201
|
Mehra P, Pandey BK, Giri J. Comparative Morphophysiological Analyses and Molecular Profiling Reveal Pi-Efficient Strategies of a Traditional Rice Genotype. FRONTIERS IN PLANT SCIENCE 2015; 6:1184. [PMID: 26779218 PMCID: PMC4700128 DOI: 10.3389/fpls.2015.01184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/10/2015] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) deficiency severely affects crop yield. Modern high yielding rice genotypes are sensitive to Pi deficiency whereas traditional rice genotypes are naturally compatible with low Pi ecosystems. However, the underlying molecular mechanisms for low Pi tolerance in traditional genotypes remain largely elusive. To delineate the molecular mechanisms for low Pi tolerance, two contrasting rice genotypes, Dular (low Pi tolerant), and PB1 (low Pi sensitive), have been selected. Comparative morphophysiological, global transcriptome and lipidome analyses of root and shoot tissues of both genotypes grown under Pi deficient and sufficient conditions revealed potential low Pi tolerance mechanisms of the traditional genotype. Most of the genes associated with enhanced internal Pi utilization (phospholipid remobilization) and modulation of root system architecture (RSA) were highly induced in the traditional rice genotype, Dular. Higher reserves of phospholipids and greater accumulation of galactolipids under low Pi in Dular indicated it has more efficient Pi utilization. Furthermore, Dular also maintained greater root growth than PB1 under low Pi, resulting in larger root surface area due to increased lateral root density and root hair length. Genes involved in enhanced low Pi tolerance of the traditional genotype can be exploited to improve the low Pi tolerance of modern high yielding rice cultivars.
Collapse
|
202
|
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1164-78. [PMID: 24975554 DOI: 10.1111/jipb.12233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 05/07/2023]
Abstract
To date, only a limited number of solanaceous miRNAs have been deposited in the miRNA database. Here, genome-wide bioinformatic identification of miRNAs was performed in six solanaceous plants (potato, tomato, tobacco, eggplant, pepper, and petunia). A total of 2,239 miRNAs were identified following a range of criteria, of which 982 were from potato, 496 from tomato, 655 from tobacco, 46 from eggplant, 45 were from pepper, and 15 from petunia. The sizes of miRNA families and miRNA precursor length differ in all the species. Accordingly, 620 targets were predicted, which could be functionally classified as transcription factors, metabolic enzymes, RNA and protein processing proteins, and other proteins for plant growth and development. We also showed evidence for miRNA clusters and sense and antisense miRNAs. Additionally, five Pi starvation- and one arbuscular mycorrhiza (AM)-related cis-elements were found widely distributed in the putative promoter regions of the miRNA genes. Selected miRNAs were classified into three groups based on the presence or absence of P1BS and MYCS cis-elements, and their expression in response to Pi starvation and AM symbiosis was validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). These results show that conserved miRNAs exist in solanaceous species and they might play pivotal roles in plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
203
|
Liu TY, Lin WY, Huang TK, Chiou TJ. MicroRNA-mediated surveillance of phosphate transporters on the move. TRENDS IN PLANT SCIENCE 2014; 19:647-55. [PMID: 25001521 DOI: 10.1016/j.tplants.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 05/06/2023]
Abstract
Phosphate (Pi), which is indispensable for the structural and metabolic needs of plants, is acquired and translocated by Pi transporters. Deciphering the regulatory network of Pi signaling and homeostasis that involves the control of Pi transporters trafficking to, and their activity at, the plasma membrane provides insight into how plants adapt to environmental changes in Pi availability. Here, we review recent studies that revealed the involvement of microRNA399-PHOSPHATE 2 (PHO2) and microR827-NITROGEN LIMITATION ADAPTATION (NLA) modules in mediating the ubiquitination and degradation of PHOSPHATE TRANSPORTER 1 (PHT1) and/or PHOSPHATE 1 (PHO1). These discoveries show that miRNAs are an effective way for plants to monitor the turnover of Pi transporters in the membrane system by modulating the functioning of the membrane-associated ubiquitin machinery.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
204
|
Ceasar SA, Hodge A, Baker A, Baldwin SA. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 2014; 9:e108459. [PMID: 25251671 PMCID: PMC4177549 DOI: 10.1371/journal.pone.0108459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.
Collapse
Affiliation(s)
- S. Antony Ceasar
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Angela Hodge
- Department of Biology, University of York, Wentworth Way, York, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
205
|
Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Brief Funct Genomics 2014; 14:91-101. [PMID: 24914100 DOI: 10.1093/bfgp/elu017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A recent highlight of genomics research has been the discovery of many families of transcripts which have function but do not code for proteins. An important group is long noncoding RNAs (lncRNAs), which are typically longer than 200 nt, and whose members originate from thousands of loci across genomes. We review progress in understanding the biogenesis and regulatory mechanisms of lncRNAs. We describe diverse computational and high throughput technologies for identifying and studying lncRNAs. We discuss the current knowledge of functional elements embedded in lncRNAs as well as insights into the lncRNA-based regulatory network in animals. We also describe genome-wide studies of large amount of lncRNAs in plants, as well as knowledge of selected plant lncRNAs with a focus on biotic/abiotic stress-responsive lncRNAs.
Collapse
|
206
|
Klecker M, Gasch P, Peisker H, Dörmann P, Schlicke H, Grimm B, Mustroph A. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. PLANT PHYSIOLOGY 2014; 165:774-790. [PMID: 24753539 PMCID: PMC4044847 DOI: 10.1104/pp.114.237990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.
Collapse
Affiliation(s)
- Maria Klecker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Philipp Gasch
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Helga Peisker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Peter Dörmann
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Hagen Schlicke
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Bernhard Grimm
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Angelika Mustroph
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| |
Collapse
|
207
|
Secco D, Shou H, Whelan J, Berkowitz O. RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 2014; 15:230. [PMID: 24666749 PMCID: PMC4028058 DOI: 10.1186/1471-2164-15-230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/18/2014] [Indexed: 01/03/2023] Open
Abstract
Background Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. Results RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. Conclusions Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified.
Collapse
Affiliation(s)
| | | | | | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
208
|
Alatorre-Cobos F, Calderón-Vázquez C, Ibarra-Laclette E, Yong-Villalobos L, Pérez-Torres CA, Oropeza-Aburto A, Méndez-Bravo A, González-Morales SI, Gutiérrez-Alanís D, Chacón-López A, Peña-Ocaña BA, Herrera-Estrella L. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions. BMC PLANT BIOLOGY 2014; 14:69. [PMID: 24649917 PMCID: PMC3999955 DOI: 10.1186/1471-2229-14-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/13/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.
Collapse
Affiliation(s)
- Fulgencio Alatorre-Cobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Department of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Carlos Calderón-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, 81101 Guasave, Sinaloa, México
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec #351, Xalapa 91070, Veracruz, México
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Claudia-Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec #351, Xalapa 91070, Veracruz, México
| | - Sandra-Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Dolores Gutiérrez-Alanís
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Alejandra Chacón-López
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Instituto Tecnológico de Tepic, Laboratorio de Investigación Integral en Alimentos, División de Estudios de Posgrado, 63175 Tepic, Nayarit, México
| | - Betsy-Anaid Peña-Ocaña
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| |
Collapse
|