. A semiquantitative reverse transcription-polymerase chain reaction and the western-blot analysis revealed that blue light up-regulates its transcript and protein levels in young seedlings. The BnCRY1 promoter harbors conventional light-responsive cis-acting elements, which presumably impart light activation to the GUS (beta-glucuronidase) reporter gene expressed in Arabidopsis. Although the BnCRY1 transcript could be detected in all the tissues examined, its protein was virtually undetectable in mature leaves and the root, indicating a tissue-specific translational control or protein turnover. The antisense-BnCRY1 Brassica transgenic seedlings accumulated negligible levels of CRY1 protein and displayed an elongated hypocotyl when grown under continuous white or blue light (but not under red or far-red light); the accumulation of anthocyanins was also reduced significantly. The adult transformants were also found to be tall when grown under natural light environment in a containment facility without any artificial illumination. These data provide functional evidence for a role of blue light up-regulated cry1 in controlling photomorphogenesis in Brassica species.
Collapse
Affiliation(s)
- Mithu Chatterjee
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
215
|
Rook F, Hadingham SA, Li Y, Bevan MW. Sugar and ABA response pathways and the control of gene expression. PLANT, CELL & ENVIRONMENT 2006; 29:426-34. [PMID: 17080596 DOI: 10.1111/j.1365-3040.2005.01477.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sugars are essential to plant growth and metabolism, both as energy source and as structural components. Sugar production and use are in part controlled at the level of gene expression by the sugars themselves. Responses to sugar are closely integrated with response pathways that indicate environmental conditions such as light and water availability. High sugar levels inhibit seedling development, repress photosynthetic gene expression and induce genes of storage metabolism such as those of starch biosynthesis. Genetic approaches have demonstrated the importance of abscisic acid (ABA) and the transcriptional regulator ABA-insensitive4 (ABI4) in sugar response pathways. Recent analysis of both photosynthetic and starch biosynthetic gene promoters suggest a direct role for ABI4 in their control. The increased understanding of the regulatory promoter elements controlling gene expression, in response to sugar and ABA, allows transcriptional networks to be understood at a molecular level.
Collapse
Affiliation(s)
- Fred Rook
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
216
|
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:781-803. [PMID: 16669782 DOI: 10.1146/annurev.arplant.57.032905.105444] [Citation(s) in RCA: 1669] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant growth and productivity are greatly affected by environmental stresses such as drought, high salinity, and low temperature. Expression of a variety of genes is induced by these stresses in various plants. The products of these genes function not only in stress tolerance but also in stress response. In the signal transduction network from perception of stress signals to stress-responsive gene expression, various transcription factors and cis-acting elements in the stress-responsive promoters function for plant adaptation to environmental stresses. Recent progress has been made in analyzing the complex cascades of gene expression in drought and cold stress responses, especially in identifying specificity and cross talk in stress signaling. In this review article, we highlight transcriptional regulation of gene expression in response to drought and cold stresses, with particular emphasis on the role of transcription factors and cis-acting elements in stress-inducible promoters.
Collapse
Affiliation(s)
- Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
217
|
Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:532-40. [PMID: 16039901 DOI: 10.1016/j.pbi.2005.07.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/12/2005] [Indexed: 05/03/2023]
Abstract
Many plant developmental and stress responses require the coordinated interaction of the jasmonate and other signalling pathways, such as those for ethylene, salicylic acid and abscisic acid. Recent research in Arabidopsis has uncovered several key players that regulate crosstalk between these signalling pathways and that shed light on the molecular mechanisms modulating this coordinated interaction. Genes that are involved in the regulation of protein stability through the ubiquitin-proteasome pathway (COI1, AXR1 and SGT1b), signalling proteins (MPK4) and transcription factors (AtMYC2, ERF1, NPR1 and WRKY70) form a regulatory network that allows the plant to fine-tune specific responses to different stimuli.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|