201
|
Hyun D, Trahey GE, Jakovljevic M, Dahl JJ. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1101-12. [PMID: 24960700 PMCID: PMC4235772 DOI: 10.1109/tuffc.2014.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 x 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 x 8, 4 x 4, and 2 x 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming.
Collapse
Affiliation(s)
- Dongwoon Hyun
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Gregg E. Trahey
- Department of Biomedical Engineering, Duke University, Durham, NC
- Department of Radiology, Duke University Medical Center, Durham, NC
| | | | - Jeremy J. Dahl
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
202
|
Papadacci C, Tanter M, Pernot M, Fink M. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:986-96. [PMID: 24859662 PMCID: PMC4820601 DOI: 10.1109/tuffc.2014.2994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.
Collapse
|
203
|
Eyerly SA, Bahnson TD, Koontz JI, Bradway DP, Dumont DM, Trahey GE, Wolf PD. Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions. ULTRASONIC IMAGING 2014; 36:133-48. [PMID: 24554293 PMCID: PMC4049337 DOI: 10.1177/0161734613519602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).
Collapse
Affiliation(s)
| | - Tristram D. Bahnson
- Duke Center for Atrial Fibrillation, Duke Heart Center, and Clinical Cardiac Electrophysiology Section of the Division of Cardiovascular Medicine, Duke University, Durham, NC, USA
| | - Jason I. Koontz
- Duke Center for Atrial Fibrillation, Duke Heart Center, and Clinical Cardiac Electrophysiology Section of the Division of Cardiovascular Medicine, Duke University, Durham, NC, USA
| | - David P. Bradway
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Douglas M. Dumont
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Gregg E. Trahey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Patrick D. Wolf
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
204
|
Dahl JJ, Sheth NM. Reverberation clutter from subcutaneous tissue layers: simulation and in vivo demonstrations. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:714-26. [PMID: 24530261 PMCID: PMC3942094 DOI: 10.1016/j.ultrasmedbio.2013.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/25/2013] [Accepted: 11/29/2013] [Indexed: 05/05/2023]
Abstract
The degradation of ultrasonic image quality is typically attributed to aberration and reverberation. Although the sources and impact of aberration are well understood, very little is known about the source and impact of image degradation caused by reverberation. Reverberation is typically associated with multiple reflections at two interfaces along the same propagation path, as with the arterial wall or a metal sphere. However, the reverberation that results in image degradation includes more complex interaction between the propagating wave and the tissue. Simulations of wave propagation in realistic and simplified models of the abdominal wall are used to illustrate the characteristics of coherent and diffuse clutter generated by reverberation. In the realistic models, diffuse reverberation clutter is divided into that originating from the tissue interfaces and that originating from sub-resolution diffuse scatterers. In the simplified models, the magnitude of the reverberation clutter is observed as angle and density of the connective tissue are altered. The results suggest that multi-path scattering from the connective tissue/fat interfaces is a dominant component of reverberation clutter. Diffuse reverberation clutter is maximal when the connective tissue is near normal to the beam direction and increases with the density of connective tissue layers at these large angles. The presence of a thick fascial or fibrous layer at the distal boundary of the abdominal wall magnifies the amount of reverberation clutter. The simulations also illustrate that compression of the abdominal layer, a technique often used to mitigate clutter in overweight and obese patients, increases the decay of reverberation clutter with depth. In addition, rotation of the transducer or steering of the beam with respect to highly reflecting boundaries can reduce coherent clutter and transform it to diffuse clutter, which can be further reduced using coherence-based beamforming techniques. In vivo images of the human bladder illustrate some of the reverberation effects observed in simulation.
Collapse
Affiliation(s)
- Jeremy J Dahl
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Niral M Sheth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
205
|
Byram B, Jakovljevic M. Ultrasonic multipath and beamforming clutter reduction: a chirp model approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:428-40. [PMID: 24569248 PMCID: PMC4090329 DOI: 10.1109/tuffc.2014.2928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vivo ultrasonic imaging with transducer arrays suffers from image degradation resulting from beamforming limitations, including diffraction-limited beamforming and beamforming degradation caused by tissue inhomogeneity. Additionally, based on recent studies, multipath scattering also causes significant image degradation. To reduce degradation from both sources, we propose a model-based signal decomposition scheme. The proposed algorithm identifies spatial frequency signatures to decompose received wavefronts into their most significant scattering sources. Scattering sources originating from a region of interest are used to reconstruct decluttered wavefronts, which are beamformed into decluttered RF scan lines or A-lines. To test the algorithm, ultrasound system channel data were acquired during liver scans from 8 patients. Multiple data sets were acquired from each patient, with 55 total data sets, 43 of which had identifiable hypoechoic regions on normal B-mode images. The data sets with identifiable hypoechoic regions were analyzed. The results show the decluttered B-mode images have an average improvement in contrast over normal images of 7.3 ± 4.6 dB. The contrast-to-noise ratio (CNR) changed little on average between normal and decluttered Bmode, -0.4 ± 5.9 dB. The in vivo speckle SNR decreased; the change was -0.65 ± 0.28. Phantom speckle SNR also decreased, but only by -0.40 ± 0.03.
Collapse
Affiliation(s)
- Brett Byram
- department of Biomedical Engineering at Vanderbilt University, Nashville, TN, USA
| | - Marko Jakovljevic
- Duke University’s department of Biomedical Engineering, Durham, NC, USA
| |
Collapse
|
206
|
Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. SCIENTIFICA 2014; 2014:579684. [PMID: 24991447 PMCID: PMC4058811 DOI: 10.1155/2014/579684] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/02/2014] [Indexed: 05/12/2023]
Abstract
Over the past two decades, perfluorocarbon (PFC) droplets have been investigated for biomedical applications across a wide range of imaging modalities. More recently, interest has increased in "phase-change" PFC droplets (or "phase-change" contrast agents), which can convert from liquid to gas with an external energy input. In the field of ultrasound, phase-change droplets present an attractive alternative to traditional microbubble agents for many diagnostic and therapeutic applications. Despite the progress, phase-change PFC droplets remain far from clinical implementation due to a number of challenges. In this review, we survey our recent work to enhance the performance of phase-change agents for ultrasound through a variety of techniques in order to provide increased efficacy in therapeutic applications of ultrasound and enable previously unexplored applications in diagnostic and molecular imaging.
Collapse
Affiliation(s)
- Paul S. Sheeran
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
- *Paul A. Dayton:
| |
Collapse
|
207
|
Xu M, Yang X, Ding M, Yuchi M. Spatio-temporally smoothed coherence factor for ultrasound imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:182-190. [PMID: 24402905 DOI: 10.1109/tuffc.2014.6689786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coherence-factor-like beamforming methods, such as the coherence factor (CF), the phase coherence factor (PCF), or the sign coherence factor (SCF), have been applied to suppress side and/or grating lobes and clutter in ultrasound imaging. These adaptive weighting factors can be implemented effectively with low computational complexity to improve image contrast properties. However, because of low SNR, the resulting images may suffer from deficiencies, including reduced overall image brightness, increased speckle variance, black-region artifacts surrounding hyperechoic objects, and underestimated magnitudes of point targets. To overcome these artifacts, a new spatio-temporal smoothing procedure is introduced to the CF method. It results in a smoothed coherence factor which measures the signal coherence among the beamsums of the divided subarrays over the duration of a transmit pulse. In addition, the procedure is extended to the SCF using the sign bits of the received signals. Simulated and real experimental data sets demonstrate that the proposed methods can improve the robustness of the CF and SCF with reduced speckle variance and significant removal of black-region artifacts, while preserving the ability to suppress clutter. Consequently, image contrast can be enhanced, especially for anechoic cysts.
Collapse
|
208
|
Sheeran PS, Matsunaga TO, Dayton PA. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures. Phys Med Biol 2013; 59:379-401. [PMID: 24351961 DOI: 10.1088/0031-9155/59/2/379] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an 'activate high' (8 MHz, 2 cycles), 'listen low' (1 MHz) scheme. Results show that the magnitude of the acoustic 'signature' increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques.
Collapse
Affiliation(s)
- Paul S Sheeran
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
209
|
Lediju Bell MA, Goswami R, Kisslo JA, Dahl JJ, Trahey GE. Short-lag spatial coherence imaging of cardiac ultrasound data: initial clinical results. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1861-74. [PMID: 23932276 PMCID: PMC3966558 DOI: 10.1016/j.ultrasmedbio.2013.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/17/2013] [Accepted: 03/27/2013] [Indexed: 05/05/2023]
Abstract
Short-lag spatial coherence (SLSC) imaging is a novel beamforming technique that reduces acoustic clutter in ultrasound images. A clinical study was conducted to investigate clutter reduction and endocardial border detection in cardiac SLSC images. Individual channel echo data were acquired from the left ventricle of 14 volunteers, after informed consent and institutional review board approval. Paired B-mode and SLSC images were created from these data. Contrast, contrast-to-noise, and signal-to-noise ratios were measured in paired images, and these metrics were improved with SLSC imaging in most cases. Three cardiology fellows rated the visibility of endocardial segments in randomly ordered B-mode and SLSC cine loops. SLSC imaging offered 22%-33% improvement (p < 0.05) in endocardial border visibility when B-mode image quality was poor (i.e., 80% or more of the endocardial segments could not be visualized by the three reviewers). The percentage of volunteers with poor-quality images was decreased from 21% to 7% with the SLSC beamformer. Results suggest that SLSC imaging has the potential to improve clinical cardiac assessments that are challenged by clutter.
Collapse
|
210
|
Rau JM, Måsøy SE, Hansen R, Angelsen B, Tangen TA. Methods for reverberation suppression utilizing dual frequency band imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2313-2325. [PMID: 23967962 DOI: 10.1121/1.4817900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Reverberations impair the contrast resolution of diagnostic ultrasound images. Tissue harmonic imaging is a common method to reduce these artifacts, but does not remove all reverberations. Dual frequency band imaging (DBI), utilizing a low frequency pulse which manipulates propagation of the high frequency imaging pulse, has been proposed earlier for reverberation suppression. This article adds two different methods for reverberation suppression with DBI: the delay corrected subtraction (DCS) and the first order content weighting (FOCW) method. Both methods utilize the propagation delay of the imaging pulse of two transmissions with alternating manipulation pressure to extract information about its depth of first scattering. FOCW further utilizes this information to estimate the content of first order scattering in the received signal. Initial evaluation is presented where both methods are applied to simulated and in vivo data. Both methods yield visual and measurable substantial improvement in image contrast. Comparing DCS with FOCW, DCS produces sharper images and retains more details while FOCW achieves best suppression levels and, thus, highest image contrast. The measured improvement in contrast ranges from 8 to 27 dB for DCS and from 4 dB up to the dynamic range for FOCW.
Collapse
Affiliation(s)
- Jochen M Rau
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
211
|
Bottenus N, Byram BC, Dahl JJ, Trahey GE. Synthetic aperture focusing for short-lag spatial coherence imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1816-26. [PMID: 24658715 PMCID: PMC3968796 DOI: 10.1109/tuffc.2013.2768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been demonstrated that short-lag spatial coherence (SLSC) ultrasound imaging can provide improved speckle SNR and lesion CNR compared with conventional Bmode images, especially in the presence of noise and clutter. Application of the van Cittert-Zernike theorem predicts that coherence among the ultrasound echoes received across an array is reduced significantly away from the transmit focal depth, leading to a limited axial depth of field in SLSC images. Transmit focus throughout the field of view can be achieved using synthetic aperture methods to combine multiple transmit events into a single final image. A synthetic aperture can be formed with either focused or diverging transmit beams. We explore the application of these methods to form synthetically focused channel data to create SLSC images with an extended axial depth of field. An analytical expression of SLSC image brightness through depth is derived for the dynamic receive focus case. Experimental results in a phantom and in vivo are presented and compared with dynamic receive focused SLSC images, demonstrating improved SNR and CNR away from the transmit focus and an axial depth of field four to five times longer.
Collapse
|
212
|
Jakovljevic M, Trahey GE, Nelson RC, Dahl JJ. In vivo application of short-lag spatial coherence imaging in human liver. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:534-42. [PMID: 23347642 PMCID: PMC3638043 DOI: 10.1016/j.ultrasmedbio.2012.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 05/05/2023]
Abstract
We present the results of a patient study conducted to assess the performance of two novel imaging methods, namely short-lag spatial coherence (SLSC) and harmonic spatial coherence imaging (HSCI), in an in vivo liver environment. Similar in appearance to the B-mode images, SLSC and HSCI images are based solely on the spatial coherence of fundamental and harmonic echo data, respectively, and do not depend on the echo magnitude. SLSC and HSCI suppress incoherent echo signals and thus tend to reduce clutter. The SLSC and HSCI images of 17 patients demonstrated sharper delineation of blood vessel walls, suppressed clutter inside the vessel lumen, and showed reduced speckle in surrounding tissue compared to matched B-modes. Target contrast and contrast-to-noise ratio (CNR) show statistically significant improvements between fundamental B-mode and SLSC imaging and between harmonic B-mode and HSCI imaging (in all cases p < 0.001). The magnitude of improvement in contrast and CNR increases as the overall quality of B-mode images decreases. Poor-quality fundamental B-mode images (where image quality classification is based on both contrast and CNR) exhibit the highest improvements in both contrast and CNR (288% improvement in contrast and 533% improvement in CNR).
Collapse
Affiliation(s)
- Marko Jakovljevic
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
213
|
Lediju Bell MA, Kuo N, Song DY, Boctor EM. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds. BIOMEDICAL OPTICS EXPRESS 2013; 4:1964-77. [PMID: 24156057 PMCID: PMC3799659 DOI: 10.1364/boe.4.001964] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 05/19/2023]
Abstract
Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery method and investigate the application of a short-lag spatial coherence (SLSC) beamformer to enhance low-contrast photoacoustic signals that are distant from this type of light source. Performance is compared to a conventional delay-and-sum beamformer. A pure gelatin phantom was implanted with black ink-coated brachytherapy seeds and the mean contrast was improved by 3-25 dB with the SLSC beamformer for fiber-seed distances ranging 0.6-6.3 cm, when approximately 10% of the receive aperture elements were included in the short-lag sum. For fiber-seed distances greater than 3-4 cm, the mean contrast-to-noise ratio (CNR) was approximately doubled with the SLSC beamformer, while mean signal-to-noise ratios (SNR) were mostly similar with both beamformers. Lateral resolution was decreased by 2 mm, but improved with larger short-lag values at the expense of poorer CNR and SNR. Similar contrast and CNR improvements were achieved with an uncoated brachytherapy seed implanted in ex vivo tissue. Results indicate that the SLSC beamformer has potential to enhance the visualization of prostate brachytherapy seeds that are distant from the light source.
Collapse
Affiliation(s)
- Muyinatu A. Lediju Bell
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21213USA
| | - Nathanael Kuo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218USA
| | - Danny Y. Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21213USA
| | - Emad M. Boctor
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21213USA
| |
Collapse
|
214
|
Mehdizadeh S, Austeng A, Johansen TF, Holm S. Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1912-21. [PMID: 22868562 DOI: 10.1109/tmi.2012.2208469] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Minimum variance (MV) based beamforming techniques have been successfully applied to medical ultrasound imaging. These adaptive methods offer higher lateral resolution, lower sidelobes, and better definition of edges compared to delay and sum beamforming (DAS). In standard medical ultrasound, the bone surface is often visualized poorly, and the boundaries region appears unclear. This may happen due to fundamental limitations of the DAS beamformer, and different artifacts due to, e.g., specular reflection, and shadowing. The latter can degrade the robustness of the MV beamformers as the statistics across the imaging aperture is violated because of the obstruction of the imaging beams. In this study, we employ forward/backward averaging to improve the robustness of the MV beamforming techniques. Further, we use an eigen-spaced minimum variance technique (ESMV) to enhance the edge detection of hard tissues. In simulation, in vitro, and in vivo studies, we show that performance of the ESMV beamformer depends on estimation of the signal subspace rank. The lower ranks of the signal subspace can enhance edges and reduce noise in ultrasound images but the speckle pattern can be distorted.
Collapse
Affiliation(s)
- Saeed Mehdizadeh
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
215
|
Dahl J, Jakovljevic M, Pinton GF, Trahey GE. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:648-59. [PMID: 22547276 PMCID: PMC3342045 DOI: 10.1109/tuffc.2012.2243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.
Collapse
Affiliation(s)
- Jeremy Dahl
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
216
|
Dahl JJ, Hyun D, Lediju M, Trahey GE. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging. ULTRASONIC IMAGING 2011; 33:119-33. [PMID: 21710827 PMCID: PMC3141297 DOI: 10.1177/016173461103300203] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate a novel imaging technique, named short-lag spatial coherence (SLSC) imaging, which uses short distance (or lag) values of the coherence function of backscattered ultrasound to create images. Simulations using Field II are used to demonstrate the detection of lesions of varying sizes and contrasts with and without acoustical clutter in the backscattered data. B-mode and SLSC imaging are shown to be nearly equivalent in lesion detection, based on the contrast-to-noise ratio (CNR) of the lesion, in noise-free conditions. The CNR of the SLSC image, however, can be adjusted to achieve an optimal value at the expense of image smoothness and resolution. In the presence of acoustic clutter, SLSC imaging yields significantly higher CNR than B-mode imaging and maintains higher image quality than B-mode with increasing noise. Compression of SLSC images is shown to be required under high-noise conditions but is unnecessary under no- and low-noise conditions. SLSC imaging is applied to in vivo imaging of the carotid sheath and demonstrates significant gains in CNR as well as visualization of arterioles in the carotid sheath. SLSC imaging has a potential application to clutter rejection in ultrasonic imaging.
Collapse
Affiliation(s)
- Jeremy J Dahl
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|