201
|
Kazanzides P, Chang J, Iordachita I, Li J, Ling CC, Fichtinger G. Development of an image-guided robot for small animal research. ACTA ACUST UNITED AC 2008; 12:357-65. [PMID: 18066951 DOI: 10.3109/10929080701732538] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We developed a robot system that can be used for image-guided experimental procedures on small animals, where the goal is to perform physical actions at specific positions identified on a preoperative image. The animal is first placed in a fixture that is compatible with all imaging systems of interest, including PET, SPECT, CT and MRI. After imaging, the fixture is attached and registered to the robot system, where the image-guided intervention is performed. This system has been applied to perform pO(2) measurements with physical probes based on tumor hypoxia images obtained in an animal PET scanner. This paper focuses on the design and validation of the robot system. The validation is performed using a phantom and includes a new method for estimating the Fiducial Localization Error (FLE) that is based on the measured Fiducial Distance Error (FDE). The results indicate that the robot system can position the measurement probe at a defined target with a mean error that is less than 0.4 mm.
Collapse
Affiliation(s)
- Peter Kazanzides
- Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | |
Collapse
|
202
|
Langø T, Tangen GA, Mårvik R, Ystgaard B, Yavuz Y, Kaspersen JH, Solberg OV, Hernes TAN. Navigation in laparoscopy--prototype research platform for improved image-guided surgery. MINIM INVASIV THER 2008; 17:17-33. [PMID: 18270874 DOI: 10.1080/13645700701797879] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The manipulation of the surgical field in laparoscopic surgery, through small incisions with rigid instruments, reduces free sight, dexterity, and tactile feedback. To help overcome some of these drawbacks, we present a prototype research and development platform, CustusX, for navigation in minimally invasive therapy. The system can also be used for planning and follow-up studies. With this platform we can import and display a range of medical images, also real-time data such as ultrasound and X-ray, during surgery. Tracked surgical tools, such as pointers, video laparoscopes, graspers, and various probes, allow surgeons to interactively control the display of medical images during the procedure. This paper introduces navigation technologies and methods for laparoscopic therapy, and presents our software and hardware research platform. Furthermore, we illustrate the use of the system with examples from two pilots performed during laparoscopic therapy. We also present new developments that are currently being integrated into the system for future use in the operating room. Our initial results from pilot studies using this technology with preoperative images and guidance in the retroperitoneum during laparoscopy are promising. Finally, we shortly describe an ongoing multicenter study using this surgical navigation system platform.
Collapse
Affiliation(s)
- T Langø
- SINTEF Health Research, Dept. Medical Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 2008; 62:201-7; discussion 207-8. [PMID: 18424987 DOI: 10.1227/01.neu.0000317394.14303.99] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVE For frameless stereotaxy, users can choose between anatomic landmarks (ALs) or surface fiducial markers (FMs) for their match points during registration to define an alignment of the head in the physical and radiographic image space. In this study, we sought to determine the concordance among a point-merged FM registration, a point-merged AL registration, and a combined point-merged anatomic/surface-merged (SM) registration, i.e., to determine the accuracy of registration techniques with and without FMs by examining the extent of agreement between the system-generated predicted value and physical measured values. METHODS We examined 30 volunteers treated with gamma knife surgery. The frameless stereotactic image-guidance system called the StealthStation (Medtronic Surgical Navigation Technologies, Louisville, CO) was used. Nine FMs were placed on the patient's head and four were placed on a Leksell frame rod-box, which acted as a rigid set to determine the difference in error. For each registration form, we recorded the generated measurement (GM) and the physical measurement (PM) to each of the four checkpoint FMs. Bland and Altman plot difference analyses were used to compare measurement techniques. Correlations and descriptive analyses were completed. RESULTS The mean of values for GMs were 1.14 mm for FM, 2.3 mm for AL, and 0.96 mm for SM registrations. The mean errors of the checkpoints were 3.49 mm for FM, 3.96 mm for AL, and 3.33 mm for SM registrations. The correlation between GMs and PMs indicated a linear relationship for all three methods. AL registration demonstrated the greatest mean difference, followed by FM registration; SM registration had the smallest difference between GMs and PMs. Differences in the anatomic registration methods, including SM registration, compared with FM registration were within a mean +/- 1.96 (standard deviation) according to the Bland and Altman analysis. CONCLUSION For our sample of 30 patients, all three registration methods provided comparable distances to the target tissue for surgical procedures. Users may safely choose anatomic registration as a less costly and more time-efficient registration method for frameless stereotaxy.
Collapse
Affiliation(s)
- Wolfgang K Pfisterer
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | | | | | | |
Collapse
|
204
|
Wiles AD, Likholyot A, Frantz DD, Peters TM. A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:378-390. [PMID: 18334433 DOI: 10.1109/tmi.2007.908124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Error models associated with point-based medical image registration problems were first introduced in the late 1990s. The concepts of fiducial localizer error, fiducial registration error, and target registration error are commonly used in the literature. The model for estimating the target registration error at a position r in a coordinate frame defined by a set of fiducial markers rigidly fixed relative to one another is ubiquitous in the medical imaging literature. The model has also been extended to simulate the target registration error at the point of interest in optically tracked tools. However, the model is limited to describing the error in situations where the fiducial localizer error is assumed to have an isotropic normal distribution in R3. In this work, the model is generalized to include a fiducial localizer error that has an anisotropic normal distribution. Similar to the previous models, the root mean square statistic rms tre is provided along with an extension that provides the covariance Sigma tre. The new model is verified using a Monte Carlo simulation and a set of statistical hypothesis tests. Finally, the differences between the two assumptions, isotropic and anisotropic, are discussed within the context of their use in 1) optical tool tracking simulation and 2) image registration.
Collapse
Affiliation(s)
- Andrew D Wiles
- Imaging Research Laboratories, Robarts Research Institute, London, ON, N6A 5K8 Canada.
| | | | | | | |
Collapse
|
205
|
Atuegwu NC, Galloway RL. Sensitivity analysis of fiducial placement on transorbital target registration error. Int J Comput Assist Radiol Surg 2008. [DOI: 10.1007/s11548-008-0150-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
206
|
Chen X, Varley MR, Shark LK, Shentall GS, Kirby MC. A computationally efficient method for automatic registration of orthogonal x-ray images with volumetric CT data. Phys Med Biol 2008; 53:967-83. [PMID: 18263952 DOI: 10.1088/0031-9155/53/4/010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
207
|
Helbig M, Krysztoforski K, Krowicki P, Helbig S, Gstoettner W, Kozak J. Development of prototype for navigated real-time sonography for the head and neck region. Head Neck 2008; 30:215-21. [PMID: 17764089 DOI: 10.1002/hed.20679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To date, few imaging methods have been established for the head and neck region, in particular for soft tissues, that allow adequate visualization and simultaneously adequate real-time orientation. METHODS We report a new method using a navigated ultrasound device and a navigated surgical instrument that allows--even in the absence of bony landmarks--appropriate visualization and reliable orientation in real time. RESULTS The practical applicability of the system was tested. Good handling and acceptance of the system could be shown. The "3-dimensional error" derived from the deviations in all 3 dimensions lies at 0.64 mm. CONCLUSIONS With this ultrasound-guided navigated procedure, an accurate approach of soft tissue structures with a surgical instrument is possible. Changes of the situs are represented in real time.
Collapse
Affiliation(s)
- Matthias Helbig
- Department of Otolaryngology, Head and Neck Surgery, University of Frankfurt/Main, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
208
|
Bahadur AN, Wu IQ, Weinstein DM, Davis MD, Lewis DA, Kochunov P, Keller C. Multimodality Chamber for coregistered anatomical and molecular imaging of small animals. Lab Anim (NY) 2007; 36:29-35. [PMID: 17721530 DOI: 10.1038/laban0907-29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 04/30/2007] [Indexed: 12/28/2022]
Abstract
Modern imaging methods are applied extensively in translational animal research, and combined analysis of anatomical and functional imaging results is of increasing importance. Many imaging centers handle multiple independent animal colonies and use several imaging modalities, often in combination. The authors have developed and successfully tested a two-piece acrylic Multimodality Chamber that enables investigators to coregister images from two or more modalities, including microMR, microCT, microPET and optical imaging.
Collapse
Affiliation(s)
- Ali N Bahadur
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Chen CCR, Miga MI, Galloway RL. Characterization of tracked radiofrequency ablation in phantom. Med Phys 2007; 34:4030-40. [PMID: 17985649 DOI: 10.1118/1.2761978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4 +/- 0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.
Collapse
Affiliation(s)
- Chun-Cheng R Chen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center Nashville, Tennessee 37235, USA.
| | | | | |
Collapse
|
210
|
Helferty J, Sherbondy A, Kiraly A, Higgins W. Computer-based System for the Virtual-Endoscopic Guidance of Bronchoscopy. COMPUTER VISION AND IMAGE UNDERSTANDING : CVIU 2007; 108:171-187. [PMID: 18978928 PMCID: PMC2131713 DOI: 10.1016/j.cviu.2006.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The standard procedure for diagnosing lung cancer involves two stages: three-dimensional (3D) computed-tomography (CT) image assessment, followed by interventional bronchoscopy. In general, the physician has no link between the 3D CT image assessment results and the follow-on bronchoscopy. Thus, the physician essentially performs bronchoscopic biopsy of suspect cancer sites blindly. We have devised a computer-based system that greatly augments the physician's vision during bronchoscopy. The system uses techniques from computer graphics and computer vision to enable detailed 3D CT procedure planning and follow-on image-guided bronchoscopy. The procedure plan is directly linked to the bronchoscope procedure, through a live registration and fusion of the 3D CT data and bronchoscopic video. During a procedure, the system provides many visual tools, fused CT-video data, and quantitative distance measures; this gives the physician considerable visual feedback on how to maneuver the bronchoscope and where to insert the biopsy needle. Central to the system is a CT-video registration technique, based on normalized mutual information. Several sets of results verify the efficacy of the registration technique. In addition, we present a series of test results for the complete system for phantoms, animals, and human lung-cancer patients. The results indicate that not only is the variation in skill level between different physicians greatly reduced by the system over the standard procedure, but that biopsy effectiveness increases.
Collapse
Affiliation(s)
| | | | - A.P. Kiraly
- Siemens Corporate Research Center, Princeton, NJ
| | - W.E. Higgins
- Dept. of Electrical Engineering, Penn State University, University Park, PA 16802 USA
- *Corresponding author. Fax: 1-814-863-5341., email address: (W.E. Higgins)
| |
Collapse
|
211
|
Guo WY, Lee JJS, Lin MH, Yang CC, Chen CL, Huang YH, Tyan YS, Wu TH. Merging molecular and anatomical information: A feasibility study on rodents using microPET and MRI. Nucl Med Commun 2007; 28:804-12. [PMID: 17728611 DOI: 10.1097/mnm.0b013e3282d25a0d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The use of the micro positron emission tomography (microPET) technique provides a powerful means for molecular imaging on small animals, while its inferior spatial resolution offers insufficient anatomical information which impedes the interpretations of the scans. To improve this limitation, it often relies on a clinical magnetic resonance imaging (MRI) for providing anatomical details. In this study, we designed and developed a new image co-registration platform which contains a stereotactic frame and external fiducial markers for microPET and MRI studies. The image co-registration accuracies were also validated by this new platform using various imaging protocols for microPET and MRI. METHODS The microPET images were reconstructed by filtered back-projection (FBP) and ordered subset expectation maximization (OSEM) methods. Two MRI pulse sequences, two-dimensional T1-weighted fast spin-echo (FSE) and three-dimensional spoiled gradient recalled (SPGR), were employed in the studies. Two MRI scanning protocols were proposed for small animal imaging: the whole-body high-speed mode and the partial high-resolution mode. RESULTS Reconstructed images from two different modalities were integrated by point-to-point registration via the external fiducials. Four inter-modality matched co-registration pairs (FBP-FSE, FBP-SPGR, OSEM-FSE, OSEM-SPGR) were obtained for both the high speed and high resolution modes. Co-registration accuracy was given as the average fiducial registration error (FRE) between the centroids of six markers from the registered images. The overall systemic FREs were about 0.50 mm. CONCLUSIONS From the inter-modality FRE comparison, MRI imaging with FSE performed better than that with SPGR sequence, due to its higher signal-to-noise ratio and less magnetic susceptibility effects. In the microPET perspective, the OSEM was superior to the FBP, as a result of fewer image artifacts.
Collapse
Affiliation(s)
- Wan-Yuo Guo
- Department of Radiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Schicho K, Seemann R, Cohen V, Traxler H, Weinstein U, Shohat M, Slovin Z, Figl M, Czerny C, Ewers R, Tal H. Evaluation of bone surface registration applying a micro-needle array. J Clin Periodontol 2007; 34:991-7. [PMID: 17877743 DOI: 10.1111/j.1600-051x.2007.01143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM In this study we present and evaluated a new registration technology for the jaw-bone surface. It is based on a micromechatronic device for the generation of a "mechanical image" of the bone surface by means of an array of micro-needles that are penetrating the soft tissue until they touch the surface of the bone. This "mechanical impression image" is aligned with the CT data set. MATERIAL AND METHODS Based on laboratory measurements on 10 specially prepared jawbone models we evaluate the accuracy of this new registration method. RESULTS Our measurements of the 10 specimens revealed a maximum overall location error of 0.97 mm (range: 0.35-0.97 mm). CONCLUSIONS From the technical point of view the presented registration technology has the potential to improve the performance (i.e. accuracy and avoidance of errors) of the registration process for bony structures in selected applications of image-guided surgery.
Collapse
Affiliation(s)
- Kurt Schicho
- University Hospital of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Found in Translation; From the Laboratory to the Operating Room to the Market. ACTA ACUST UNITED AC 2007; 2007:5162-5. [DOI: 10.1109/iembs.2007.4353504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
214
|
Woerdeman PA, Willems PWA, Noordmans HJ, Tulleken CAF, van der Sprenkel JWB. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 2007; 106:1012-6. [PMID: 17564173 DOI: 10.3171/jns.2007.106.6.1012] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The aim of this study was to compare three patient-to-image registration methods in frameless stereotaxy in terms of their application accuracy (the accuracy with which the position of a target can be determined intraoperatively). In frameless stereotaxy, imaging information is transposed to the surgical field to show the spatial position of a localizer or surgical instrument. The mathematical relationship between the image volume and the surgical working space is calculated using a rigid body transformation algorithm, based on point-pair matching or surface matching.
Methods
Fifty patients who were scheduled to undergo a frameless image-guided neurosurgical procedure were included in the study. Prior to surgery, the patients underwent either computerized tomography (CT) scanning or magnetic resonance (MR) imaging with widely distributed adhesive fiducial markers on the scalp. An extra fiducial marker was placed on the head as a target, as near as possible to the intracranial lesion. Prior to each surgical procedure, an optical tracking system was used to perform three separate patient-to-image registration procedures, using anatomical landmarks, adhesive markers, or surface matching. Subsequent to each registration, the target registration error (TRE), defined as the Euclidean distance between the image space coordinates and world space coordinates of the target marker, was determined.
Independent of target location or imaging modality, mean application accuracy (± standard deviation) was 2.49 ± 1.07 mm when using adhesive markers. Using the other two registration strategies, mean TREs were significantly larger (surface matching, 5.03 ± 2.30 mm; anatomical landmarks, 4.97 ± 2.29 mm; p < 0.001 for both).
Conclusions
The results of this study show that skin adhesive fiducial marker registration is the most accurate noninvasive registration method. When images from an earlier study are to be used and accuracy may be slightly compromised, anatomical landmarks and surface matching are equally accurate alternatives.
Collapse
Affiliation(s)
- Peter A Woerdeman
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center-Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
215
|
Bale RJ, Laimer I, Martin A, Schlager A, Mayr C, Rieger M, Czermak BV, Kovacs P, Widmann G. Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia. Neurosurgery 2007; 59:ONS394-401; discussion ONS402. [PMID: 17041509 DOI: 10.1227/01.neu.0000232770.97616.d0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Ablative neurosurgical treatment of trigeminal neuralgia, including percutaneous radiofrequency thermocoagulation, requires cannulation of the foramen ovale. To maximize patient security and cannulation success, a frameless stereotactic system was evaluated in a phantom study, a cadaveric study, and a preliminary clinical trial. METHODS Frameless stereotaxy using an optical navigation system, an aiming device, and a noninvasive vacuum mouthpiece-based registration and patient fixation technique was used for the targeting of a test body based on 1-, 3-, and 5-mm axial computed tomographic slices and of the foramen ovale in three cadavers and 15 patients based on 3-mm axial computed tomographic slices. RESULTS The mean normal (x/y) localization accuracy/standard deviation (n = 360) was 1.31/0.67 mm (1-mm slices), 1.38/0.65 mm (3-mm slices), and 1.84/0.96 mm (5-mm slices). Significantly better results were achieved with 1- and 3-mm slices when compared with 5-mm slices (P < 0.001). The foramen ovale (3 x 6 mm) was successfully cannulated at the first attempt in all cadavers and patients, which indicates clinical localization accuracies better than 1.5 mm in the anteroposterior and 3 mm in the medial-lateral directions. CONCLUSION Based on the noninvasive Vogele-Bale-Hohner vacuum mouthpiece, there is no need for invasive head clamp fixation. Imaging, real laboratory simulation, and the actual surgical intervention can be separated in time and location. The presented data suggest that frameless stereotaxy is a predictable and reproducible procedure, which may enhance patient security and cannulation success independent of the surgeon's experience.
Collapse
Affiliation(s)
- Reto J Bale
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kazanzides P, Chang J, Iordachita I, Li J, Ling CC, Fichtinger G. Design and validation of an image-guided robot for small animal research. ACTA ACUST UNITED AC 2007; 9:50-7. [PMID: 17354873 DOI: 10.1007/11866565_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We developed an image-guided robot system to achieve highly accurate placement of thin needles and probes into in-vivo rodent tumor tissue in a predefined pattern that is specified on a preoperative image. This system can be used for many experimental procedures where the goal is to correlate a set of physical measurements with a corresponding set of image intensities or, more generally, to perform a physical action at a set of anatomic points identified on a preoperative image. This paper focuses on the design and validation of the robot system, where the first application is to insert oxygen measurement probes in a three-dimensional (3D) grid pattern defined with respect to a PET scan of a tumor. The design is compatible with CT and MRI, which we plan to use to identify targets for biopsy and for the injection of adenoviral sequences for gene therapy. The validation is performed using a phantom and includes a new method for estimating the Fiducial Localization Error (FLE) based on the measured Fiducial Distance Error (FDE).
Collapse
|
217
|
Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg 2007; 35:1081-95. [PMID: 17095191 DOI: 10.1016/j.ijom.2006.09.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 08/18/2006] [Accepted: 09/20/2006] [Indexed: 11/30/2022]
Abstract
Frame-based stereotaxy was developed in neurosurgery at the beginning of the last century, evolving from atlas-based stereotaxy to stereotaxy based on the individual patient's image data. This established method is still in use in neurosurgery and radiotherapy. There have since been two main developments based on this concept: frameless stereotaxy and markerless registration. Frameless stereotactic systems ('navigation systems') replaced the cumbersome stereotactic frame by mechanically and later also optically or magnetically tracked instruments. Stereotaxy based on the individual patient's image data introduced the problem of patient-to-image data registration. The development of navigation systems based on frameless stereotaxy has dramatically increased its use in surgical disciplines other than neurosurgery, but image-guided surgery based on fiducial marker registration needs dedicated imaging for registration purposes, in addition to the diagnostic imaging that might have been performed. Markerless registration techniques can overcome the resulting additional cost and effort, and result in more widespread use of image-guided surgery techniques. In this review paper, the developments that led to today's navigation systems are outlined, and the applications and possibilities of these methods in the field of maxillofacial surgery are presented.
Collapse
|
218
|
Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K. Brain functional localization: a survey of image registration techniques. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:427-51. [PMID: 17427731 DOI: 10.1109/tmi.2007.892508] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Functional localization is a concept which involves the application of a sequence of geometrical and statistical image processing operations in order to define the location of brain activity or to produce functional/parametric maps with respect to the brain structure or anatomy. Considering that functional brain images do not normally convey detailed structural information and, thus, do not present an anatomically specific localization of functional activity, various image registration techniques are introduced in the literature for the purpose of mapping functional activity into an anatomical image or a brain atlas. The problems addressed by these techniques differ depending on the application and the type of analysis, i.e., single-subject versus group analysis. Functional to anatomical brain image registration is the core part of functional localization in most applications and is accompanied by intersubject and subject-to-atlas registration for group analysis studies. Cortical surface registration and automatic brain labeling are some of the other tools towards establishing a fully automatic functional localization procedure. While several previous survey papers have reviewed and classified general-purpose medical image registration techniques, this paper provides an overview of brain functional localization along with a survey and classification of the image registration techniques related to this problem.
Collapse
Affiliation(s)
- Ali Gholipour
- Electrical Engineering Department, University of Texas at Dallas, 2601 North Floyd Rd., Richardson, TX 75083, USA.
| | | | | | | | | |
Collapse
|
219
|
Giraldez JG, Caversaccio M, Pappas I, Kowal J, Rohrer U, Marti G, Baur C, Nolte LP, Ballester MAG. Design and clinical evaluation of an image-guided surgical microscope with an integrated tracking system. Int J Comput Assist Radiol Surg 2007. [DOI: 10.1007/s11548-006-0066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
220
|
Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, Maurer CR, Adler JR. A Study of the Accuracy of CyberKnife Spinal Radiosurgery Using Skeletal Structure Tracking. Oper Neurosurg (Hagerstown) 2007; 60:ONS147-56; discussion ONS156. [PMID: 17297377 DOI: 10.1227/01.neu.0000249248.55923.ec] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Objective:
New technology has enabled the increasing use of radiosurgery to ablate spinal lesions. The first generation of the CyberKnife (Accuray, Inc., Sunnyvale, CA) image-guided radiosurgery system required implanted radiopaque markers (fiducials) to localize spinal targets. A recently developed and now commercially available spine tracking technology called Xsight (Accuray, Inc.) tracks skeletal structures and eliminates the need for implanted fiducials. The Xsight system localizes spinal targets by direct reference to the adjacent vertebral elements. This study sought to measure the accuracy of Xsight spine tracking and provide a qualitative assessment of overall system performance.
Methods:
Total system error, which is defined as the distance between the centroids of the planned and delivered dose distributions and represents all possible treatment planning and delivery errors, was measured using a realistic, anthropomorphic head-and-neck phantom. The Xsight tracking system error component of total system error was also computed by retrospectively analyzing image data obtained from eleven patients with a total of 44 implanted fiducials who underwent CyberKnife spinal radiosurgery.
Results:
The total system error of the Xsight targeting technology was measured to be 0.61 mm. The tracking system error component was found to be 0.49 mm.
Conclusion:
The Xsight spine tracking system is practically important because it is accurate and eliminates the use of implanted fiducials. Experience has shown this technology to be robust under a wide range of clinical circumstances.
Collapse
Affiliation(s)
- Anthony K Ho
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California 94305-5304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Widmann G. Image-guided surgery and medical robotics in the cranial area. Biomed Imaging Interv J 2007; 3:e11. [PMID: 21614255 PMCID: PMC3097655 DOI: 10.2349/biij.3.1.e11] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 02/21/2007] [Indexed: 11/17/2022] Open
Abstract
Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of accuracy, and clinical applications for surgery in the cranial area.
Collapse
Affiliation(s)
- G Widmann
- Department of Radiology, Innsbruck Medical University, Anichstr, Austria
| |
Collapse
|
222
|
Lange T, Hünerbein M, Eulenstein S, Beller S, Schlag PM. Development of navigation systems for image-guided laparoscopic tumor resections in liver surgery. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2006; 167:13-36. [PMID: 17044294 DOI: 10.1007/3-540-28137-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Lange
- Klinik für Chirurgie und Chirurgische Onkologie, Robert-Rössle-Klinik, Berlin, Germany
| | | | | | | | | |
Collapse
|
223
|
Mascott CR. In vivo accuracy of image guidance performed using optical tracking and optimized registration. J Neurosurg 2006; 105:561-7. [PMID: 17044559 DOI: 10.3171/jns.2006.105.4.561] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Image guidance systems involving the use of frameless referencing of surgical space to compile volumetric imaging data sets recently have come into widespread use. Few studies have addressed the true intraoperative surgical accuracy (that is, the application accuracy) of these systems except in a subjective manner. Calculated accuracies given by the systems do not necessarily reflect true intraoperative accuracy.
Methods
To objectively assess the stereotactic accuracy of a frameless image guidance system using optical spatial referencing, the author analyzed postoperative magnetic resonance (MR) images after placement of depth electrodes for the investigation of epilepsy. Preoperative planning for the treatment of seven patients included implanting skull fiducial screws and obtaining computed tomography/MR fusion images by using ImMerge image fusion software on the StealthStation (Medtronic, Inc.). A total of 42 electrodes were placed. Postoperative volumetric MR images were fused with preoperative study images. The difference between the planned electrode trajectories and targets and the visualized electrodes was measured in stereotactic space.
Conclusions
The mean distance between the distal electrode contact and the distal end of the planned trajectory for the 42 targets was 3 ± 1.5 mm. The most common error was in depth. The author’s technique did not involve rigid skull fixation of electrodes because they were subsequently tunneled subcutaneously and later removed at the bedside of the patient. Errors in depth were known to be due to traction at the time of tunneling and not due to stereotactic factors. Correcting for depth along the electrode trajectory, the mean accuracy was found to be 2.4 ± 1 mm.
Collapse
|
224
|
Willems PWA, van der Sprenkel JWB, Tulleken CAF, Viergever MA, Taphoorn MJB. Neuronavigation and surgery of intracerebral tumours. J Neurol 2006; 253:1123-36. [PMID: 16988793 DOI: 10.1007/s00415-006-0158-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 10/21/2005] [Indexed: 10/24/2022]
Abstract
Approximately four decades after the successful clinical introduction of framebased stereotactic neurosurgery by Spiegel and Wycis, frameless stereotaxy emerged to enable more elaborate image guidance in open neurosurgical procedures. Frameless stereotaxy, or neuronavigation, relies on one of several different localizing techniques to determine the position of an operative instrument relative to the surgical field, without the need for a coordinate frame rigidly fixed to the patients' skull. Currently, most systems are based on the optical triangulation of infrared light sources fixed to the surgical instrument. In its essence, a navigation system is a three-dimensional digitiser that correlates its measurements to a reference data set, i.e. a preoperatively acquired CT or MRI image stack. This correlation is achieved through a patient-to-image registration procedure resulting in a mathematical transformation matrix mapping each position in 'world space' onto 'image space'. Thus, throughout the remainder of the surgical procedure, the position of the surgical instrument can be demonstrated on a computer screen, relative to the CT or MRI images. Though neuronavigation has become a routinely used addition to the neurosurgical armamentarium, its impact on surgical results has not yet been examined sufficiently. Therefore, the surgeon is left to decide on a case-by-case basis whether to perform surgery with or without neuronavigation. Future challenges lie in improvement of the interface between the surgeon and the neuronavigator and in reducing the brainshift error, i.e. inaccuracy introduced by changes in tissue positions after image acquisition.
Collapse
Affiliation(s)
- P W A Willems
- Department of Neurosurgery, University Medical Center, Utrecht, CX, The Netherlands.
| | | | | | | | | |
Collapse
|
225
|
Schmitt O, Modersitzki J, Heldmann S, Wirtz S, Fischer B. Image Registration of Sectioned Brains. Int J Comput Vis 2006. [DOI: 10.1007/s11263-006-9780-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
226
|
Kao JY, Tarng YS. The registration of CT image to the patient head by using an automated laser surface scanning system--a phantom study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2006; 83:1-11. [PMID: 16797102 DOI: 10.1016/j.cmpb.2006.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
In this paper, a practical methodology of surface-based registration supported by an automated laser surface scanning system to achieve good mapping performance is reported. The laser scanning system is used to digitize the facial feature of a phantom so as to mesh the physical space into triangular frame. The image space is established by translating the corresponding CT image into point set through using the medical image software tools. The image-to-physical registration task is carried out by a direct searching mechanism together with the objective function in an optimal fashion. The unconstrained nonlinear optimization algorithm performs the optimal searching iteration to find those parameters in the rigid-body transformation until the sum of the squared normal distances is minimized. Considering mapping the massive points in registration task would consume the computation time, there is only a suitable sample size to stand for the entire population with sufficient confidence and accuracy are extracted statistically from the CT point space to map to the laser scanning space. Registration results evaluated by gauging the position errors of the landmarks on phantom forehead show the proposed methodology has good ability to perform the image-to-physical registration.
Collapse
Affiliation(s)
- J Y Kao
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, ROC
| | | |
Collapse
|
227
|
Abstract
Contemporary imaging modalities can now provide the surgeon with high quality three- and four-dimensional images depicting not only normal anatomy and pathology, but also vascularity and function. A key component of image-guided surgery (IGS) is the ability to register multi-modal pre-operative images to each other and to the patient. The other important component of IGS is the ability to track instruments in real time during the procedure and to display them as part of a realistic model of the operative volume. Stereoscopic, virtual- and augmented-reality techniques have been implemented to enhance the visualization and guidance process. For the most part, IGS relies on the assumption that the pre-operatively acquired images used to guide the surgery accurately represent the morphology of the tissue during the procedure. This assumption may not necessarily be valid, and so intra-operative real-time imaging using interventional MRI, ultrasound, video and electrophysiological recordings are often employed to ameliorate this situation. Although IGS is now in extensive routine clinical use in neurosurgery and is gaining ground in other surgical disciplines, there remain many drawbacks that must be overcome before it can be employed in more general minimally-invasive procedures. This review overviews the roots of IGS in neurosurgery, provides examples of its use outside the brain, discusses the infrastructure required for successful implementation of IGS approaches and outlines the challenges that must be overcome for IGS to advance further.
Collapse
Affiliation(s)
- Terry M Peters
- Robarts Research Institute, University of Western Ontario, PO Box 5015, 100 Perth Drive, London, ON N6A 5K8, Canada.
| |
Collapse
|
228
|
Measurement of intraoperative brain surface deformation under a craniotomy. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bfb0056187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
229
|
Penney GP, Barratt DC, Chan CSK, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ. Cadaver validation of intensity-based ultrasound to CT registration. Med Image Anal 2006; 10:385-95. [PMID: 16520083 DOI: 10.1016/j.media.2006.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 11/07/2005] [Accepted: 01/12/2006] [Indexed: 11/20/2022]
Abstract
A method is presented for the rigid registration of tracked B-mode ultrasound images to a CT volume of a femur and pelvis. This registration can allow tracked surgical instruments to be aligned with the CT image or an associated preoperative plan. Our method is fully automatic and requires no manual segmentation of either the ultrasound images or the CT volume. The parameter which is directly related to the speed of sound through tissue has also been included in the registration optimisation process. Experiments have been carried out on six cadaveric femurs and three cadaveric pelves. Registration results were compared with a "gold standard" registration acquired using bone implanted fiducial markers. Results show the registration method to be accurate, on average, to 1.6 mm root-mean-square target registration error.
Collapse
Affiliation(s)
- G P Penney
- Centre for Medical Image Computing, University College London, 2nd Floor Malet Place Engineering Building, Malet Place, Off Torrington Place, London, WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
230
|
Mularski S, Picht T, Kuehn B, Kombos T, Brock M, Suess O. Real-time tracking of vertebral body movement with implantable reference microsensors. COMPUTER AIDED SURGERY : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR COMPUTER AIDED SURGERY 2006; 11:137-46. [PMID: 16829507 DOI: 10.3109/10929080600740814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE In the spine, navigation techniques serve mainly to control and accurately target insertion of implants. The main source of error is that the spine is not a rigid organ, but rather a chain of semiflexible movement segments. Any intraoperative manipulation of the patient alters the geometry and volumetry as compared to the 3D volume model created from the image data. Thus, the objective of the study was to implement the theoretical principle of microsensor referencing in a model experiment and to clarify which anatomical structures are suitable for intermittent implantation of positional sensors, as illustrated with cervical vertebral bodies. MATERIALS AND METHODS Laboratory tests were conducted using 70 models of human cervical vertebral bodies. The first experiment investigated whether arbitrary movements of vertebral bodies can be tracked with the positional information from the implanted microsensors. The accuracy of this movement monitoring was determined quantitatively on the basis of positional error measurement. In the second experiment, different ventral and dorsal surgical operations were simulated on five models of the cervical spine. Quantifiable measurement values such as the spatial extension of the intervertebral space and the relative positions of the planes of the upper plates were determined. RESULTS With respect to the differing anatomy of the individual vertebral bodies of the cervical spine, the sensors could be placed securely with a 5x2 mm drill. The registration error (RE) was determined as a root mean square error. The mean value was 0.9425 mm (range: 0.57-1.2 mm; median: 0.9400 mm; SD: 0.1903 mm). The precision of the movement monitoring of the vertebral body was investigated along its three main axes. The error tolerance between post-interventional 3D reconstruction and direct measurement on the model did not exceed 1.3 mm in the distance measurements or 2.5 degrees in the angular measurements. The tomograms on the system monitor could be updated in close to real time on the basis of the positional information from the reference sensor. CONCLUSIONS Motion sensors implanted into the vertebral bodies communicated any change in position to the navigation system in close to real time, thus enabling the preoperative image data set to be updated. The experiments described could ultimately show that continuous real-time visualization of individual vertebral body movements along the movement axes (flexion-extension, tilting and rotation) is possible with high accuracy using implantable microsensors. A future application of such microsensors might be the integration of robot systems into spinal microsurgery.
Collapse
Affiliation(s)
- Sven Mularski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
231
|
van de Kraats EB, van Walsum T, Kendrick L, Noordhoek NJ, Niessen WJ. Accuracy evaluation of direct navigation with an isocentric 3D rotational X-ray system. Med Image Anal 2006; 10:113-24. [PMID: 16099196 DOI: 10.1016/j.media.2005.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 07/28/2004] [Accepted: 04/11/2005] [Indexed: 11/19/2022]
Abstract
Minimally invasive interventions are often performed under fluoroscopic guidance. Drawbacks of fluoroscopic guidance are the fact that the presented images are 2D projections and that both the patient and the clinician are exposed to radiation. Image-guided navigation using pre-interventionally acquired 3D MR or CT data is an alternative. However, this often requires invasive anatomical landmark-based, marker-based or surface-based image-to-patient registration. In this paper, a coupling between an image-guided navigation system and an intraoperative C-arm X-ray device with 3D imaging capabilities (3D rotational X-ray (3DRX) system) that enables direct navigation without invasive image-to-patient registration on 3DRX volumes, is described and evaluated. The coupling is established in a one-time preoperative calibration procedure. The individual steps in the registration procedure are explained and evaluated. The acquired navigation accuracy using this coupling is approximately one millimeter.
Collapse
Affiliation(s)
- Everine B van de Kraats
- Image Sciences Institute, University Medical Center Utrecht, Q0S.459, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
232
|
Turgeon GA, Lehmann G, Guiraudon G, Drangova M, Holdsworth D, Peters T. 2D-3D registration of coronary angiograms for cardiac procedure planning and guidance. Med Phys 2006; 32:3737-49. [PMID: 16475773 DOI: 10.1118/1.2123350] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present a completely automated 2D-3D registration technique that accurately maps a patient-specific heart model, created from preoperative images, to the patient's orientation in the operating room. This mapping is based on the registration of preoperatively acquired 3D vascular data with intraoperatively acquired angiograms. Registration using both single and dual-plane angiograms is explored using simulated but realistic datasets that were created from clinical images. Heart deformations and cardiac phase mismatches are taken into account in our validation using a digital 4D human heart model. In an ideal situation where the pre- and intraoperative images were acquired at identical time points within the cardiac cycle, the single-plane and the dual-plane registrations resulted in 3D root-mean-square (rms) errors of 1.60 +/- 0.21 and 0.53 +/- 0.08 mm, respectively. When a 10% timing offset was added between the pre- and the intraoperative acquisitions, the single-plane registration approach resulted in inaccurate registrations in the out-of-plane axis, whereas the dual-plane registration exhibited a 98% success rate with a 3D rms error of 1.33 +/- 0.28 mm. When all potential sources of error were included, namely, the anatomical background, timing offset, and typical errors in the vascular tree reconstruction, the dual-plane registration performed at 94% with an accuracy of 2.19 +/- 0.77 mm.
Collapse
Affiliation(s)
- Guy-Anne Turgeon
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
233
|
Willems PWA, Taphoorn MJB, Burger H, Berkelbach van der Sprenkel JW, Tulleken CAF. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 2006; 104:360-8. [PMID: 16572647 DOI: 10.3171/jns.2006.104.3.360] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Object
The goal of this study was to assess the impact of neuronavigation on the cytoreductive treatment of solitary contrast-enhancing intracerebral tumors and outcomes of this treatment in cases in which neuronavigation was preoperatively judged to be redundant.
Methods
The authors conducted a prospective randomized study in which 45 patients, each harboring a solitary contrast-enhancing intracerebral tumor, were randomized for surgery with or without neuronavigation. Peri- and postoperative parameters under investigation included the following: duration of the procedure; surgeon’s estimate of the usefulness of neuronavigation; quantification of the extent of resection, determined using magnetic resonance imaging; and the postoperative course, as evaluated by neurological examinations, the patient’s quality-of-life self-assessment, application of the Barthel index and the Karnofsky Performance Scale score, and the patient’s time of death.
The mean amount of residual tumor tissue was 28.9% for standard surgery (SS) and 13.8% for surgery involving neuronavigation (SN). The corresponding mean amounts of residual contrast-enhancing tumor tissue were 29.2 and 24.4%, respectively. These differences were not significant. Gross-total removal (GTR) was achieved in five patients who underwent SS and in three who underwent SN. Median survival was significantly shorter in the SN group (5.6 months compared with 9 months, unadjusted hazard ratio = 1.6); however, this difference may be attributable to the coincidental early death of three patients in the SN group. No discernible important effect on the patients’ 3-month postoperative course was identified.
Conclusions
There is no rationale for the routine use of neuronavigation to improve the extent of tumor resection and prognosis in patients harboring a solitary enhancing intracerebral lesion when neuronavigation is not already deemed advantageous because of the size or location of the lesion.
Collapse
Affiliation(s)
- Peter W A Willems
- Department of Neurosurgery, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
234
|
Maassen MM, Malthan D, Stallkamp J, Schäfer A, Dammann F, Schwaderer E, Zenner HP. Laserbasierte Qualitätssicherung für die robotergestützte Fräsabtragung an der Schädelbasis. HNO 2006; 54:105-11. [PMID: 15977039 DOI: 10.1007/s00106-005-1283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Implanting active hearing devices in the lateral base of the skull requires high-precision, secure fixation of the electromagnetic transducer and long-life anchorage using osteosynthetic fixation plates referred to as mountain brackets. Nonlinear distortion in the acoustic signal path and consecutive implant loosening can only be avoided by exact osseous milling to create the necessary cavity bed while avoiding excessive milling. Robot technology is ideal for high-precision milling. However, safety measures are necessary in order to prevent errors from occurring during the reduction process. Ideally, a robot should be guided by a navigation system. However, robotic systems so far available do not yet have an integrated global navigation system. MATERIALS AND METHODS We used an animal model under laboratory conditions to examine the extent to which the semiautomatic ROBIN assistant system developed could be expected to increase osseous milling accuracy before implanting active electronic hearing devices into the recipient tissue in the cranium. An existing prototype system for robot-assisted skull base surgery was equipped with laser sensors for geometric measurement of the operation site. The three-dimensional measurement data was compared with CT simulation data before, during, and after the robot-assisted operation. The experiments were conducted on test objects as well as on animal models. RESULTS Under ideal conditions, the operation site could be measured at a spatial resolution of better than 0.02 mm in each dimension. However, reflections and impurities in the operation site from bleeding and rinsing fluids did have a considerable effect on data collection, necessitating specialised registering procedures. Using an error-tolerant procedure specifically developed, the effective registering error could be kept under 0.3 mm. After milling, the resulting shape matched the intended form at an accuracy level of 0.8 mm. CONCLUSION The results show that robot systems can reach the accuracy required for reliable microsurgery on the cranial base. High-resolution laser-based geometric measurement of the operation site enables head registration without additional artificial landmarks. During the navigated operation, the procedure can be used to ensure that the resulting cavity matches the intended shape as determined in the preoperative planning phase. This will enable quantitative analysis of, and improvement in the quality of robot-assisted surgery in the future.
Collapse
Affiliation(s)
- M M Maassen
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Tübingen.
| | | | | | | | | | | | | |
Collapse
|
235
|
Ma B, Ellis RE. Analytic Expressions for Fiducial and Surface Target Registration Error. ACTA ACUST UNITED AC 2006; 9:637-44. [PMID: 17354826 DOI: 10.1007/11866763_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We propose and test analytic equations for approximating expected fiducial and surface target registration error (TRE). The equations are derived from a spatial stiffness model of registration. The fiducial TRE equation is equivalent to one presented by. We believe that the surface TRE equation is novel, and we provide evidence from computer simulations to support the accuracy of the approximation.
Collapse
Affiliation(s)
- Burton Ma
- Human Mobility Research Centre, Queen's University, Canada.
| | | |
Collapse
|
236
|
van de Kraats EB, Carelsen B, Fokkens WJ, Boon SN, Noordhoek N, Niessen WJ, van Walsum T. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery. Phys Med Biol 2005; 50:5769-81. [PMID: 16333154 DOI: 10.1088/0031-9155/50/24/001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.
Collapse
|
237
|
Ma B, Ellis RE. A point-selection algorithm based on spatial-stiffness analysis of rigid registration. COMPUTER AIDED SURGERY : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR COMPUTER AIDED SURGERY 2005; 10:209-23. [PMID: 16393790 DOI: 10.3109/10929080500230320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVE We propose a model of shape-based registration that leads to a task-specific algorithm for preoperatively selecting a set of model registration points. MATERIALS AND METHODS We performed five sets of computer simulations using registration points generated by our algorithm and two noise amplification index (NAI) algorithms on the basis of the research of Simon 20. We used several different bone surface models (distal radius, proximal femur and tibia) computed from CT images of patient volunteers. The number of registration points used varied between 6 and 30. RESULTS Our algorithm was faster than the NAI-based algorithms by factors of approximately 4 and 200. It had equal or better performance in terms of target registration error (TRE) when compared with the other algorithms. Our simulations also showed that point selection can have a large effect on TRE behavior; in particular, poor point selection does not necessarily decrease TRE as more registration points are added. CONCLUSIONS Our point-selection algorithm produces model registration points with similar or better TRE behavior than the NAI-based algorithms we tested, and it does so with significantly less computation time.
Collapse
Affiliation(s)
- B Ma
- School of Computing, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
238
|
Huisman HJ, Fütterer JJ, van Lin ENJT, Welmers A, Scheenen TWJ, van Dalen JA, Visser AG, Witjes JA, Barentsz JO. Prostate Cancer: Precision of Integrating Functional MR Imaging with Radiation Therapy Treatment by Using Fiducial Gold Markers. Radiology 2005; 236:311-7. [PMID: 15983070 DOI: 10.1148/radiol.2361040560] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of intensity-modulated radiation therapy for treatment of dominant intraprostatic lesions may require integration of functional magnetic resonance (MR) imaging with treatment-planning computed tomography (CT). The purpose of this study was to compare prospectively the landmark and iterative closest point methods for registration of CT and MR images of the prostate gland after placement of fiducial markers. The study was approved by the institutional ethics review board, and informed consent was obtained. CT and MR images were registered by using fiducial gold markers that were inserted into the prostate. Two image registration methods--a commonly available landmark method and dedicated iterative closest point method--were compared. Precision was assessed for a data set of 21 patients by using five operators. Precision of the iterative closest point method (1.1 mm) was significantly better (P < .01) than that of the landmark method (2.0 mm). Furthermore, a method is described by which multimodal MR imaging data are reduced into a single interpreted volume that, after registration, can be incorporated into treatment planning.
Collapse
Affiliation(s)
- Henkjan J Huisman
- Department of Radiology, Radboud University Nijmegen Medical Center, Geert Grooteplein zuid 10, NL 6500 HB, Nijmegen, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Glasgow SC, Chapman WC. Emerging Technology in the Treatment of Colorectal Metastases to the Liver. SEMINARS IN COLON AND RECTAL SURGERY 2005. [DOI: 10.1053/j.scrs.2005.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
240
|
Widmann G, Widmann R, Widmann E, Jaschke W, Bale RJ. In vitroaccuracy of a novel registration and targeting technique for image-guided template production. Clin Oral Implants Res 2005; 16:502-8. [PMID: 16117777 DOI: 10.1111/j.1600-0501.2005.01131.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the accuracy of a novel registration and targeting technique for image-guided template production (IGTP) in a preliminary phantom study. MATERIAL AND METHODS Registration of four standard dental stone casts with integrated target pellets to the corresponding computed tomography (CT) data was performed via a vacuum mouthpiece and an external reference frame (Medical Intelligence GmbH, Germany). Using the Treon navigation system (Medtronic Inc., Minneapolis, MN, USA) a surgical path with the entry in the centre of the dental crown and the target in the centre of the target pellet was planned on the CT data. An aiming device was adjusted according to the planned trajectory and guided drillings into the dental stone casts. The accuracy was evaluated on postoperative 3D-CT data. RESULTS The mean fiducial registration error as given by the registration software was 0.4 mm. One hundred and twelve navigated drillings showed a mean accuracy [xy] of 0.42+/-0.26 mm (maximum 1 mm). For the z-axis, a mean accuracy [z] of 0.25+/-0.12 mm (maximum 0.6 mm) was found. CONCLUSIONS Comparing the presented registration technique to existing registration methods in IGTP and burr tracking, no radiographic and registration templates are needed. The procedure is easy and requires only minimal effort. Navigation-controlled drillings could be performed with an accuracy that approaches the intrinsic navigation system's accuracy, a fact that warrants its use for surgical template production. Further accuracy studies of template-guided drillings are necessary before the presented registration technique can be implemented for patient treatment.
Collapse
Affiliation(s)
- Gerlig Widmann
- Interdisciplinary Stereotactic Intervention- and Planning Laboratory Innsbruck (SIP-Lab), Innsbruck Medical University, Department of Radiology, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
241
|
Labadie RF, Shah RJ, Harris SS, Cetinkaya E, Haynes DS, Fenlon MR, Juszczyk AS, Galloway RL, Fitzpatrick JM. In vitro assessment of image-guided otologic surgery: submillimeter accuracy within the region of the temporal bone. Otolaryngol Head Neck Surg 2005; 132:435-42. [PMID: 15746858 DOI: 10.1016/j.otohns.2004.09.141] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Application of image-guided surgery to otology has been limited by the need for submillimeter accuracy via a fiducial system that is easily usable (noninvasive and nonobstructive). METHODS A dental bite-block was fitted with a rigid frame with 7 fiducial markers surrounding each external ear. The temporal bones of 3 cadaveric skulls were removed and replaced with surgical targets arranged in a bull's-eye pattern about the centroid of each temporal bone. The surgical targets were identified both within CT scans and in physical space using an infrared optical tracking system. The difference between positions in CT space versus physical space was calculated as target registration error. RESULTS A total of 234 independent target registration errors were calculated. Mean +/- standard deviation = 0.73 mm +/- 0.25 mm. CONCLUSIONS These findings show that image-guided otologic surgery with submillimeter accuracy is achievable with a minimally invasive fiducial frame. Significance In vivo validation of the system is ongoing. With such validation, this system may facilitate clinically applicable image-guided otologic surgery. EBM RATING A.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Fitzpatrick JM, Konrad PE, Nickele C, Cetinkaya E, Kao C. Accuracy of customized miniature stereotactic platforms. Stereotact Funct Neurosurg 2005; 83:25-31. [PMID: 15821366 DOI: 10.1159/000085023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, a new system was evaluated for implanting deep-brain stimulators based on a one-piece platform for each trajectory customized from a preoperative planning image. During surgery, the platform is attached to skull-implanted posts that extend through the scalp. The platform acts as a miniature stereotactic frame to provide guidance for parallel cannulas as they are advanced through a burr hole to the target. Accuracy is determined from a postoperative CT. For each implantation, the distance between the position observed in the postoperative image and the position calculated relative to the platform from the preoperative image is our measure of error. Because this measure incorporates the surgical error of electrode anchoring, brain shift between preoperative and postoperative scanning, and error in the measurement of the position of the electrode in CT, it will tend to overestimate the true error. The mean error was 2.8 mm for 20 implantations. These data reflect favorably the accuracy of this system when compared with others.
Collapse
Affiliation(s)
- J Michael Fitzpatrick
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
243
|
Abstract
PURPOSE OF REVIEW Use of image-guided surgery (IGS) systems in otolaryngology, particularly rhinology, has grown exponentially in recent years. Central to their use is the understanding of the accuracy of each system. The purpose of this review is to discuss the error inherent in all IGS systems. A standardized technique (currently used in the engineering literature) for understanding and reporting error in IGS systems is reviewed. Using this technique, the error of commercially available IGS systems is reviewed. RECENT FINDINGS The most commonly used IGS systems depend on the conformation of the skin, as opposed to relying on bone-implanted devices. For these systems, mean accuracies 2 mm or less are routinely reported. This finding is independent of fiducial markers (eg, proprietary headsets, skin-affixed markers, or laser scanning of skin surfaces). Techniques of fiducial localization and registration of CT scans to intraoperative anatomy are proprietary to each company. As such, there is great variability in reporting system specifications-particularly error of IGS systems. This lack of standardization makes comparison of one system to another difficult if not impossible. SUMMARY Image-guided surgery systems commonly used in rhinology report mean accuracies of 2 mm or less. Surgeons must be aware that this value represents a mean of a distribution of errors. As such, 95% of the time error can be expected to be less than approximately 1.7 times its mean value. However, outliers (errors much larger and much smaller than the mean) may exist for each IGS intervention. As noted, IGS systems function to complement-not replace-knowledge of surgical anatomy.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2559, USA.
| | | | | |
Collapse
|
244
|
Knott PD, Maurer CR, Gallivan R, Roh HJ, Citardi MJ. The impact of fiducial distribution on headset-based registration in image-guided sinus surgery. Otolaryngol Head Neck Surg 2005; 131:666-72. [PMID: 15523446 DOI: 10.1016/j.otohns.2004.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study was to assess registration error due to fiducial configuration for the ENT headsets for the CBYON Suite (CBYON, Mountain View, CA) and InstaTrak (GEMS Navigation and Visualization, Waukesha, WI). STUDY DESIGN Axial CT scans (1-mm slice thickness) were obtained of for 24 cadaveric heads using the CBYON headset and for 23 cadaveric heads using the GEMS headset. The CBYON and GEMS NAV software were used to calculate the fiducial registration error (FRE). Fiducial localization error (FLE) was estimated from FRE. Theoretical target registration error (TRE) was calculated at 11 targets. RESULTS The FRE for CBYON and GEMS NAV was 0.69 mm and 0.27 mm, respectively. The theoretical TRE for CBYON and GEMS NAV was 0.41 mm and 0.30 mm, respectively. The theoretical TRE was greater at targets posterior in the sinus cavities. CONCLUSION Theoretical TRE values for both ENT headsets are less than clinically observed TRE. Clinically observed TRE is likely due to repositioning accuracy. EBM RATING B-2.
Collapse
Affiliation(s)
- P Daniel Knott
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
245
|
Russakoff DB, Rohlfing T, Adler JR, Maurer CR. Intensity-based 2D-3D spine image registration incorporating a single fiducial marker. Acad Radiol 2005; 12:37-50. [PMID: 15691724 DOI: 10.1016/j.acra.2004.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/13/2004] [Accepted: 09/25/2004] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES The two-dimensional (2D)-three dimensional (3D) registration of a computed tomography image to one or more x-ray projection images has a number of image-guided therapy applications. In general, fiducial marker-based methods are fast, accurate, and robust, but marker implantation is not always possible, often is considered too invasive to be clinically acceptable, and entails risk. There also is the unresolved issue of whether it is acceptable to leave markers permanently implanted. Intensity-based registration methods do not require the use of markers and can be automated because such geometric features as points and surfaces do not need to be segmented from the images. However, for spine images, intensity-based methods are susceptible to local optima in the cost function and thus need initial transformations that are close to the correct transformation. MATERIALS AND METHODS In this report, we propose a hybrid similarity measure for 2D-3D registration that is a weighted combination of an intensity-based similarity measure (mutual information) and a point-based measure using one fiducial marker. We evaluate its registration accuracy and robustness by using gold-standard clinical spine image data from four patients. RESULTS Mean registration errors for successful registrations for the four patients were 1.3 and 1.1 mm for the intensity-based and hybrid similarity measures, respectively. Whereas the percentage of successful intensity-based registrations (registration error < 2.5 mm) decreased rapidly as the initial transformation got further from the correct transformation, the incorporation of a single marker produced successful registrations more than 99% of the time independent of the initial transformation. CONCLUSION The use of one fiducial marker reduces 2D-3D spine image registration error slightly and improves robustness substantially. The findings are potentially relevant for image-guided therapy. If one marker is sufficient to obtain clinically acceptable registration accuracy and robustness, as the preliminary results using the proposed hybrid similarity measure suggest, the marker can be placed on a spinous process, which could be accomplished without penetrating muscle or using fluoroscopic guidance, and such a marker could be removed relatively easily.
Collapse
Affiliation(s)
- Daniel B Russakoff
- Department of Computer Science, Stanford University, 300 Pasteur Drive, Stanford, CA 94305-5327, USA
| | | | | | | |
Collapse
|
246
|
Assessment of the precision in co-registration of structural MR images and PET images with localized binding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
247
|
Liao H, Hata N, Nakajima S, Iwahara M, Sakuma I, Dohi T. Surgical Navigation by Autostereoscopic Image Overlay of Integral Videography. ACTA ACUST UNITED AC 2004; 8:114-21. [PMID: 15217256 DOI: 10.1109/titb.2004.826734] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper describes an autostereoscopic image overlay technique that is integrated into a surgical navigation system to superimpose a real three-dimensional (3-D) image onto the patient via a half-silvered mirror. The images are created by employing a modified version of integral videography (IV), which is an animated extension of integral photography. IV records and reproduces 3-D images using a microconvex lens array and flat display; it can display geometrically accurate 3-D autostereoscopic images and reproduce motion parallax without the need for special devices. The use of semitransparent display devices makes it appear that the 3-D image is inside the patient's body. This is the first report of applying an autostereoscopic display with an image overlay system in surgical navigation. Experiments demonstrated that the fast IV rendering technique and patient-image registration method produce an average registration accuracy of 1.13 mm. Experiments using a target in phantom agar showed that the system can guide a needle toward a target with an average error of 2.6 mm. Improvement in the quality of the IV display will make this system practical and its use will increase surgical accuracy and reduce invasiveness.
Collapse
Affiliation(s)
- Hongen Liao
- Graduate School of Information Technology Science, The University of Tokyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | |
Collapse
|
248
|
Lindseth F, Kaspersen JH, Ommedal S, Langø T, Bang J, Hokland J, Unsgaard G, Hernes TAN. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. ACTA ACUST UNITED AC 2004; 8:49-69. [PMID: 15015719 DOI: 10.3109/10929080309146040] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We have investigated alternative ways to integrate intraoperative 3D ultrasound images and preoperative MR images in the same 3D scene for visualizing brain shift and improving overview and interpretation in ultrasound-based neuronavigation. MATERIALS AND METHODS A Multi-Modal Volume Visualizer (MMVV) was developed that can read data exported from the SonoWand neuronavigation system and reconstruct the spatial relationship between the volumes available at any given time during an operation, thus enabling the exploration of new ways to fuse pre- and intraoperative data for planning, guidance and therapy control. In addition, the mismatch between MRI volumes registered to the patient and intraoperative ultrasound acquired from the dura was qualified. RESULTS The results show that image fusion of intraoperative ultrasound images in combination with preoperative MRI will make perception of available information easier by providing updated (real-time) image information and an extended overview of the operating field during surgery. This approach will assess the degree of anatomical changes during surgery and give the surgeon an understanding of how identical structures are imaged using the different imaging modalities. The present study showed that in 50% of the cases there were indications of brain shift even before the surgical procedure had started. CONCLUSIONS We believe that image fusion between intraoperative 3D ultrasound and preoperative MRI might improve the quality of the surgical procedure and hence also improve the patient outcome.
Collapse
|
249
|
West JB, Maurer CR. Designing optically tracked instruments for image-guided surgery. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:533-545. [PMID: 15147007 DOI: 10.1109/tmi.2004.825614] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most image-guided surgery (IGS) systems track the positions of surgical instruments in the physical space occupied by the patient. This task is commonly performed using an optical tracking system that determines the positions of fiducial markers such as infrared-emitting diodes or retroreflective spheres that are attached to the instrument. Instrument tracking error is an important component of the overall IGS system error. This paper is concerned with the effect of fiducial marker configuration (number and spatial distribution) on tip position tracking error. Statistically expected tip position tracking error is calculated by applying results from the point-based registration error theory developed by Fitzpatrick et al. Tracking error depends not only on the error in localizing the fiducials, which is the error value generally provided by manufacturers of optical tracking systems, but also on the number and spatial distribution of the tracking fiducials and the position of the instrument tip relative to the fiducials. The theory is extended in two ways. First, a formula is derived for the special case in which the fiducials and the tip are collinear. Second, the theory is extended for the case in which there is a composition of transformations, as is the situation for tracking an instrument relative to a coordinate reference frame (i.e., a set of fiducials attached to the patient). The derivation reveals that the previous theory may be applied independently to the two transformations; the resulting independent components of tracking error add in quadrature to give the overall tracking error. The theoretical results are verified with numerical simulations and experimental measurements. The results in this paper may be useful for the design of optically tracked instruments for image-guided surgery; this is illustrated with several examples.
Collapse
Affiliation(s)
- Jay B West
- Accuray, Inc., 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA.
| | | |
Collapse
|
250
|
Lavely WC, Scarfone C, Cevikalp H, Li R, Byrne DW, Cmelak AJ, Dawant B, Price RR, Hallahan DE, Fitzpatrick JM. Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Med Phys 2004; 31:1083-92. [PMID: 15191296 DOI: 10.1118/1.1688041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Radiotherapy treatment planning integrating positron emission tomography (PET) and computerized tomography (CT) is rapidly gaining acceptance in the clinical setting. Although hybrid systems are available, often the planning CT is acquired on a dedicated system separate from the PET scanner. A limiting factor to using PET data becomes the accuracy of the CT/PET registration. In this work, we use phantom and patient validation to demonstrate a general method for assessing the accuracy of CT/PET image registration and apply it to two multi-modality image registration programs. An IAEA (International Atomic Energy Association) brain phantom and an anthropomorphic head phantom were used. Internal volumes and externally mounted fiducial markers were filled with CT contrast and 18F-fluorodeoxyglucose (FDG). CT, PET emission, and PET transmission images were acquired and registered using two different image registration algorithms. CT/PET Fusion (GE Medical Systems, Milwaukee, WI) is commercially available and uses a semi-automated initial step followed by manual adjustment. Automatic Mutual Information-based Registration (AMIR), developed at our institution, is fully automated and exhibits no variation between repeated registrations. Registration was performed using distinct phantom structures; assessment of accuracy was determined from registration of the calculated centroids of a set of fiducial markers. By comparing structure-based registration with fiducial-based registration, target registration error (TRE) was computed at each point in a three-dimensional (3D) grid that spans the image volume. Identical methods were also applied to patient data to assess CT/PET registration accuracy. Accuracy was calculated as the mean with standard deviation of the TRE for every point in the 3D grid. Overall TRE values for the IAEA brain phantom are: CT/PET Fusion = 1.71 +/- 0.62 mm, AMIR = 1.13 +/- 0.53 mm; overall TRE values for the anthropomorphic head phantom are: CT/PET Fusion = 1.66 +/- 0.53 mm, AMIR = 1.15 +/- 0.48 mm. Precision (repeatability by a single user) measured for CT/PET Fusion: IAEA phantom = 1.59 +/- 0.67 mm and anthropomorphic head phantom = 1.63 +/- 0.52 mm. (AMIR has exact precision and so no measurements are necessary.) One sample patient demonstrated the following accuracy results: CT/PET Fusion = 3.89 +/- 1.61 mm, AMIR = 2.86 +/- 0.60 mm. Semi-automatic and automatic image registration methods may be used to facilitate incorporation of PET data into radiotherapy treatment planning in relatively rigid anatomic sites, such as head and neck. The overall accuracies in phantom and patient images are < 2 mm and < 4 mm, respectively, using either registration algorithm. Registration accuracy may decrease, however, as distance from the initial registration points (CT/PET fusion) or center of the image (AMIR) increases. Additional information provided by PET may improve dose coverage to active tumor subregions and hence tumor control. This study shows that the accuracy obtained by image registration with these two methods is well suited for image-guided radiotherapy.
Collapse
MESH Headings
- Algorithms
- Artificial Intelligence
- Cluster Analysis
- Head/anatomy & histology
- Head/diagnostic imaging
- Humans
- Image Enhancement/methods
- Image Interpretation, Computer-Assisted/instrumentation
- Image Interpretation, Computer-Assisted/methods
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Information Storage and Retrieval/methods
- Numerical Analysis, Computer-Assisted
- Pattern Recognition, Automated/methods
- Phantoms, Imaging
- Positron-Emission Tomography/instrumentation
- Positron-Emission Tomography/methods
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Computer-Assisted/instrumentation
- Radiotherapy, Computer-Assisted/methods
- Reproducibility of Results
- Sensitivity and Specificity
- Signal Processing, Computer-Assisted
- Subtraction Technique
- Surgery, Computer-Assisted/methods
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/methods
Collapse
Affiliation(s)
- William C Lavely
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|