201
|
Shibu George G, Raj Mishra P, Sinha P, Ranjan Prusty M. COVID-19 Detection on Chest X-Ray Images Using Homomorphic Transformation and VGG Inspired Deep Convolutional Neural Network. Biocybern Biomed Eng 2022; 43:1-16. [PMID: 36447948 PMCID: PMC9684127 DOI: 10.1016/j.bbe.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
COVID-19 had caused the whole world to come to a standstill. The current detection methods are time consuming as well as costly. Using Chest X-rays (CXRs) is a solution to this problem, however, manual examination of CXRs is a cumbersome and difficult process needing specialization in the domain. Most of existing methods used for this application involve the usage of pretrained models such as VGG19, ResNet, DenseNet, Xception, and EfficeintNet which were trained on RGB image datasets. X-rays are fundamentally single channel images, hence using RGB trained model is not appropriate since it increases the operations by involving three channels instead of one. A way of using pretrained model for grayscale images is by replicating the one channel image data to three channel which introduces redundancy and another way is by altering the input layer of pretrained model to take in one channel image data, which comprises the weights in the forward layers that were trained on three channel images which weakens the use of pre-trained weights in a transfer learning approach. A novel approach for identification of COVID-19 using CXRs, Contrast Limited Adaptive Histogram Equalization (CLAHE) along with Homomorphic Transformation Filter which is used to process the pixel data in images and extract features from the CXRs is suggested in this paper. These processed images are then provided as input to a VGG inspired deep Convolutional Neural Network (CNN) model which takes one channel image data as input (grayscale images) to categorize CXRs into three class labels, namely, No-Findings, COVID-19, and Pneumonia. Evaluation of the suggested model is done with the help of two publicly available datasets; one to obtain COVID-19 and No-Finding images and the other to obtain Pneumonia CXRs. The dataset comprises 6750 images in total; 2250 images for each class. Results obtained show that the model has achieved 96.56% for multi-class classification and 98.06% accuracy for binary classification using 5-fold stratified cross validation (CV) method. This result is competitive and up to the mark when compared with the performance shown by existing approaches for COVID-19 classification.
Collapse
Affiliation(s)
- Gerosh Shibu George
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Pratyush Raj Mishra
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Panav Sinha
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Manas Ranjan Prusty
- Centre for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| |
Collapse
|
202
|
An efficient lung disease classification from X-ray images using hybrid Mask-RCNN and BiDLSTM. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
203
|
Computer Aided COVID-19 Diagnosis in Pandemic Era Using CNN in Chest X-ray Images. Life (Basel) 2022; 12:life12111709. [PMID: 36362864 PMCID: PMC9697164 DOI: 10.3390/life12111709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Early detection of abnormalities in chest X-rays is essential for COVID-19 diagnosis and analysis. It can be effective for controlling pandemic spread by contact tracing, as well as for effective treatment of COVID-19 infection. In the proposed work, we presented a deep hybrid learning-based framework for the detection of COVID-19 using chest X-ray images. We developed a novel computationally light and optimized deep Convolutional Neural Networks (CNNs) based framework for chest X-ray analysis. We proposed a new COV-Net to learn COVID-specific patterns from chest X-rays and employed several machine learning classifiers to enhance the discrimination power of the presented framework. Systematic exploitation of max-pooling operations facilitates the proposed COV-Net in learning the boundaries of infected patterns in chest X-rays and helps for multi-class classification of two diverse infection types along with normal images. The proposed framework has been evaluated on a publicly available benchmark dataset containing X-ray images of coronavirus-infected, pneumonia-infected, and normal patients. The empirical performance of the proposed method with developed COV-Net and support vector machine is compared with the state-of-the-art deep models which show that the proposed deep hybrid learning-based method achieves 96.69% recall, 96.72% precision, 96.73% accuracy, and 96.71% F-score. For multi-class classification and binary classification of COVID-19 and pneumonia, the proposed model achieved 99.21% recall, 99.22% precision, 99.21% F-score, and 99.23% accuracy.
Collapse
|
204
|
Addo D, Zhou S, Jackson JK, Nneji GU, Monday HN, Sarpong K, Patamia RA, Ekong F, Owusu-Agyei CA. EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images. Diagnostics (Basel) 2022; 12:2569. [PMID: 36359413 PMCID: PMC9689048 DOI: 10.3390/diagnostics12112569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.
Collapse
Affiliation(s)
- Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shijie Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Jehoiada Kofi Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Grace Ugochi Nneji
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Happy Nkanta Monday
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Kwabena Sarpong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Rutherford Agbeshi Patamia
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Favour Ekong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | |
Collapse
|
205
|
Arun Prakash J, Asswin CR, Ravi V, Sowmya V, Soman KP. Pediatric pneumonia diagnosis using stacked ensemble learning on multi-model deep CNN architectures. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:21311-21351. [PMID: 36281318 PMCID: PMC9581770 DOI: 10.1007/s11042-022-13844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
Pediatric pneumonia has drawn immense awareness due to the high mortality rates over recent years. The acute respiratory infection caused by bacteria, viruses, or fungi infects the lung region and hinders oxygen transport, making breathing difficult due to inflamed or pus and fluid-filled alveoli. Being non-invasive and painless, chest X-rays are the most common modality for pediatric pneumonia diagnosis. However, the low radiation levels for diagnosis in children make accurate detection challenging. This challenge initiates the need for an unerring computer-aided diagnosis model. Our work proposes Contrast Limited Adaptive Histogram Equalization for image enhancement and a stacking classifier based on the fusion of deep learning-based features for pediatric pneumonia diagnosis. The extracted features from the global average pooling layers of the fine-tuned MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated for the final classification using a stacked ensemble classifier. The stacking classifier uses Support Vector Classifier, Nu-SVC, Logistic Regression, K-Nearest Neighbor, Random Forest Classifier, Gaussian Naïve Bayes, AdaBoost classifier, Bagging Classifier, and Extra-trees Classifier for the first stage, and Nu-SVC as the meta-classifier. The stacking classifier validated using Stratified K-Fold cross-validation achieves an accuracy of 98.62%, precision of 98.99%, recall of 99.53%, F1 score of 99.26%, and an AUC score of 93.17% on the publicly available pediatric pneumonia dataset. We expect this model to greatly help the real-time diagnosis of pediatric pneumonia.
Collapse
Affiliation(s)
- J Arun Prakash
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - CR Asswin
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - V Sowmya
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - KP Soman
- Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
206
|
Wan L, Ai Z, Chen J, Jiang Q, Chen H, Li Q, Lu Y, Chen L. Detection algorithm for pigmented skin disease based on classifier-level and feature-level fusion. Front Public Health 2022; 10:1034772. [PMID: 36339204 PMCID: PMC9632750 DOI: 10.3389/fpubh.2022.1034772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023] Open
Abstract
Pigmented skin disease is caused by abnormal melanocyte and melanin production, which can be induced by genetic and environmental factors. It is also common among the various types of skin diseases. The timely and accurate diagnosis of pigmented skin disease is important for reducing mortality. Patients with pigmented dermatosis are generally diagnosed by a dermatologist through dermatoscopy. However, due to the current shortage of experts, this approach cannot meet the needs of the population, so a computer-aided system would help to diagnose skin lesions in remote areas containing insufficient experts. This paper proposes an algorithm based on a fusion network for the detection of pigmented skin disease. First, we preprocess the images in the acquired dataset, and then we perform image flipping and image style transfer to augment the images to alleviate the imbalance between the various categories in the dataset. Finally, two feature-level fusion optimization schemes based on deep features are compared with a classifier-level fusion scheme based on a classification layer to effectively determine the best fusion strategy for satisfying the pigmented skin disease detection requirements. Gradient-weighted Class Activation Mapping (Grad_CAM) and Grad_CAM++ are used for visualization purposes to verify the effectiveness of the proposed fusion network. The results show that compared with those of the traditional detection algorithm for pigmented skin disease, the accuracy and Area Under Curve (AUC) of the method in this paper reach 92.1 and 95.3%, respectively. The evaluation indices are greatly improved, proving the adaptability and accuracy of the proposed method. The proposed method can assist clinicians in screening and diagnosing pigmented skin disease and is suitable for real-world applications.
Collapse
Affiliation(s)
- Li Wan
- Dermatology Department, Wuhan No.1 Hospital, Hubei, China,Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Zhuang Ai
- Department of Research and Development, Sinopharm Genomics Technology Co., Ltd., Jiangsu, China
| | - Jinbo Chen
- Dermatology Department, Wuhan No.1 Hospital, Hubei, China
| | - Qian Jiang
- Dermatology Department, Wuhan No.1 Hospital, Hubei, China
| | - Hongying Chen
- Dermatology Department, Wuhan No.1 Hospital, Hubei, China
| | - Qi Li
- Department of Research and Development, Sinopharm Genomics Technology Co., Ltd., Jiangsu, China
| | - Yaping Lu
- Department of Research and Development, Sinopharm Genomics Technology Co., Ltd., Jiangsu, China,*Correspondence: Yaping Lu
| | - Liuqing Chen
- Dermatology Department, Wuhan No.1 Hospital, Hubei, China,Liuqing Chen
| |
Collapse
|
207
|
Naseem MT, Hussain T, Lee CS, Khan MA. Classification and Detection of COVID-19 and Other Chest-Related Diseases Using Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7977. [PMID: 36298328 PMCID: PMC9610066 DOI: 10.3390/s22207977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 has infected millions of people worldwide over the past few years. The main technique used for COVID-19 detection is reverse transcription, which is expensive, sensitive, and requires medical expertise. X-ray imaging is an alternative and more accessible technique. This study aimed to improve detection accuracy to create a computer-aided diagnostic tool. Combining other artificial intelligence applications techniques with radiological imaging can help detect different diseases. This study proposes a technique for the automatic detection of COVID-19 and other chest-related diseases using digital chest X-ray images of suspected patients by applying transfer learning (TL) algorithms. For this purpose, two balanced datasets, Dataset-1 and Dataset-2, were created by combining four public databases and collecting images from recently published articles. Dataset-1 consisted of 6000 chest X-ray images with 1500 for each class. Dataset-2 consisted of 7200 images with 1200 for each class. To train and test the model, TL with nine pretrained convolutional neural networks (CNNs) was used with augmentation as a preprocessing method. The network was trained to classify using five classifiers: two-class classifier (normal and COVID-19); three-class classifier (normal, COVID-19, and viral pneumonia), four-class classifier (normal, viral pneumonia, COVID-19, and tuberculosis (Tb)), five-class classifier (normal, bacterial pneumonia, COVID-19, Tb, and pneumothorax), and six-class classifier (normal, bacterial pneumonia, COVID-19, viral pneumonia, Tb, and pneumothorax). For two, three, four, five, and six classes, our model achieved a maximum accuracy of 99.83, 98.11, 97.00, 94.66, and 87.29%, respectively.
Collapse
Affiliation(s)
- Muhammad Tahir Naseem
- Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| | - Tajmal Hussain
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| | - Chan-Su Lee
- Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Muhammad Adnan Khan
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| |
Collapse
|
208
|
Ayadi M, Ksibi A, Al-Rasheed A, Soufiene BO. COVID-AleXception: A Deep Learning Model Based on a Deep Feature Concatenation Approach for the Detection of COVID-19 from Chest X-ray Images. Healthcare (Basel) 2022; 10:healthcare10102072. [PMID: 36292519 PMCID: PMC9601977 DOI: 10.3390/healthcare10102072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 12/21/2022] Open
Abstract
The novel coronavirus 2019 (COVID-19) spread rapidly around the world and its outbreak has become a pandemic. Due to an increase in afflicted cases, the quantity of COVID-19 tests kits available in hospitals has decreased. Therefore, an autonomous detection system is an essential tool for reducing infection risks and spreading of the virus. In the literature, various models based on machine learning (ML) and deep learning (DL) are introduced to detect many pneumonias using chest X-ray images. The cornerstone in this paper is the use of pretrained deep learning CNN architectures to construct an automated system for COVID-19 detection and diagnosis. In this work, we used the deep feature concatenation (DFC) mechanism to combine features extracted from input images using the two modern pre-trained CNN models, AlexNet and Xception. Hence, we propose COVID-AleXception: a neural network that is a concatenation of the AlexNet and Xception models for the overall improvement of the prediction capability of this pandemic. To evaluate the proposed model and build a dataset of large-scale X-ray images, there was a careful selection of multiple X-ray images from several sources. The COVID-AleXception model can achieve a classification accuracy of 98.68%, which shows the superiority of the proposed model over AlexNet and Xception that achieved a classification accuracy of 94.86% and 95.63%, respectively. The performance results of this proposed model demonstrate its pertinence to help radiologists diagnose COVID-19 more quickly.
Collapse
Affiliation(s)
- Manel Ayadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amel Ksibi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Amal Al-Rasheed
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ben Othman Soufiene
- Prince Laboratory Research, ISITcom (Institut Supérieur d’Informatique et des Techniques de Communication de Hammam Sousse), University of Sousse, Hammam Sousse 4023, Tunisia
| |
Collapse
|
209
|
Breve FA. COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles. EXPERT SYSTEMS WITH APPLICATIONS 2022; 204:117549. [PMID: 35615621 PMCID: PMC9122742 DOI: 10.1016/j.eswa.2022.117549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/01/2023]
Abstract
COVID-19 quickly became a global pandemic after only four months of its first detection. It is crucial to detect this disease as soon as possible to decrease its spread. The use of chest X-ray (CXR) images became an effective screening strategy, complementary to the reverse transcription-polymerase chain reaction (RT-PCR). Convolutional neural networks (CNNs) are often used for automatic image classification and they can be very useful in CXR diagnostics. In this paper, 21 different CNN architectures are tested and compared in the task of identifying COVID-19 in CXR images. They were applied to the COVIDx8B dataset, a large COVID-19 dataset with 16,352 CXR images coming from patients of at least 51 countries. Ensembles of CNNs were also employed and they showed better efficacy than individual instances. The best individual CNN instance results were achieved by DenseNet169, with an accuracy of 98.15% and an F1 score of 98.12%. These were further increased to 99.25% and 99.24%, respectively, through an ensemble with five instances of DenseNet169. These results are higher than those obtained in recent works using the same dataset.
Collapse
Affiliation(s)
- Fabricio Aparecido Breve
- Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP) Júlio de Mesquita Filho, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
210
|
El-Dahshan ESA, Bassiouni MM, Hagag A, Chakrabortty RK, Loh H, Acharya UR. RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2022; 204:117410. [PMID: 35502163 PMCID: PMC9045872 DOI: 10.1016/j.eswa.2022.117410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Since the advent of COVID-19, the number of deaths has increased exponentially, boosting the requirement for various research studies that may correctly diagnose the illness at an early stage. Using chest X-rays, this study presents deep learning-based algorithms for classifying patients with COVID illness, healthy controls, and pneumonia classes. Data gathering, pre-processing, feature extraction, and classification are the four primary aspects of the approach. The pictures of chest X-rays utilized in this investigation came from various publicly available databases. The pictures were filtered to increase image quality in the pre-processing stage, and the chest X-ray images were de-noised using the empirical wavelet transform (EWT). Following that, four deep learning models were used to extract features. The first two models, Inception-V3 and Resnet-50, are based on transfer learning models. The Resnet-50 is combined with a temporal convolutional neural network (TCN) to create the third model. The fourth model is our suggested RESCOVIDTCNNet model, which integrates EWT, Resnet-50, and TCN. Finally, an artificial neural network (ANN) and a support vector machine were used to classify the data (SVM). Using five-fold cross-validation for 3-class classification, our suggested RESCOVIDTCNNet achieved a 99.5 percent accuracy. Our prototype can be utilized in developing nations where radiologists are in low supply to acquire a diagnosis quickly.
Collapse
Affiliation(s)
- El-Sayed A El-Dahshan
- Department of Physics, Faculty of Science, Ain Shams University, Postal Code: 11566, Cairo, Egypt
- Egyptian E-Learning University (EELU), 33 El-messah Street, Eldoki, Postal Code: 11261, El-Giza, Egypt
| | - Mahmoud M Bassiouni
- Egyptian E-Learning University (EELU), 33 El-messah Street, Eldoki, Postal Code: 11261, El-Giza, Egypt
| | - Ahmed Hagag
- Department of Scientific Computing, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
| | - Ripon K Chakrabortty
- School of Engineering and IT, UNSW Canberra at ADFA, Canberra, ACT 2612, Australia
| | - Huiwen Loh
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
| | - U Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
211
|
Mittal S, Venugopal VK, Agarwal VK, Malhotra M, Chatha JS, Kapur S, Gupta A, Batra V, Majumdar P, Malhotra A, Thakral K, Chhabra S, Vatsa M, Singh R, Chaudhury S. A novel abnormality annotation database for COVID-19 affected frontal lung X-rays. PLoS One 2022; 17:e0271931. [PMID: 36240175 PMCID: PMC9565456 DOI: 10.1371/journal.pone.0271931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
Consistent clinical observations of characteristic findings of COVID-19 pneumonia on chest X-rays have attracted the research community to strive to provide a fast and reliable method for screening suspected patients. Several machine learning algorithms have been proposed to find the abnormalities in the lungs using chest X-rays specific to COVID-19 pneumonia and distinguish them from other etiologies of pneumonia. However, despite the enormous magnitude of the pandemic, there are very few instances of public databases of COVID-19 pneumonia, and to the best of our knowledge, there is no database with annotation of abnormalities on the chest X-rays of COVID-19 affected patients. Annotated databases of X-rays can be of significant value in the design and development of algorithms for disease prediction. Further, explainability analysis for the performance of existing or new deep learning algorithms will be enhanced significantly with access to ground-truth abnormality annotations. The proposed COVID Abnormality Annotation for X-Rays (CAAXR) database is built upon the BIMCV-COVID19+ database which is a large-scale dataset containing COVID-19+ chest X-rays. The primary contribution of this study is the annotation of the abnormalities in over 1700 frontal chest X-rays. Further, we define protocols for semantic segmentation as well as classification for robust evaluation of algorithms. We provide benchmark results on the defined protocols using popular deep learning models such as DenseNet, ResNet, MobileNet, and VGG for classification, and UNet, SegNet, and Mask-RCNN for semantic segmentation. The classwise accuracy, sensitivity, and AUC-ROC scores are reported for the classification models, and the IoU and DICE scores are reported for the segmentation models.
Collapse
Affiliation(s)
- Surbhi Mittal
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
| | | | | | | | | | | | | | | | - Puspita Majumdar
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
- Department of Computer Science, IIIT Delhi, New Delhi, India
| | - Aakarsh Malhotra
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
- Department of Computer Science, IIIT Delhi, New Delhi, India
| | - Kartik Thakral
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
| | - Saheb Chhabra
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
- Department of Computer Science, IIIT Delhi, New Delhi, India
| | - Mayank Vatsa
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
| | - Richa Singh
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
| | - Santanu Chaudhury
- Department of Computer Science, IIT Jodhpur, Karwar, Rajasthan, India
| |
Collapse
|
212
|
Contrasting EfficientNet, ViT, and gMLP for COVID-19 Detection in Ultrasound Imagery. J Pers Med 2022; 12:jpm12101707. [PMID: 36294846 PMCID: PMC9605641 DOI: 10.3390/jpm12101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
A timely diagnosis of coronavirus is critical in order to control the spread of the virus. To aid in this, we propose in this paper a deep learning-based approach for detecting coronavirus patients using ultrasound imagery. We propose to exploit the transfer learning of a EfficientNet model pre-trained on the ImageNet dataset for the classification of ultrasound images of suspected patients. In particular, we contrast the results of EfficentNet-B2 with the results of ViT and gMLP. Then, we show the results of the three models by learning from scratch, i.e., without transfer learning. We view the detection problem from a multiclass classification perspective by classifying images as COVID-19, pneumonia, and normal. In the experiments, we evaluated the models on a publically available ultrasound dataset. This dataset consists of 261 recordings (202 videos + 59 images) belonging to 216 distinct patients. The best results were obtained using EfficientNet-B2 with transfer learning. In particular, we obtained precision, recall, and F1 scores of 95.84%, 99.88%, and 24 97.41%, respectively, for detecting the COVID-19 class. EfficientNet-B2 with transfer learning presented an overall accuracy of 96.79%, outperforming gMLP and ViT, which achieved accuracies of 93.03% and 92.82%, respectively.
Collapse
|
213
|
How Resilient Are Deep Learning Models in Medical Image Analysis? The Case of the Moment-Based Adversarial Attack (Mb-AdA). Biomedicines 2022; 10:biomedicines10102545. [PMID: 36289807 PMCID: PMC9599099 DOI: 10.3390/biomedicines10102545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
In the past years, deep neural networks (DNNs) have become popular in many disciplines such as computer vision (CV). One of the most important challenges in the CV area is Medical Image Analysis (MIA). However, adversarial attacks (AdAs) have proven to be an important threat to vision systems by significantly reducing the performance of the models. This paper proposes a new black-box adversarial attack, which is based οn orthogonal image moments named Mb-AdA. Additionally, a corresponding defensive method of adversarial training using Mb-AdA adversarial examples is also investigated, with encouraging results. The proposed attack was applied in classification and segmentation tasks with six state-of-the-art Deep Learning (DL) models in X-ray, histopathology and nuclei cell images. The main advantage of Mb-AdA is that it does not destroy the structure of images like other attacks, as instead of adding noise it removes specific image information, which is critical for medical models' decisions. The proposed attack is more effective than compared ones and achieved degradation up to 65% and 18% in terms of accuracy and IoU for classification and segmentation tasks, respectively, by also presenting relatively high SSIM. At the same time, it was proved that Mb-AdA adversarial examples can enhance the robustness of the model.
Collapse
|
214
|
Sinwar D, Dhaka VS, Tesfaye BA, Raghuwanshi G, Kumar A, Maakar SK, Agrawal S. Artificial Intelligence and Deep Learning Assisted Rapid Diagnosis of COVID-19 from Chest Radiographical Images: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1306664. [PMID: 36304775 PMCID: PMC9581633 DOI: 10.1155/2022/1306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023]
Abstract
Artificial Intelligence (AI) has been applied successfully in many real-life domains for solving complex problems. With the invention of Machine Learning (ML) paradigms, it becomes convenient for researchers to predict the outcome based on past data. Nowadays, ML is acting as the biggest weapon against the COVID-19 pandemic by detecting symptomatic cases at an early stage and warning people about its futuristic effects. It is observed that COVID-19 has blown out globally so much in a short period because of the shortage of testing facilities and delays in test reports. To address this challenge, AI can be effectively applied to produce fast as well as cost-effective solutions. Plenty of researchers come up with AI-based solutions for preliminary diagnosis using chest CT Images, respiratory sound analysis, voice analysis of symptomatic persons with asymptomatic ones, and so forth. Some AI-based applications claim good accuracy in predicting the chances of being COVID-19-positive. Within a short period, plenty of research work is published regarding the identification of COVID-19. This paper has carefully examined and presented a comprehensive survey of more than 110 papers that came from various reputed sources, that is, Springer, IEEE, Elsevier, MDPI, arXiv, and medRxiv. Most of the papers selected for this survey presented candid work to detect and classify COVID-19, using deep-learning-based models from chest X-Rays and CT scan images. We hope that this survey covers most of the work and provides insights to the research community in proposing efficient as well as accurate solutions for fighting the pandemic.
Collapse
Affiliation(s)
- Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Biniyam Alemu Tesfaye
- Department of Computer Science, College of Informatics, Bule Hora University, Bule Hora, Ethiopia
| | - Ghanshyam Raghuwanshi
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Ashish Kumar
- Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, India
| | - Sunil Kr. Maakar
- School of Computing Science & Engineering, Galgotias University, Greater Noida, India
| | - Sanjay Agrawal
- Department of Electrical Engineering, Rajkiya Engineering College, Akbarpur, Ambedkar Nagar, India
| |
Collapse
|
215
|
Shoaib M, Hussain T, Shah B, Ullah I, Shah SM, Ali F, Park SH. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1031748. [PMID: 36275583 PMCID: PMC9585275 DOI: 10.3389/fpls.2022.1031748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
Plants contribute significantly to the global food supply. Various Plant diseases can result in production losses, which can be avoided by maintaining vigilance. However, manually monitoring plant diseases by agriculture experts and botanists is time-consuming, challenging and error-prone. To reduce the risk of disease severity, machine vision technology (i.e., artificial intelligence) can play a significant role. In the alternative method, the severity of the disease can be diminished through computer technologies and the cooperation of humans. These methods can also eliminate the disadvantages of manual observation. In this work, we proposed a solution to detect tomato plant disease using a deep leaning-based system utilizing the plant leaves image data. We utilized an architecture for deep learning based on a recently developed convolutional neural network that is trained over 18,161 segmented and non-segmented tomato leaf images-using a supervised learning approach to detect and recognize various tomato diseases using the Inception Net model in the research work. For the detection and segmentation of disease-affected regions, two state-of-the-art semantic segmentation models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant leaf pixels are binary and classified by the model as Region of Interest (ROI) and background. There is also an examination of the presentation of binary arrangement (healthy and diseased leaves), six-level classification (healthy and other ailing leaf groups), and ten-level classification (healthy and other types of ailing leaves) models. The Modified U-net segmentation model outperforms the simple U-net segmentation model by 98.66 percent, 98.5 IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95% accuracy for binary classification problems and 99.12% for classifying six segmented class images; InceptionNet outperformed the Modified U-net model to achieve higher accuracy. The experimental results of our proposed method for classifying plant diseases demonstrate that it outperforms the methods currently available in the literature.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Computer Science, CECOS University of Information Technology (IT) and Emerging Sciences, Peshawar, Pakistan
| | - Tariq Hussain
- High Performance Computing and Networking Institute, National Research Council (ICAR-CNR), Naples, Italy
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
| | - Ihsan Ullah
- Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST), Daegu, South Korea
| | - Sayyed Mudassar Shah
- Institute of Computer Science & Information Technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Farman Ali
- Department of Software, Sejong University, Seoul, South Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST), Daegu, South Korea
| |
Collapse
|
216
|
Alyafei K, Ahmed R, Abir FF, Chowdhury MEH, Naji KK. A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Comput Biol Med 2022; 149:106070. [PMID: 36099862 PMCID: PMC9433350 DOI: 10.1016/j.compbiomed.2022.106070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymptomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immunoassays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising results employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable systems.
Collapse
Affiliation(s)
- Khalid Alyafei
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Farhan Fuad Abir
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | |
Collapse
|
217
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
218
|
Tanwar S, Kumari A, Vekaria D, Kumar N, Sharma R. An AI-based disease detection and prevention scheme for COVID-19. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2022; 103:108352. [PMID: 36068837 PMCID: PMC9436917 DOI: 10.1016/j.compeleceng.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The proliferating outbreak of COVID-19 raises global health concerns and has brought many countries to a standstill. Several restrain strategies are imposed to suppress and flatten the mortality curve, such as lockdowns, quarantines, etc. Artificial Intelligence (AI) techniques could be a promising solution to leverage these restraint strategies. However, real-time decision-making necessitates a cloud-oriented AI solution to control the pandemic. Though many cloud-oriented solutions exist, they have not been fully exploited for real-time data accessibility and high prediction accuracy. Motivated by these facts, this paper proposes a cloud-oriented AI-based scheme referred to as D-espy (i.e., Disease-espy) for disease detection and prevention. The proposed D-espy scheme performs a comparative analysis between Autoregressive Integrated Moving Average (ARIMA), Vanilla Long Short Term Memory (LSTM), and Stacked LSTM techniques, which signify the dominance of Stacked LSTM in terms of prediction accuracy. Then, a Medical Resource Distribution (MRD) mechanism is proposed for the optimal distribution of medical resources. Next, a three-phase analysis of the COVID-19 spread is presented, which can benefit the governing bodies in deciding lockdown relaxation. Results show the efficacy of the D-espy scheme concerning 96.2% of prediction accuracy compared to the existing approaches.
Collapse
Affiliation(s)
- Sudeep Tanwar
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Aparna Kumari
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Darshan Vekaria
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Neeraj Kumar
- Thapar Institute of Engineering and Technology, (Deemed to be University), Patiala, Punjab, India
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Ravi Sharma
- Centre for Inter-Disciplinary Research and Innovation, University of Petroleum and Energy Studies, P.O. Bidholi Via-Prem Nagar, Dehradun, India
| |
Collapse
|
219
|
Alsaaidah B, Al-Hadidi MR, Al-Nsour H, Masadeh R, AlZubi N. Comprehensive Survey of Machine Learning Systems for COVID-19 Detection. J Imaging 2022; 8:267. [PMID: 36286361 PMCID: PMC9604704 DOI: 10.3390/jimaging8100267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023] Open
Abstract
The last two years are considered the most crucial and critical period of the COVID-19 pandemic affecting most life aspects worldwide. This virus spreads quickly within a short period, increasing the fatality rate associated with the virus. From a clinical perspective, several diagnosis methods are carried out for early detection to avoid virus propagation. However, the capabilities of these methods are limited and have various associated challenges. Consequently, many studies have been performed for COVID-19 automated detection without involving manual intervention and allowing an accurate and fast decision. As is the case with other diseases and medical issues, Artificial Intelligence (AI) provides the medical community with potential technical solutions that help doctors and radiologists diagnose based on chest images. In this paper, a comprehensive review of the mentioned AI-based detection solution proposals is conducted. More than 200 papers are reviewed and analyzed, and 145 articles have been extensively examined to specify the proposed AI mechanisms with chest medical images. A comprehensive examination of the associated advantages and shortcomings is illustrated and summarized. Several findings are concluded as a result of a deep analysis of all the previous works using machine learning for COVID-19 detection, segmentation, and classification.
Collapse
Affiliation(s)
- Bayan Alsaaidah
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Moh’d Rasoul Al-Hadidi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| | - Heba Al-Nsour
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Raja Masadeh
- Computer Science Department, The World Islamic Sciences and Education University, Amman 11947, Jordan
| | - Nael AlZubi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| |
Collapse
|
220
|
Uncertainty Estimation Using Variational Mixture of Gaussians Capsule Network for Health Image Classification. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4984490. [PMID: 36210972 PMCID: PMC9546641 DOI: 10.1155/2022/4984490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Capsule Networks have shown great promise in image recognition due to their ability to recognize the pose, texture, and deformation of objects and object parts. However, the majority of the existing capsule networks are deterministic with limited ability to express uncertainty. Many of them tend to be overconfident on out-of-distribution data, making them less trustworthy and hence reducing their suitability for practical adoption in safety-critical areas such as health and self-driving cars. In this work, we propose a capsule network based on a variational mixture of Gaussians to train distributions of network weights as opposed to a single set of weights and enable the model to express its predictive uncertainty on out-of-distribution data. Training distributions of weights have the added advantage of avoiding overfitting on smaller datasets which are common in health and other fields. Although Bayesian neural networks are known to exhibit slow training and convergence, experimental results show that the proposed model can retrieve only relevant features, converge faster, is less computationally complex, can effectively express its predictive uncertainties, and achieve performance values that are comparable to the state-of-the-art models. This is an indication that CapsNets can exhibit the transparency, credibility, reliability, and interpretability required for practical adoption.
Collapse
|
221
|
Barik AK, M SP, Lukose J, Upadhya R, Pai MV, Kartha VB, Chidangil S. In vivo spectroscopy: optical fiber probes for clinical applications. Expert Rev Med Devices 2022; 19:657-675. [PMID: 36175393 DOI: 10.1080/17434440.2022.2130046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fiber optic probe based in-vivo spectroscopy techniques are fast and highly objective methods for intraoperative diagnoses and minimally invasive surgical interventions for all procedures where endoscopic observations are carried out for cancers of different types. The Raman spectral features provide molecular fingerprint-type information and can reveal the subjects' pathological state in label-free manner, making endoscopy multiplexed fiber optic probe-based devices with the potential for translation from bench to bedside for routine applications. AREAS COVERED This review provides a general overview of different fiber-optic probes for in-vivo measurements with emphasis on Raman spectroscopy for biomedical application. Various aspects such as fiber-optic probe, radiation source, detector, and spectrometer for extracting optimum spectral features have also been discussed. EXPERT OPINION : Optical spectroscopy-based fiber probe systems with "Chip-on-Tip" technology, combined with machine learning, can in the near future, become a complimentary diagnostic tool to magnetic resonance imaging (MRI), computed tomography (CT) scan, ultrasound, etc. Hyperspectral imaging and fluorescence-based devices are in the advanced stage of technology readiness level (TRL), and with advances in lasers and miniature spectroscopy systems, probe-based Raman devices are also coming up.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education -576104, Manipal, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education -576104, Manipal, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education -576104, Manipal, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education -576104, Manipal, India
| | - Muralidhar V Pai
- Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education -576104, Manipal, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education -576104, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education -576104, Manipal, India
| |
Collapse
|
222
|
Koh SJT, Nafea M, Nugroho H. Towards edge devices implementation: deep learning model with visualization for COVID-19 prediction from chest X-ray. ADVANCES IN COMPUTATIONAL INTELLIGENCE 2022; 2:33. [PMID: 36187081 PMCID: PMC9516511 DOI: 10.1007/s43674-022-00044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 10/29/2022]
Abstract
Due to the outbreak of COVID-19 disease globally, countries around the world are facing shortages of resources (i.e. testing kits, medicine). A quick diagnosis of COVID-19 and isolating patients are crucial in curbing the pandemic, especially in rural areas. This is because the disease is highly contagious and can spread easily. To assist doctors, several studies have proposed an initial detection of COVID-19 cases using radiological images. In this paper, we propose an alternative method for analyzing chest X-ray images to provide an efficient and accurate diagnosis of COVID-19 which can run on edge devices. The approach acts as an enabler for the deep learning model to be deployed in practical application. Here, the convolutional neural network models which are fine-tuned to predict COVID-19 and pneumonia infection from chest X-ray images are developed by adopting transfer learning techniques. The developed model yielded an accuracy of 98.13%, sensitivity of 97.7%, and specificity of 99.1%. To highlight the important regions in the X-ray images which directs the model to its decision/prediction, we adopted the Gradient Class Activation Map (Grad-CAM). The generated heat maps from the Grad-CAM were then compared with the annotated X-ray images by board-certified radiologists. Results showed that the findings strongly correlate with clinical evidence. For practical deployment, we implemented the trained model in edge devices (NCS2) and this has achieved an improvement of 90% in inference speed compared to CPU. This shows that the developed model has the potential to be implemented on the edge, for example in primary care clinics and rural areas which are not well-equipped or do not have access to stable internet connections.
Collapse
Affiliation(s)
- Shaline Jia Thean Koh
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| | - Marwan Nafea
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| | - Hermawan Nugroho
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| |
Collapse
|
223
|
Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M, Yarman BSB. Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods. EXPERT SYSTEMS 2022; 40:e13141. [PMID: 36245832 PMCID: PMC9537791 DOI: 10.1111/exsy.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine-Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach.
Collapse
Affiliation(s)
- Nedim Muzoğlu
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ahmet Mesrur Halefoğlu
- Department of RadiologySisli Hamidiye Etfal Training and Research Hospital, Health Sciences UniversityIstanbulTurkey
| | - Muhammed Onur Avci
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Melike Kaya Karaaslan
- Department of Biomedical SciencesFaculty of Engineering, Kocaeli UniversityKocaeliTurkey
| | - Bekir Sıddık Binboğa Yarman
- Department of Electrical‐Electronics Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
224
|
Ahmed N, Tan X, Ma L. LW-CovidNet: Automatic covid-19 lung infection detection from chest X-ray images. IET IMAGE PROCESSING 2022; 17:IPR212637. [PMID: 36246853 PMCID: PMC9538131 DOI: 10.1049/ipr2.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus Disease 2019 (Covid-19) overtook the worldwide in early 2020, placing the world's health in threat. Automated lung infection detection using Chest X-ray images has a ton of potential for enhancing the traditional covid-19 treatment strategy. However, there are several challenges to detect infected regions from Chest X-ray images, including significant variance in infected features similar spatial characteristics, multi-scale variations in texture shapes and sizes of infected regions. Moreover, high parameters with transfer learning are also a constraints to deploy deep convolutional neural network(CNN) models in real time environment. A novel covid-19 lightweight CNN(LW-CovidNet) method is proposed to automatically detect covid-19 infected regions from Chest X-ray images to address these challenges. In our proposed hybrid method of integrating Standard and Depth-wise Separable convolutions are used to aggregate the high level features and also compensate the information loss by increasing the Receptive Field of the model. The detection boundaries of disease regions representations are then enhanced via an Edge-Attention method by applying heatmaps for accurate detection of disease regions. Extensive experiments indicate that the proposed LW-CovidNet surpasses most cutting-edge detection methods and also contributes to the advancement of state-of-the-art performance. It is envisaged that with reliable accuracy, this method can be introduced for clinical practices in the future.
Collapse
Affiliation(s)
- Noor Ahmed
- School of Electronic Information and Electrical EngineeringDepartment of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Tan
- School of Electronic Information and Electrical EngineeringDepartment of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Lizhuang Ma
- School of Electronic Information and Electrical EngineeringDepartment of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
225
|
Jangam E, Annavarapu CSR, Barreto AAD. A multi-class classification framework for disease screening and disease diagnosis of COVID-19 from chest X-ray images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14367-14401. [PMID: 36157353 PMCID: PMC9490695 DOI: 10.1007/s11042-022-13710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
To accurately diagnose multiple lung diseases from chest X-rays, the critical aspect is to identify lung diseases with high sensitivity and specificity. This study proposed a novel multi-class classification framework that minimises either false positives or false negatives that is useful in computer aided diagnosis or computer aided detection respectively. To minimise false positives or false negatives, we generated respective stacked ensemble from pre-trained models and fully connected layers using selection metric and systematic method. The diversity of base classifiers was based on diverse set of false positives or false negatives generated. The proposed multi-class framework was evaluated on two chest X-ray datasets, and the performance was compared with the existing models and base classifiers. Moreover, we used LIME (Local Interpretable Model-agnostic Explanations) to locate the regions focused by the multi-class classification framework.
Collapse
Affiliation(s)
- Ebenezer Jangam
- Department of Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, Andhra Pradesh India
- Department of Computer Science Engineering, Indian Institute of Technology(ISM), Dhanbad, Jharkhand India
| | | | | |
Collapse
|
226
|
Pramanik R, Dey S, Malakar S, Mirjalili S, Sarkar R. TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images. Sci Rep 2022; 12:15409. [PMID: 36104401 PMCID: PMC9471038 DOI: 10.1038/s41598-022-18463-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
The novel coronavirus (COVID-19), has undoubtedly imprinted our lives with its deadly impact. Early testing with isolation of the individual is the best possible way to curb the spread of this deadly virus. Computer aided diagnosis (CAD) provides an alternative and cheap option for screening of the said virus. In this paper, we propose a convolution neural network (CNN)-based CAD method for COVID-19 and pneumonia detection from chest X-ray images. We consider three input types for three identical base classifiers. To capture maximum possible complementary features, we consider the original RGB image, Red channel image and the original image stacked with Robert's edge information. After that we develop an ensemble strategy based on the technique for order preference by similarity to an ideal solution (TOPSIS) to aggregate the outcomes of base classifiers. The overall framework, called TOPCONet, is very light in comparison with standard CNN models in terms of the number of trainable parameters required. TOPCONet achieves state-of-the-art results when evaluated on the three publicly available datasets: (1) IEEE COVID-19 dataset + Kaggle Pneumonia Dataset, (2) Kaggle Radiography dataset and (3) COVIDx.
Collapse
|
227
|
Nomogram-Based Chronic Kidney Disease Prediction Model for Type 1 Diabetes Mellitus Patients Using Routine Pathological Data. J Pers Med 2022; 12:jpm12091507. [PMID: 36143293 PMCID: PMC9501949 DOI: 10.3390/jpm12091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection. This research utilized 1375 T1DM patients’ sixteen years of longitudinal data from multi-center Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials conducted at 28 sites in the USA and Canada and considered 17 routinely available features. Three feature ranking algorithms, extreme gradient boosting (XGB), random forest (RF), and extremely randomized trees classifier (ERT), were applied to create three feature ranking lists, and logistic regression analyses were performed to develop CKD prediction models using these ranked feature lists to identify the best performing top-ranked features combination. Finally, the most significant features were selected to develop a multivariate logistic regression-based CKD prediction model for T1DM patients. This model was evaluated using sensitivity, specificity, accuracy, precision, and F1 score on train and test data. A nomogram of the final model was further generated for easy application in clinical practices. Hypertension, duration of diabetes, drinking habit, triglycerides, ACE inhibitors, low-density lipoprotein (LDL) cholesterol, age, and smoking habit were the top-8 features ranked by the XGB model and identified as the most important features for predicting CKD in T1DM patients. These eight features were selected to develop the final prediction model using multivariate logistic regression, which showed 90.04% and 88.59% accuracy in internal and test data validation. The proposed model showed excellent performance and can be used for CKD identification in T1DM patients during routine checkups.
Collapse
|
228
|
Ukwuoma CC, Qin Z, Belal Bin Heyat M, Akhtar F, Bamisile O, Muad AY, Addo D, Al-Antari MA. A Hybrid Explainable Ensemble Transformer Encoder for Pneumonia Identification from Chest X-ray Images. J Adv Res 2022:S2090-1232(22)00202-8. [PMID: 36084812 DOI: 10.1016/j.jare.2022.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Pneumonia is a microorganism infection that causes chronic inflammation of the human lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature extraction approach is required for promising identification performance. OBJECTIVES A new hybrid explainable deep learning framework is proposed for accurate pneumonia disease identification using chest X-ray images. METHODS The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convolutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e., DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with multilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training process of the proposed deep learning models over all scenarios is performed for binary and multi-class classification tasks. RESULTS The proposed hybrid deep learning model recorded 99.21% classification performance in terms of overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and 97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy and F1-score. For the ensemble, multiclass identification scenario, ensemble A recorded 97.2% accuracy and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score. CONCLUSION The proposed hybrid deep learning framework could provide promising and encouraging explainable identification performance comparing with individual, ensemble models, or even the latest models in the literature. The code is available here: https://github.com/chiagoziemchima/Pneumonia_Identificaton.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; International Institute of Information Technology, Hyderabad, Telangana 500032, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, China
| | - Abdullah Y Muad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore, India
| | - Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
229
|
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics (Basel) 2022; 12:diagnostics12092132. [PMID: 36140533 PMCID: PMC9497601 DOI: 10.3390/diagnostics12092132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.
Collapse
|
230
|
Srivastava G, Chauhan A, Jangid M, Chaurasia S. CoviXNet: A novel and efficient deep learning model for detection of COVID-19 using chest X-Ray images. Biomed Signal Process Control 2022; 78:103848. [PMID: 35694696 PMCID: PMC9174225 DOI: 10.1016/j.bspc.2022.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
The Coronavirus (COVID-19) pandemic has created havoc on humanity by causing millions of deaths and adverse physical and mental health effects. To prepare humankind for the fast and efficient detection of the virus and its variants shortly, COVID-19 detection using Artificial Intelligence and Computer-Aided Diagnosis has been the subject of several studies. To detect COVID-19, there are numerous publicly accessible datasets of Chest X-rays that the researchers have combined to solve the problem of inadequate data. The cause for concern here is that in combining two or more datasets, some of the images might be duplicates, so a curated dataset has been used in this study, taken from an author’s paper. This dataset consists of 1281 COVID-19, 3270 Normal X-rays, and 1656 viral-pneumonia infected Chest X-ray images. Dataset has been pre-processed and divided carefully to ensure that there are no duplicate images. A comparative study on many traditional pre-trained models was performed, analyzing top-performing models. Fine-tuned InceptionV3, Modified EfficientNet B0&B1 produced an accuracy of 99.78% on binary classification, i.e., covid-19 infected and normal Chest X-ray image. ResNetV2 had a classification accuracy of 97.90% for 3-class classification i.e., covid-19 infected, normal, and pneumonia. Furthermore, a trailblazing custom CNN-based model, CoviXNet, has been proposed consisting of 15 layers that take efficiency into account. The proposed model CoviXNet exhibited a 10-fold accuracy of 99.47% on binary classification and 96.61% on 3-class. CoviXNet has shown phenomenal performance with exceptional accuracy and minimum computational cost. We anticipate that this comparative study, along with the proposed model CoviXNet, can assist medical centers with the efficient real-life detection of Coronavirus.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Aninditaa Chauhan
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Mahesh Jangid
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Sandeep Chaurasia
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| |
Collapse
|
231
|
Aslan M. CoviDetNet: A new COVID-19 diagnostic system based on deep features of chest x-ray. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:1447-1463. [PMID: 35935665 PMCID: PMC9347592 DOI: 10.1002/ima.22771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
COVID-19 has emerged as a global pandemic affecting the world, and its adverse effects on society still continue. So far, about 243.57 million people have been diagnosed with COVID-19, of which about 4.94 million have died. In this study, a new model, called COVIDetNet, is proposed for automated COVID-19 detection. A lightweight CNN architecture trained instead of the popular and pretrained convolution neural network (CNN) models such as VGG16, VGG19, AlexNet, ResNet50, ResNet100, and MobileNetV2 from scratch with chest x-ray (CXR) images was designed. A new feature set was created by concatenating the features of all layers of the designed CNN architecture. Then, the most efficient features chosen among the features concatenating with the Relief feature selection algorithm were classified using the support vector machine (SVM) method. The experimental works were carried out on a public COVID-19 CXR database. Experimental results demonstrated 99.24% accuracy, 99.60% specificity, 99.39% sensitivity, 99.04% precision, and an F1 score of 99.21%. Also, in comparison to AlexNet and VGG16 models, the deep feature extraction durations were reduced by approximately 6-fold and 38-fold, respectively. The COVIDetNet model provided a higher accuracy score than state-of-the-art models when compared to multi-class research studies. Overall, the proposed model will be beneficial for specialist medical staff to detect COVID-19 cases, as it provides faster and higher accuracy than existing CXR-based approaches.
Collapse
Affiliation(s)
- Muzaffer Aslan
- Electrical‐Electronics Engineering DepartmentBingol UniversityBingolTurkey
| |
Collapse
|
232
|
Yang J, Zhang L, Tang X, Han M. CodnNet: A lightweight CNN architecture for detection of COVID-19 infection. Appl Soft Comput 2022; 130:109656. [PMID: 36188336 PMCID: PMC9508701 DOI: 10.1016/j.asoc.2022.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
The application of Convolutional Neural Network (CNN) on the detection of COVID-19 infection has yielded favorable results. However, with excessive model parameters, the CNN detection of COVID-19 is low in recall, highly complex in computation. In this paper, a novel lightweight CNN model, CodnNet is proposed for quick detection of COVID-19 infection. CodnNet builds a more effective dense connections based on DenseNet network to make features highly reusable and enhances interactivity of local and global features. It also uses depthwise separable convolution with large convolution kernels instead of traditional convolution to improve the range of receptive field and enhances classification performance while reducing model complexity. The 5-Fold cross validation results on Kaggle’s COVID-19 Dataset showed that CodnNet has an average precision of 97.9%, recall of 97.4%, F1score of 97.7%, accuracy of 98.5%, mAP of 99.3%, and mAUC of 99.7%. Compared to the typical CNNs, CodnNet with fewer parameters and lower computational complexity has achieved better classification accuracy and generalization performance. Therefore, the CodnNet model provides a good reference for quick detection of COVID-19 infection.
Collapse
|
233
|
Aiadi O, Khaldi B. A fast lightweight network for the discrimination of COVID-19 and pulmonary diseases. Biomed Signal Process Control 2022; 78:103925. [PMID: 35755317 PMCID: PMC9212881 DOI: 10.1016/j.bspc.2022.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
With the outbreak of COVID-19 and the increasing number of infections worldwide, there has been a noticeable deficiency in healthcare provided by medical professionals. To cope with this situation, computational methods can be used in different steps of COVID-19 handling. The first step is to accurately and rapidly diagnose infected persons, because the time taken for the diagnosis is among the crucial factors to save human lives. This paper proposes a computationally fast network for the diagnosis of COVID-19 and pulmonary diseases, which can be used in telemedicine. The proposed network is called DLNet because it jointly encodes local binary patterns along with filter outputs of discrete cosine transform (DCT). The first layer in DLNet is the convolution layer in which the input image is convolved using DCT filters. Then, to avoid over-fitting, a binary hashing procedure is performed by fusing responses of different filters into a unique feature map. This map is used to generate block-wise histograms by binding local binary codes of the input image and the map values. We normalize these histograms to improve the robustness of the network against illumination changes. Experiments conducted on a public dataset demonstrate the rapidity and effectiveness of DLNet, where an average accuracy, sensitivity, and specificity of 98.86%, 98.06, and 99.24% have been achieved, respectively. Moreover, the proposed network has shown high tolerance to the missing parts in the medical image, which makes it suitable for the telemedicine scenario.
Collapse
Affiliation(s)
- Oussama Aiadi
- Artifcial Intelligence and Information Technology Laboratory (LINATI), Department of Computer Science and Information Technology, Faculty of Sciences and Technology, University of Kasdi Merbah, Ouargla 3000, Algeria
| | - Belal Khaldi
- Artifcial Intelligence and Information Technology Laboratory (LINATI), Department of Computer Science and Information Technology, Faculty of Sciences and Technology, University of Kasdi Merbah, Ouargla 3000, Algeria
| |
Collapse
|
234
|
Meedeniya D, Kumarasinghe H, Kolonne S, Fernando C, Díez IDLT, Marques G. Chest X-ray analysis empowered with deep learning: A systematic review. Appl Soft Comput 2022; 126:109319. [PMID: 36034154 PMCID: PMC9393235 DOI: 10.1016/j.asoc.2022.109319] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/16/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022]
Abstract
Chest radiographs are widely used in the medical domain and at present, chest X-radiation particularly plays an important role in the diagnosis of medical conditions such as pneumonia and COVID-19 disease. The recent developments of deep learning techniques led to a promising performance in medical image classification and prediction tasks. With the availability of chest X-ray datasets and emerging trends in data engineering techniques, there is a growth in recent related publications. Recently, there have been only a few survey papers that addressed chest X-ray classification using deep learning techniques. However, they lack the analysis of the trends of recent studies. This systematic review paper explores and provides a comprehensive analysis of the related studies that have used deep learning techniques to analyze chest X-ray images. We present the state-of-the-art deep learning based pneumonia and COVID-19 detection solutions, trends in recent studies, publicly available datasets, guidance to follow a deep learning process, challenges and potential future research directions in this domain. The discoveries and the conclusions of the reviewed work have been organized in a way that researchers and developers working in the same domain can use this work to support them in taking decisions on their research.
Collapse
|
235
|
Shah A, Shah M. Advancement of deep learning in pneumonia/Covid-19 classification and localization: A systematic review with qualitative and quantitative analysis. Chronic Dis Transl Med 2022; 8:154-171. [PMID: 35572951 PMCID: PMC9086991 DOI: 10.1002/cdt3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Around 450 million people are affected by pneumonia every year, which results in 2.5 million deaths. Coronavirus disease 2019 (Covid-19) has also affected 181 million people, which led to 3.92 million casualties. The chances of death in both of these diseases can be significantly reduced if they are diagnosed early. However, the current methods of diagnosing pneumonia (complaints + chest X-ray) and Covid-19 (real-time polymerase chain reaction) require the presence of expert radiologists and time, respectively. With the help of deep learning models, pneumonia and Covid-19 can be detected instantly from chest X-rays or computerized tomography (CT) scans. The process of diagnosing pneumonia/Covid-19 can become faster and more widespread. In this paper, we aimed to elicit, explain, and evaluate qualitatively and quantitatively all advancements in deep learning methods aimed at detecting community-acquired pneumonia, viral pneumonia, and Covid-19 from images of chest X-rays and CT scans. Being a systematic review, the focus of this paper lies in explaining various deep learning model architectures, which have either been modified or created from scratch for the task at hand. For each model, this paper answers the question of why the model is designed the way it is, the challenges that a particular model overcomes, and the tradeoffs that come with modifying a model to the required specifications. A grouped quantitative analysis of all models described in the paper is also provided to quantify the effectiveness of different models with a similar goal. Some tradeoffs cannot be quantified and, hence, they are mentioned explicitly in the qualitative analysis, which is done throughout the paper. By compiling and analyzing a large quantum of research details in one place with all the data sets, model architectures, and results, we aimed to provide a one-stop solution to beginners and current researchers interested in this field.
Collapse
Affiliation(s)
- Aakash Shah
- Department of Computer Science & Engineering, Institute of TechnologyNirma UniversityAhmedabadIndia
| | - Manan Shah
- Department of Chemical Engineering, School of TechnologyPandit Deendayal Energy UniversityGandhinagarIndia
| |
Collapse
|
236
|
A Novel Method for COVID-19 Detection Based on DCNNs and Hierarchical Structure. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2484435. [PMID: 36092785 PMCID: PMC9453086 DOI: 10.1155/2022/2484435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly infectiousness, it is urgent to early screening of suspected cases quickly and accurately. Chest X-ray medical image, as a diagnostic basis for COVID-19, arouses attention from medical engineering. However, due to small lesion difference and lack of training data, the accuracy of detection model is insufficient. In this work, a transfer learning strategy is introduced to hierarchical structure to enhance high-level features of deep convolutional neural networks. The proposed framework consisting of asymmetric pretrained DCNNs with attention networks integrates various information into a wider architecture to learn more discriminative and complementary features. Furthermore, a novel cross-entropy loss function with a penalty term weakens misclassification. Extensive experiments are implemented on the COVID-19 dataset. Compared with the state-of-the-arts, the effectiveness and high performance of the proposed method are demonstrated.
Collapse
|
237
|
Smadi AA, Abugabah A, Al-Smadi AM, Almotairi S. SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101059. [PMID: 36033909 PMCID: PMC9398554 DOI: 10.1016/j.imu.2022.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for diagnosing COVID-19. All researchers focus their efforts on developing viable methods and rapid treatment procedures for this pandemic. Fast and accurate automated detection approaches have been devised to alleviate the need for medical professionals. Deep Learning (DL) technologies have successfully recognized COVID-19 situations. This paper proposes a developed set of nine deep learning models for diagnosing COVID-19 based on transfer learning and implementation in a novel architecture (SEL-COVIDNET). We include a global average pooling layer, flattening, and two dense layers that are fully connected. The model’s effectiveness is evaluated using balanced and unbalanced COVID-19 radiography datasets. After that, our model’s performance is analyzed using six evaluation measures: accuracy, sensitivity, specificity, precision, F1-score, and Matthew’s correlation coefficient (MCC). Experiments demonstrated that the proposed SEL-COVIDNET with tuned DenseNet121, InceptionResNetV2, and MobileNetV3Large models outperformed the results of comparative SOTA for multi-class classification (COVID-19 vs. No-finding vs. Pneumonia) in terms of accuracy (98.52%), specificity (98.5%), sensitivity (98.5%), precision (98.7%), F1-score (98.7%), and MCC (97.5%). For the COVID-19 vs. No-finding classification, our method had an accuracy of 99.77%, a specificity of 99.85%, a sensitivity of 99.85%, a precision of 99.55%, an F1-score of 99.7%, and an MCC of 99.4%. The proposed model offers an accurate approach for detecting COVID-19 patients, which aids in the containment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Al Smadi
- School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xian, 710071, China.,College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahed Abugabah
- College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahmad Mohammad Al-Smadi
- Department of Computer Science, Al-Balqa Applied University, Ajloun University College, Jordan
| | - Sultan Almotairi
- Faculty of Community College, Majmaah University, Al Majma'ah, Saudi Arabia
| |
Collapse
|
238
|
A COVID-19 Auxiliary Diagnosis Based on Federated Learning and Blockchain. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7078764. [PMID: 36060649 PMCID: PMC9433240 DOI: 10.1155/2022/7078764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Due to the high transmission rate and high pathogenicity of the novel coronavirus (COVID-19), there is an urgent need for the diagnosis and treatment of outbreaks around the world. In order to diagnose quickly and accurately, an auxiliary diagnosis method is proposed for COVID-19 based on federated learning and blockchain, which can quickly and effectively enable collaborative model training among multiple medical institutions. It is beneficial to address data sharing difficulties and issues of privacy and security. This research mainly includes the following sectors: in order to address insufficient medical data and the data silos, this paper applies federated learning to COVID-19’s medical diagnosis to achieve the transformation and refinement of big data values. With regard to third-party dependence, blockchain technology is introduced to protect sensitive information and safeguard the data rights of medical institutions. To ensure the model’s validity and applicability, this paper simulates realistic situations based on a real COVID-19 dataset and analyses problems such as model iteration delays. Experimental results demonstrate that this method achieves a multiparty participation in training and a better data protection and would help medical personnel diagnose coronavirus disease more effectively.
Collapse
|
239
|
Bodapati JD, Rohith VN, Dondeti V. Ensemble of deep capsule neural networks: an application to pediatric pneumonia prediction. Phys Eng Sci Med 2022; 45:949-959. [PMID: 35997924 DOI: 10.1007/s13246-022-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Pneumonia disease accounts for 15% of all deaths in children under the age of five and early detection of the disease significantly improves survival chances. In this work, we introduce a novel deep neural network model for evaluating pediatric pneumonia from chest radio-graph images. The proposed network is an ensemble of multiple candidate networks, each with interleaved convolutional and capsule layers. Individual networks are stitched together with dense layers and trained as a single model to minimize joint loss. The proposed approach is validated through extensive experimentation on the benchmark pneumonia dataset, and the results demonstrate that the model captures higher level abstractions as well as hidden low-level features from the input radio-graphic images. Our comparison studies reveal that the proposed model produces more generic predictions than existing approaches, with an accuracy of 94.84%. The proposed model produces better scores than the existing models and is extremely useful in assisting clinicians in pneumonia diagnosis.
Collapse
Affiliation(s)
- Jyostna Devi Bodapati
- Department of Computer Science and Engineering, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India.
| | - V N Rohith
- Department of Computer Science and Engineering, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Venkatesulu Dondeti
- Department of Computer Science and Engineering, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| |
Collapse
|
240
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
241
|
Alarcão SM, Mendonça V, Maruta C, Fonseca MJ. ExpertosLF: dynamic late fusion of CBIR systems using online learning with relevance feedback. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:11619-11661. [PMID: 36035324 PMCID: PMC9391217 DOI: 10.1007/s11042-022-13119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/11/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
One of the main challenges in CBIR systems is to choose discriminative and compact features, among dozens, to represent the images under comparison. Over the years, a great effort has been made to combine multiple features, mainly using early, late, and hierarchical fusion techniques. Unveiling the perfect combination of features is highly domain-specific and dependent on the type of image. Thus, the process of designing a CBIR system for new datasets or domains involves a huge experimentation overhead, leading to multiple fine-tuned CBIR systems. It would be desirable to dynamically find the best combination of CBIR systems without needing to go through such extensive experimentation and without requiring previous domain knowledge. In this paper, we propose ExpertosLF, a model-agnostic interpretable late fusion technique based on online learning with expert advice, which dynamically combines CBIR systems without knowing a priori which ones are the best for a given domain. At each query, ExpertosLF takes advantage of user's feedback to determine each CBIR contribution in the ensemble for the following queries. ExpertosLF produces an interpretable ensemble that is independent of the dataset and domain. Moreover, ExpertosLF is designed to be modular, and scalable. Experiments on 13 benchmark datasets from the Biomedical, Real, and Sketch domains revealed that: (i) ExpertosLF surpasses the performance of state of the art late-fusion techniques; (ii) it successfully and quickly converges to the performance of the best CBIR sets across domains without any previous domain knowledge (in most cases, fewer than 25 queries need to receive human feedback).
Collapse
Affiliation(s)
- Soraia M. Alarcão
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Mendonça
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Maruta
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Manuel J. Fonseca
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
242
|
Mahaboob Basha S, Lira Neto AV, Alshathri S, Elaziz MA, Hashmitha Mohisin S, De Albuquerque VHC. Multithreshold Segmentation and Machine Learning Based Approach to Differentiate COVID-19 from Viral Pneumonia. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2728866. [PMID: 36039344 PMCID: PMC9420061 DOI: 10.1155/2022/2728866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.
Collapse
Affiliation(s)
- Shaik Mahaboob Basha
- Department of Electronics and Communication Engineering, Geethanjali Institute of Science and Technology, Nellore, India
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Aloísio Vieira Lira Neto
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Samah Alshathri
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abd Elaziz
- Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
| | - Shaik Hashmitha Mohisin
- Department of Electrical and Electronics Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | | |
Collapse
|
243
|
Cai G, Wei X, Li Y. Privacy‐preserving CNN feature extraction and retrieval over medical images. INT J INTELL SYST 2022. [DOI: 10.1002/int.22991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guopeng Cai
- Department of Cyberspace Security School of Information Science and Engineering Shandong Normal University Jinan China
| | - Xiaochao Wei
- Department of Cyberspace Security School of Information Science and Engineering Shandong Normal University Jinan China
| | - Yao Li
- Department of Cyberspace Security School of Information Science and Engineering Shandong Normal University Jinan China
| |
Collapse
|
244
|
Deep Learning-Aided Automated Pneumonia Detection and Classification Using CXR Scans. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7474304. [PMID: 35936981 PMCID: PMC9351538 DOI: 10.1155/2022/7474304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has caused a worldwide catastrophe and widespread devastation that reeled almost all countries. The pandemic has mounted pressure on the existing healthcare system and caused panic and desperation. The gold testing standard for COVID-19 detection, reverse transcription-polymerase chain reaction (RT-PCR), has shown its limitations with 70% accuracy, contributing to the incorrect diagnosis that exaggerated the complexities and increased the fatalities. The new variations further pose unseen challenges in terms of their diagnosis and subsequent treatment. The COVID-19 virus heavily impacts the lungs and fills the air sacs with fluid causing pneumonia. Thus, chest X-ray inspection is a viable option if the inspection detects COVID-19-induced pneumonia, hence confirming the exposure of COVID-19. Artificial intelligence and machine learning techniques are capable of examining chest X-rays in order to detect patterns that can confirm the presence of COVID-19-induced pneumonia. This research used CNN and deep learning techniques to detect COVID-19-induced pneumonia from chest X-rays. Transfer learning with fine-tuning ensures that the proposed work successfully classifies COVID-19-induced pneumonia, regular pneumonia, and normal conditions. Xception, Visual Geometry Group 16, and Visual Geometry Group 19 are used to realize transfer learning. The experimental results were promising in terms of precision, recall, F1 score, specificity, false omission rate, false negative rate, false positive rate, and false discovery rate with a COVID-19-induced pneumonia detection accuracy of 98%. Experimental results also revealed that the proposed work has not only correctly identified COVID-19 exposure but also made a distinction between COVID-19-induced pneumonia and regular pneumonia, as the latter is a very common disease, while COVID-19 is more lethal. These results mitigated the concern and overlap in the diagnosis of COVID-19-induced pneumonia and regular pneumonia. With further integrations, it can be employed as a potential standard model in differentiating the various lung-related infections, including COVID-19.
Collapse
|
245
|
Laddha S, Mnasri S, Alghamdi M, Kumar V, Kaur M, Alrashidi M, Almuhaimeed A, Alshehri A, Alrowaily MA, Alkhazi I. COVID-19 Diagnosis and Classification Using Radiological Imaging and Deep Learning Techniques: A Comparative Study. Diagnostics (Basel) 2022; 12:1880. [PMID: 36010231 PMCID: PMC9406661 DOI: 10.3390/diagnostics12081880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
In December 2019, the novel coronavirus disease 2019 (COVID-19) appeared. Being highly contagious and with no effective treatment available, the only solution was to detect and isolate infected patients to further break the chain of infection. The shortage of test kits and other drawbacks of lab tests motivated researchers to build an automated diagnosis system using chest X-rays and CT scanning. The reviewed works in this study use AI coupled with the radiological image processing of raw chest X-rays and CT images to train various CNN models. They use transfer learning and numerous types of binary and multi-class classifications. The models are trained and validated on several datasets, the attributes of which are also discussed. The obtained results of various algorithms are later compared using performance metrics such as accuracy, F1 score, and AUC. Major challenges faced in this research domain are the limited availability of COVID image data and the high accuracy of the prediction of the severity of patients using deep learning compared to well-known methods of COVID-19 detection such as PCR tests. These automated detection systems using CXR technology are reliable enough to help radiologists in the initial screening and in the immediate diagnosis of infected individuals. They are preferred because of their low cost, availability, and fast results.
Collapse
Affiliation(s)
- Saloni Laddha
- Computer Science and Engineering Department, National Institute of Technology Hamirpur, Hamirpur 177005, Himachal Pradesh, India; (S.L.); (V.K.)
| | - Sami Mnasri
- Department of Computer Science, Applied College, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.A.); (M.A.); (A.A.); (M.A.A.)
- Department of Computer Science, ISSAT of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Mansoor Alghamdi
- Department of Computer Science, Applied College, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.A.); (M.A.); (A.A.); (M.A.A.)
| | - Vijay Kumar
- Computer Science and Engineering Department, National Institute of Technology Hamirpur, Hamirpur 177005, Himachal Pradesh, India; (S.L.); (V.K.)
| | - Manjit Kaur
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Malek Alrashidi
- Department of Computer Science, Applied College, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.A.); (M.A.); (A.A.); (M.A.A.)
| | - Abdullah Almuhaimeed
- The National Centre for Genomics Technologies and Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ali Alshehri
- Department of Computer Science, Applied College, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.A.); (M.A.); (A.A.); (M.A.A.)
| | - Majed Abdullah Alrowaily
- Department of Computer Science, Applied College, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.A.); (M.A.); (A.A.); (M.A.A.)
| | - Ibrahim Alkhazi
- College of Computers & Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia;
| |
Collapse
|
246
|
Fang L, Wang X. COVID-RDNet: A novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images. Biocybern Biomed Eng 2022; 42:977-994. [PMID: 35945982 PMCID: PMC9353669 DOI: 10.1016/j.bbe.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/31/2022] [Indexed: 12/23/2022]
Abstract
Corona virus disease 2019 (COVID-19) testing relies on traditional screening methods, which require a lot of manpower and material resources. Recently, to effectively reduce the damage caused by radiation and enhance effectiveness, deep learning of classifying COVID-19 negative and positive using the mixed dataset by CT and X-rays images have achieved remarkable research results. However, the details presented on CT and X-ray images have pathological diversity and similarity features, thus increasing the difficulty for physicians to judge specific cases. On this basis, this paper proposes a novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images. To solve the problem of feature similarity between lung diseases and COVID-19, the extracted features are enhanced by an adaptive region enhancement algorithm. Besides, the depth network based on the residual blocks and the dense blocks is trained and tested. On the one hand, the residual blocks effectively improve the accuracy of the model and the non-linear COVID-19 features are obtained by cross-layer link. On the other hand, the dense blocks effectively improve the robustness of the model by connecting local and abstract information. On mixed X-ray and CT datasets, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under curve (AUC), and accuracy can all reach 0.99. On the basis of respecting patient privacy and ethics, the proposed algorithm using the mixed dataset from real cases can effectively assist doctors in performing the accurate COVID-19 negative and positive classification to determine the infection status of patients.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China
| | - Xin Wang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China
| |
Collapse
|
247
|
Xu M, Zhang T, Zhang D. MedRDF: A Robust and Retrain-Less Diagnostic Framework for Medical Pretrained Models Against Adversarial Attack. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2130-2143. [PMID: 35235504 DOI: 10.1109/tmi.2022.3156268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep neural networks are discovered to be non-robust when attacked by imperceptible adversarial examples, which is dangerous for it applied into medical diagnostic system that requires high reliability. However, the defense methods that have good effect in natural images may not be suitable for medical diagnostic tasks. The pre-processing methods (e.g., random resizing, compression) may lead to the loss of the small lesions feature in the medical image. Retraining the network on the augmented data set is also not practical for medical models that have already been deployed online. Accordingly, it is necessary to design an easy-to-deploy and effective defense framework for medical diagnostic tasks. In this paper, we propose a Robust and Retrain-Less Diagnostic Framework for Medical pretrained models against adversarial attack (i.e., MedRDF). It acts on the inference time of the pretrained medical model. Specifically, for each test image, MedRDF firstly creates a large number of noisy copies of it, and obtains the output labels of these copies from the pretrained medical diagnostic model. Then, based on the labels of these copies, MedRDF outputs the final robust diagnostic result by majority voting. In addition to the diagnostic result, MedRDF produces the Robust Metric (RM) as the confidence of the result. Therefore, it is convenient and reliable to utilize MedRDF to convert pretrained non-robust diagnostic models into robust ones. The experimental results on COVID-19 and DermaMNIST datasets verify the effectiveness of our MedRDF in improving the robustness of medical diagnostic models.
Collapse
|
248
|
Zhang H, Liang W, Li C, Xiong Q, Shi H, Hu L, Li G. DCML: Deep contrastive mutual learning for COVID-19 recognition. Biomed Signal Process Control 2022; 77:103770. [PMID: 35530170 PMCID: PMC9058053 DOI: 10.1016/j.bspc.2022.103770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023]
Abstract
COVID-19 is a form of disease triggered by a new strain of coronavirus. Automatic COVID-19 recognition using computer-aided methods is beneficial for speeding up diagnosis efficiency. Current researches usually focus on a deeper or wider neural network for COVID-19 recognition. And the implicit contrastive relationship between different samples has not been fully explored. To address these problems, we propose a novel model, called deep contrastive mutual learning (DCML), to diagnose COVID-19 more effectively. A multi-way data augmentation strategy based on Fast AutoAugment (FAA) was employed to enrich the original training dataset, which helps reduce the risk of overfitting. Then, we incorporated the popular contrastive learning idea into the conventional deep mutual learning (DML) framework to mine the relationship between diverse samples and created more discriminative image features through a new adaptive model fusion method. Experimental results on three public datasets demonstrate that the DCML model outperforms other state-of-the-art baselines. More importantly, DCML is easier to reproduce and relatively efficient, strengthening its high practicality.
Collapse
Affiliation(s)
- Hongbin Zhang
- School of Software, East China Jiaotong University, China
| | - Weinan Liang
- School of Software, East China Jiaotong University, China
| | - Chuanxiu Li
- School of Information Engineering, East China Jiaotong University, China
| | - Qipeng Xiong
- School of Software, East China Jiaotong University, China
| | - Haowei Shi
- School of Software, East China Jiaotong University, China
| | - Lang Hu
- School of Software, East China Jiaotong University, China
| | - Guangli Li
- School of Information Engineering, East China Jiaotong University, China
| |
Collapse
|
249
|
Handling class imbalance in COVID-19 chest X-ray images classification: Using SMOTE and weighted loss. Appl Soft Comput 2022; 129:109588. [PMID: 36061418 PMCID: PMC9422401 DOI: 10.1016/j.asoc.2022.109588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
250
|
Gomes R, Kamrowski C, Langlois J, Rozario P, Dircks I, Grottodden K, Martinez M, Tee WZ, Sargeant K, LaFleur C, Haley M. A Comprehensive Review of Machine Learning Used to Combat COVID-19. Diagnostics (Basel) 2022; 12:1853. [PMID: 36010204 PMCID: PMC9406981 DOI: 10.3390/diagnostics12081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Papia Rozario
- Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA;
| | - Ian Dircks
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Keegan Grottodden
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Matthew Martinez
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Wei Zhong Tee
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Kyle Sargeant
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Corbin LaFleur
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Mitchell Haley
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| |
Collapse
|