201
|
Pech T, Finger T, Fujishiro J, Praktiknjo M, Ohsawa I, Abu-Elmagd K, Limmer A, Hirner A, Kalff JC, Schaefer N. Perioperative infliximab application ameliorates acute rejection associated inflammation after intestinal transplantation. Am J Transplant 2010; 10:2431-41. [PMID: 20977634 DOI: 10.1111/j.1600-6143.2010.03279.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As we have shown in the past, acute rejection-related TNF-α upregulation in resident macrophages in the tunica muscularis after small bowel transplantation (SBTx) results in local amplification of inflammation, decisively contributing to graft dysmotility. Therefore, the aim of this study is to investigate the effectiveness of the chimeric-monoclonal-anti-TNF-α antibody infliximab as perioperative single shot treatment addressing inflammatory processes during acute rejection early after transplantation. Orthotopic, isogenic and allogenic SBTx was performed in rats (BN-Lewis/BN-BN) with infliximab treatment. Vehicle and IV-immunoglobulin-treated animals served as controls. Animals were sacrificed after 24 and 168 h. Leukocyte infiltration was investigated in muscularis whole mounts by immunohistochemistry, mediator mRNA expression by Real-Time-RT-PCR, apoptosis by TUNEL and smooth muscle contractility in a standard organ bath. Both, infliximab and Sandoglobulin® revealed antiinflammatory effects. Infliximab resulted in significantly less leukocyte infiltration compared to allogenic controls and IV-immunoglobulin, which was accompanied by lower gene expression of MCP-1 (24 h), IFN-γ (168 h) and infiltration of CD8-positive cells. Smooth muscle contractility improved significantly after 24 h compared to all controls in infliximab treated animals accompanied by lower iNOS expression. Perioperative treatment with infliximab is a possible pharmaceutical approach to overcome graft dysmotility early after SBTx.
Collapse
Affiliation(s)
- T Pech
- Department of Surgery, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany Division of Intestinal Transplantation, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
|
203
|
Wu CY, Feng Y, Qian GC, Wu JH, Luo J, Wang Y, Chen GJ, Guo XK, Wang ZJ. α-Galactosylceramide protects mice from lethal Coxsackievirus B3 infection and subsequent myocarditis. Clin Exp Immunol 2010; 162:178-87. [PMID: 20726989 DOI: 10.1111/j.1365-2249.2010.04233.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myocarditis is an inflammation of the myocardium which often follows virus infections. Coxsackievirus B3 (CVB3), as a marker of the enterovirus group, is one of the most important infectious agents of virus-induced myocarditis. Using a CVB3-induced myocarditis model, we show that injection α-galactosylceramide (α-GalCer), a ligand for invariant natural killer (NK) T (iNK T) cells, can protect the mice from viral myocarditis. After the systemic administration of α-GalCer in CVB3 infected mice, viral transcription and titres in mouse heart, sera and spleen were reduced, and the damage to the heart was ameliorated. This is accompanied by a better disease course with an improved weight loss profile. Compared with untreated mice, α-GalCer-treated mice showed high levels of interferon (IFN)-γ and interleukin (IL)-4, and reduced proinflammatory cytokines and chemokines in their cardiac tissue. Anti-viral immune response was up-regulated by α-GalCer. Three days after CVB3 infection, α-GalCer-administered mice had larger spleens. Besides NK T cells, more macrophages and CD8(+) T cells were found in these spleens. Upon stimulation with phorbol myristate acetate plus ionomycin, splenocytes from α-GalCer-treated mice produced significantly more cytokines [including IFN-γ, tumour necrosis factor-α, IL-4 and IL-10] than those from untreated mice. These data suggest that administration of α-GalCer during acute CVB3 infection is able to protect the mice from lethal myocarditis by local changes in inflammatory cytokine patterns and enhancement of anti-viral immune response at the early stage. α-GalCer is a potential candidate for viral myocarditis treatment. Our work supports the use of anti-viral treatment early to reduce the incidence of virus-mediated heart damage.
Collapse
Affiliation(s)
- C Y Wu
- Department of Microbiology and Parasitology, Division of Clinical Laboratory of the International Peace Maternity and Child Hospital, Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Liu YY, Sun LC, Wei JJ, Li D, Yuan Y, Yan B, Liang ZH, Zhu HF, Xu Y, Li B, Song CW, Liao SJ, Lei Z, Zhang GM, Feng ZH. Tumor Cell-Released TLR4 Ligands Stimulate Gr-1+CD11b+F4/80+ Cells to Induce Apoptosis of Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:2773-82. [DOI: 10.4049/jimmunol.1000772] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
205
|
Lifshitz L, Tabak G, Gassmann M, Mittelman M, Neumann D. Macrophages as novel target cells for erythropoietin. Haematologica 2010; 95:1823-31. [PMID: 20595096 DOI: 10.3324/haematol.2010.025015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Our original demonstration of immunomodulatory effects of erythropoietin in multiple myeloma led us to the search for the cells in the immune system that are direct targets for erythropoietin. The finding that lymphocytes do not express erythropoietin receptors led to the hypothesis that other cells act as direct targets and thus mediate the effects of erythropoietin. The finding that erythropoietin has effects on dendritic cells thus led to the question of whether macrophages act as target cells for erythropoietin. DESIGN AND METHODS The effects of erythropoietin on macrophages were investigated both in-vivo and in-vitro. The in-vivo studies were performed on splenic macrophages and inflammatory peritoneal macrophages, comparing recombinant human erythropoietin-treated and untreated mice, as well as transgenic mice over-expressing human erythropoietin (tg6) and their control wild-type counterparts. The in-vitro effects of erythropoietin on macrophage surface markers and function were investigated in murine bone marrow-derived macrophages treated with recombinant human erythropoietin. RESULTS Erythropoietin was found to have effects on macrophages in both the in-vivo and in-vitro experiments. In-vivo treatment led to increased numbers of splenic macrophages, and of the splenic macrophages expressing CD11b, CD80 and major histocompatibility complex class II. The peritoneal inflammatory macrophages obtained from erythropoietin-treated mice displayed increased expression of F4/80, CD11b, CD80 and major histocompatibility complex class II, and augmented phagocytic activity. The macrophages derived in-vitro from bone marrow cells expressed erythropoietin receptor transcripts, and in-vitro stimulation with erythropoietin activated multiple signaling pathways, including signal transducer and activator of transcription (STAT)1 and 5, mitogen-activated protein kinase, phosphatidylinositol 3-kinase and nuclear factor kappa B. In-vitro erythropoietin treatment of these cells up-regulated their surface expression of CD11b, F4/80 and CD80, enhanced their phagocytic activity and nitric oxide secretion, and also led to augmented interleukin 12 secretion and decreased interleukin 10 secretion in response to lipopolysaccharide. CONCLUSIONS Our results show that macrophages are direct targets of erythropoietin and that erythropoietin treatment enhances the pro-inflammatory activity and function of these cells. These findings point to a multifunctional role of erythropoietin and its potential clinical applications as an immunomodulating agent.
Collapse
|
206
|
Meng L, Zhu W, Jiang C, He X, Hou W, Zheng F, Holmdahl R, Lu S. Toll-like receptor 3 upregulation in macrophages participates in the initiation and maintenance of pristane-induced arthritis in rats. Arthritis Res Ther 2010; 12:R103. [PMID: 20500834 PMCID: PMC2911891 DOI: 10.1186/ar3034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/08/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
Introduction Toll-like receptors (TLRs) are involved in both innate and adaptive immune responses and are likely to play a complex role in the pathogenesis of human rheumatoid arthritis (RA) and experimental arthritis. The objective of this study was to identify the key TLR in pristane-induced arthritis (PIA), a rat model for RA, and to clarify its roles in the initiation and maintenance of arthritis. Methods Arthritis in DA rats was induced by pristane and the severity was evaluated by macroscopic and microscopic score systems. Spleen TLR and cytokine expression was detected at different time points by real-time polymerase chain reaction (PCR) and flow cytometry. Polyinosine-polycytidylic acid (polyI:C, a ligand of TLR3) or TLR3 specific short-hairpin RNA plasmid for RNA interference was administrated to PIA rats in vivo. Serum nitrogen oxide concentration was determined by Griess method, and tumor necrosis factor alpha (TNF-α) was determined by L929 biotest. In splenic macrophages, TLR3 expression was measured by flow cytometry. A rat macrophage cell line (NR8383) was stimulated by pristane, and anti-TLR3 antibody were used to block TLR3 pathway. TLR3 and cytokine expression in NR8383 were detected by real-time PCR. Results By screening the TLR expression profile in spleen of DA rats after pristane injection, we found that TLR3 was the most early and prominently upregulated TLR. Both TLR3 mRNA and protein expression of spleen were upregulated at 6 and 26 days after pristane injection. Furthermore, administration of polyI:C exacerbated, whereas RNA interference targeting TLR3 ameliorated, the arthritis. Particularly, TLR3 expression was induced in splenic macrophages of PIA rats, and also in the NR8383 cell line after pristane stimulation in a dose- and time- dependent manner. Upregulation of interferon beta (IFN-β) and TNF-α by pristane stimulation was blocked by anti-TLR3 antibody in NR8383. Conclusions TLR3 plays a pivotal role in the initiation and development of PIA which may dependent on macrophage. These findings are useful to understand the pathogenesis of RA and may provide an intriguing therapeutic opportunity for RA.
Collapse
Affiliation(s)
- Liesu Meng
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Huang Q, Pope RM. Toll-like receptor signaling: a potential link among rheumatoid arthritis, systemic lupus, and atherosclerosis. J Leukoc Biol 2010; 88:253-62. [PMID: 20484668 DOI: 10.1189/jlb.0310126] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- QiQuan Huang
- Northwestern University Feinberg School of Medicine, 240 E. Huron St., Suite M300, Chicago, IL 60611, USA
| | | |
Collapse
|
208
|
Brown J, Wallet MA, Krastins B, Sarracino D, Goodenow MM. Proteome bioprofiles distinguish between M1 priming and activation states in human macrophages. J Leukoc Biol 2010; 87:655-62. [PMID: 20007246 DOI: 10.1189/jlb.0809570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophage activation is a dynamic process that results in diverse functional outcomes ranging from immunoregulation to inflammation. The proinflammatory, or M1, response is a complex, bimodal progression composed of a "prime," classically through IFN-gamma, and "trigger," such as LPS. To characterize the physiological response of M1 activation, a systems biology approach was applied to determine the intracellular proteome bioprofiles of IFN-gamma-and LPS-treated primary human macrophages. Our goal was to develop intracellular proteomic fingerprints to serve as novel correlates of macrophage priming and/or activation to augment the existing approaches of analyzing secreted cytokines and cell-surface protein expression. The majority of the proteome, approximately 78%, remained stable during activation, representing the core proteome. In contrast, three distinct patterns defined response proteomes: IFN-gamma-specific, LPS-specific, or IFN-gamma- and LPS-shared or M1-specific. Although steady-state expression levels of proteins involved in energy metabolism and immune response were increased during priming and triggering, changes in protein and fatty acid metabolism, signaling, and transport pathways were most apparent. Unique proteomic fingerprints distinguish among IFN-gamma-specific, LPS-specific, or M1-specific activation states and provide a clear molecular, archeological profile to infer recent history of cells, as well as correlates for chronic macrophage activation in health and disease.
Collapse
Affiliation(s)
- Joseph Brown
- Department of Pathology Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610-3633, USA
| | | | | | | | | |
Collapse
|
209
|
Abstract
Type I interferons are pleiotropic cytokines with antiviral, antitumor and immunoregulatory functions. An aspect of their complex biology is the paradox that, depending on context, type I interferons can be anti-inflammatory and tissue protective or can be proinflammatory and promote autoimmunity. Along these lines, the activation of type I interferon pathways is effective in suppressing disease activity in patients with multiple sclerosis and in animal models of arthritis and colitis, while there is an expectation that blockade of the same pathways will be beneficial in the treatment of patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- George D Kalliolias
- Arthritis and Tissue Degeneration Program and Department of Medicine, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
210
|
Wallet MA, Wallet SM, Guiulfo G, Sleasman JW, Goodenow MM. IFNgamma primes macrophages for inflammatory activation by high molecular weight hyaluronan. Cell Immunol 2010; 262:84-8. [PMID: 20299009 DOI: 10.1016/j.cellimm.2010.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/28/2010] [Accepted: 02/19/2010] [Indexed: 01/09/2023]
Abstract
The objective was to assess outcomes of IFNgamma-priming upon macrophage activation by the synovial macromolecule high molecular weight hyaluronan [HMW-HA] in the context of rheumatoid arthritis inflammation. Human macrophages primed by IFNgamma and activated by HMW-HA were evaluated for cytokine secretion by ELISA and Milliplex assay and activation profiles by nuclear transcription factor EIA. IFNgamma-primed, HMW-HA-activated macrophages produced elevated levels of TNF and secreted the TH1 cytokine IL-12p70, while IFNgamma suppressed HMW-HA-induced secretion of the regulatory cytokine IL-10 and activation of the transcription factor c-Jun. IFNgamma modulates the HMW-HA-induced cytokine response profile promoting macrophage activation and inflammatory TH1 cytokine secretion.
Collapse
Affiliation(s)
- Mark A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610-3622, USA.
| | | | | | | | | |
Collapse
|
211
|
Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 2009; 50:1-14. [PMID: 20036577 DOI: 10.1016/j.cyto.2009.11.021] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 11/02/2009] [Accepted: 11/24/2009] [Indexed: 01/19/2023]
Abstract
Interferon-gamma (IFNgamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NFkappaB) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFNgamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of a subset of only GAS containing immune genes were modulated by IFNgamma. As a significant correlation exists between GAS containing immune genes and IFNgamma-regulated gene expression, this strategy may identify novel IFNgamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFNgamma in mediating a plethora of functions: anti-microbial responses, antigen processing, inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge on IFNgamma mediated signaling and functions.
Collapse
Affiliation(s)
- Banishree Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
212
|
Huang QQ, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009; 11:357-64. [PMID: 19772831 DOI: 10.1007/s11926-009-0051-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An increasing body of data supports the role of the innate immune system in the pathogenesis of rheumatoid arthritis (RA). Toll-like receptors (TLRs) are expressed by cells within the RA joint and various endogenous TLR ligands are present within the inflamed joints of patients with RA. Further, various animal models suggest that TLR signaling is important in the pathogenesis of disease. Overall, the data suggest that activation by endogenous TLR ligands may contribute to the persistent expression of proinflammatory cytokines by macrophages and the joint damage to cartilage and bone that occurs in RA. The data support a potential role for suppression of TLR signaling as a novel therapeutic approach in patients with RA.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
213
|
Hope HR, Anderson GD, Burnette BL, Compton RP, Devraj RV, Hirsch JL, Keith RH, Li X, Mbalaviele G, Messing DM, Saabye MJ, Schindler JF, Selness SR, Stillwell LI, Webb EG, Zhang J, Monahan JB. Anti-inflammatory properties of a novel N-phenyl pyridinone inhibitor of p38 mitogen-activated protein kinase: preclinical-to-clinical translation. J Pharmacol Exp Ther 2009; 331:882-95. [PMID: 19720877 DOI: 10.1124/jpet.109.158329] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Signal transduction through the p38 mitogen-activated protein (MAP) kinase pathway is central to the transcriptional and translational control of cytokine and inflammatory mediator production. p38 MAP kinase inhibition hence constitutes a promising therapeutic strategy for treatment of chronic inflammatory diseases, based upon its potential to inhibit key pathways driving the inflammatory and destructive processes in these debilitating diseases. The present study describes the pharmacological properties of the N-phenyl pyridinone p38 MAP kinase inhibitor benzamide [3- [3-bromo-4-[(2,4-difluorophenyl)methoxy]-6-methyl-2- oxo-1(2H)-pyridinyl]-N,4-dimethyl-, (-)-(9CI); PH-797804]. PH-797804 is an ATP-competitive, readily reversible inhibitor of the alpha isoform of human p38 MAP kinase, exhibiting a K(i) = 5.8 nM. In human monocyte and synovial fibroblast cell systems, PH-797804 blocks inflammation-induced production of cytokines and proinflammatory mediators, such as prostaglandin E(2), at concentrations that parallel inhibition of cell-associated p38 MAP kinase. After oral dosing, PH-797804 effectively inhibits acute inflammatory responses induced by systemically administered endotoxin in both rat and cynomolgus monkeys. Furthermore, PH-797804 demonstrates robust anti-inflammatory activity in chronic disease models, significantly reducing both joint inflammation and associated bone loss in streptococcal cell wall-induced arthritis in rats and mouse collagen-induced arthritis. Finally, PH-797804 reduced tumor necrosis factor-alpha and interleukin-6 production in clinical studies after endotoxin administration in a dose-dependent manner, paralleling inhibition of the target enzyme. Low-nanomolar biochemical enzyme inhibition potency correlated with p38 MAP kinase inhibition in human cells and in vivo studies. In addition, a direct correspondence between p38 MAP kinase inhibition and anti-inflammatory activity was observed with PH-797804, thus providing confidence in dose projections for further human studies in chronic inflammatory disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/blood
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/immunology
- Benzamides/blood
- Benzamides/chemistry
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Bone Density/drug effects
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/enzymology
- Bone Marrow Cells/immunology
- Cell Line
- Cytokines/biosynthesis
- Cytokines/blood
- Dinoprostone/biosynthesis
- Drug Evaluation, Preclinical
- Female
- Humans
- Lipopolysaccharides/pharmacology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred DBA
- Middle Aged
- Monocytes/drug effects
- Monocytes/enzymology
- Monocytes/immunology
- Osteoclasts/drug effects
- Osteoclasts/enzymology
- Osteoclasts/immunology
- Pyridones
- Pyrones/blood
- Pyrones/chemistry
- Pyrones/pharmacology
- Pyrones/therapeutic use
- Rats
- Rats, Inbred Lew
- Systemic Inflammatory Response Syndrome/drug therapy
- Systemic Inflammatory Response Syndrome/enzymology
- Systemic Inflammatory Response Syndrome/immunology
- Young Adult
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Heidi R Hope
- Discovery Biology, Inflammation Research, Pfizer Global Research and Development, Chesterfield, Missouri 63017, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Erdman LK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC. CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria. THE JOURNAL OF IMMUNOLOGY 2009; 183:6452-9. [PMID: 19864601 DOI: 10.4049/jimmunol.0901374] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD36 participates in macrophage internalization of a variety of particles, and has been implicated in inflammatory responses to many of these ligands. To what extent CD36 cooperates with other receptors in mediating these processes remains unclear. Because CD36 has been shown to cooperate with TLR2, we investigated the roles and interactions of CD36 and TLRs in inflammation and phagocytosis. Using Ab-induced endocytosis of CD36 and phagocytosis of erythrocytes displaying Abs to CD36, we show that selective engagement and internalization of this receptor did not lead to proinflammatory cytokine production by primary human and murine macrophages. In addition, CD36-mediated phagocytosis of Plasmodium falciparum malaria-parasitized erythrocytes (PEs), which contain parasite components that activate TLRs, also failed to induce cytokine secretion from primary macrophages. Furthermore, we demonstrate that CD36-mediated internalization did not require TLR2 or the TLR-signaling molecule IRAK4. However, macrophage pretreatment with TLR agonists markedly stimulated particle uptake via CD36. Similarly, PE uptake was unaffected by TLR deficiency, but in wild-type cells was increased by pretreatment with purified P. falciparum glycosylphosphatidylinositols, which activate TLR2. Our findings indicate that CD36 must cooperate with other receptors such as TLRs to participate in cytokine responses. Although purified P. falciparum components activate TLRs, CD36-mediated internalization of intact PEs is not inflammatory. Further, CD36 mediates internalization of particles, including PEs, independently of TLR signaling, but can functionally cooperate with TLRs to enhance internalization.
Collapse
Affiliation(s)
- Laura K Erdman
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
215
|
Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc Natl Acad Sci U S A 2009; 106:18207-12. [PMID: 19820169 DOI: 10.1073/pnas.0910177106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kinetics and magnitude of cytokine gene expression are tightly regulated to elicit a balanced response to pathogens and result from integrated changes in transcription and mRNA stability. Yet, how a single microbial stimulus induces peak transcription of some genes (TNFalpha) within minutes whereas others (IP-10) require hours remains unclear. Here, we dissect activation of several lipopolysaccharide (LPS)-inducible genes in macrophages, an essential cell type mediating inflammatory response in mammals. We show that a key difference between the genes is the step of the transcription cycle at which they are regulated. Specifically, at TNFalpha, RNA Polymerase II initiates transcription in resting macrophages, but stalls near the promoter until LPS triggers rapid and transient release of the negative elongation factor (NELF) complex and productive elongation. In contrast, no NELF or polymerase is detectible near the IP-10 promoter before induction, and LPS-dependent polymerase recruitment is rate limiting for transcription. We further demonstrate that this strategy is shared by other immune mediators and is independent of the inducer and signaling pathway responsible for gene activation. Finally, as a striking example of evolutionary conservation, the Drosophila homolog of the TNFalpha gene, eiger, displayed all of the hallmarks of NELF-dependent polymerase stalling. We propose that polymerase stalling ensures the coordinated, timely activation the inflammatory gene expression program from Drosophila to mammals.
Collapse
|
216
|
Schmolke M, Viemann D, Roth J, Ludwig S. Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome. THE JOURNAL OF IMMUNOLOGY 2009; 183:5180-9. [PMID: 19786538 DOI: 10.4049/jimmunol.0804198] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic infections of humans and birds with highly pathogenic avian influenza A viruses of the H5N1 subtype are characterized by inner bleedings and a massive overproduction of cytokines known as cytokine storm. Growing evidence supports the role of endothelial cells in these processes. The aim of this study was to elucidate determinants of this strong response in endothelial cells with a focus on the transcription factor NF-kappaB. This factor is known as a major regulator of inflammatory response; however, its role in influenza virus replication and virus-induced immune responses is controversially discussed. By global mRNA profiling of infected cells in the presence or absence of a dominant negative mutant of IkappaB kinase 2 that specifically blocks the pathway, we could show that almost all H5N1 virus-induced genes depend on functional NF-kappaB signaling. In particular, activation of NF-kappaB is a bottleneck for the expression of IFN-beta and thus influences the expression of IFN-dependent genes indirectly in the primary innate immune response against H5N1 influenza virus. Control experiments with a low pathogenic influenza strain revealed a much weaker and less NF-kappaB-dependent host cell response.
Collapse
Affiliation(s)
- Mirco Schmolke
- Institute of Molecular Virology, Center of Molecular Biology of Inflammation and Interdisciplinary Center of Medical Research, Universitaetsklinikum Muenster, Muenster, Germany
| | | | | | | |
Collapse
|
217
|
Wang X, Zhao Q, Matta R, Meng X, Liu X, Liu CG, Nelin LD, Liu Y. Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem 2009; 284:27123-34. [PMID: 19651781 DOI: 10.1074/jbc.m109.051235] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible nitric-oxide (NO) synthase (iNOS) plays a critical role in the eradication of intracellular pathogens. However, the excessive production of NO by iNOS has also been implicated in the pathogenesis of septic shock syndrome. Previously, we have demonstrated that mice deficient in mitogen-activated protein kinase phosphatase-1 (MKP-1) exhibit exaggerated inflammatory responses and rapidly succumb to lipopolysaccharide (LPS). In response to LPS, MKP-1(-/-) mice produce greater amounts of inflammatory cytokines and NO than do wild-type mice, and the MKP-1(-/-) mice exhibit severe hypotension. To understand the molecular basis for the increase in NO production, we studied the role of MKP-1 in the regulation of iNOS expression. We found that LPS challenge elicited a stronger iNOS induction in MKP-1 knock-out mice than in wild-type mice. Likewise, LPS treatment also resulted in greater iNOS expression in macrophages from MKP-1(-/-) mice than in macrophages from wild-type mice. Both accelerated gene transcription and enhanced mRNA stability contribute to the increases in iNOS expression in LPS-stimulated MKP-1(-/-) macrophages. We found that STAT-1, a transcription factor known to mediate iNOS induction by interferon-gamma, was more potently activated by LPS in MKP-1(-/-) macrophages than in wild-type cells. MicroRNA array analysis indicated that microRNA (miR)-155 expression was increased in MKP-1-deficient macrophages compared with wild-type macrophages. Transfection of miR-155 attenuated the expression of Suppressor of Cytokine Signal (SOCS)-1 and enhanced the expression of iNOS. Our results suggest that MKP-1 may negatively regulate iNOS expression by controlling the expression of miR-155 and consequently the STAT pathway via SOCS-1.
Collapse
Affiliation(s)
- Xianxi Wang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Wathes DC, Cheng Z, Chowdhury W, Fenwick MA, Fitzpatrick R, Morris DG, Patton J, Murphy JJ. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol Genomics 2009; 39:1-13. [PMID: 19567787 PMCID: PMC2747344 DOI: 10.1152/physiolgenomics.00064.2009] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and β-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility.
Collapse
Affiliation(s)
- D Claire Wathes
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Gardy JL, Lynn DJ, Brinkman FSL, Hancock REW. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 2009; 30:249-62. [PMID: 19428301 DOI: 10.1016/j.it.2009.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/15/2022]
Abstract
Immunity is not simply the product of a series of discrete linear signalling pathways; rather it is comprised of a complex set of integrated responses arising from a dynamic network of thousands of molecules subject to multiple influences. Its behaviour often cannot be explained or predicted solely by examining its components. Here, we review recently developed resources for the systems-level investigation of immunity. Although innate immunity is emphasized here, its considerable overlap with adaptive immunity makes many of these resources relevant to both arms of the immune response. We discuss recent studies implementing these approaches and illustrate the potential of systems biology to generate novel insights into the complexities of innate immunity.
Collapse
Affiliation(s)
- Jennifer L Gardy
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
220
|
Neutralization of interleukin-10 from CD14(+) monocytes enhances gamma interferon production in peripheral blood mononuclear cells from Mycobacterium avium subsp. paratuberculosis-infected goats. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1003-11. [PMID: 19420185 DOI: 10.1128/cvi.00114-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gamma interferon assay is used to identify Mycobacterium avium subsp. paratuberculosis-infected animals. It has been suggested that regulatory mechanisms could influence the sensitivity of the test when it is performed with cells from cattle and that the neutralization of interleukin-10 (IL-10) in vitro would increase the gamma interferon responses. To investigate the regulatory mechanisms affecting the gamma interferon assay with cells from goats, blood was collected from M. avium subsp. paratuberculosis-infected, M. avium subsp. paratuberculosis-exposed, and noninfected goats. Neutralization of IL-10 by a monoclonal antibody resulted in increased levels of gamma interferon production in M. avium subsp. paratuberculosis purified protein derivative (PPDj)-stimulated samples from both infected and exposed goats. However, the levels of gamma interferon release were also increased in unstimulated cells and in PPDj-stimulated cells from some noninfected animals following neutralization. Depletion of putative regulatory CD25(high) T cells had no clear effect on the number of gamma-interferon-producing cells. The IL-10-producing cells were identified to be mainly CD14(+) major histocompatibility complex class II-positive monocytes in both PPDj-stimulated and control cultures and not regulatory T cells. However, possible regulatory CD4(+) CD25(+) T cells produced IL-10 in response to concanavalin A stimulation. The numbers of CD4(+), CD8(+), and CD8(+) gammadelta T-cell receptor-positive cells producing gamma interferon increased following IL-10 neutralization. These results provide insight into the source and the role of IL-10 in gamma interferon assays with cells from goats and suggest that IL-10 from monocytes can regulate both innate and adaptive gamma interferon production from several cell types. Although IL-10 neutralization increased the sensitivity of the gamma interferon assay, the specificity of the test could be compromised.
Collapse
|
221
|
Abstract
An important function of receptors that signal through immunoreceptor tyrosine-based activation motifs (ITAMs) is to regulate signaling by heterologous receptors. This review describes mechanisms by which ITAM-associated receptors modulate signaling by Toll-like receptors (TLRs), tumor necrosis factor receptor family members and cytokine receptors that use the Jak-STAT signaling pathway, and the biological importance of this signal transduction cross-talk. ITAM-mediated cross-regulation can either augment or dampen signaling by other receptors. Conversely, TLRs and cytokines modulate ITAM-mediated signaling, by means including activation of beta2 integrins that are coupled to the ITAM-containing adaptors DAP12 and FcRgamma. Integration of ITAM signaling into signaling networks through cross-talk with other signal transduction pathways results in tight regulation and fine tuning of cellular responses to various extracellular stimuli and contributes to induction of specific activation and differentiation pathways.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
222
|
Affiliation(s)
- Christopher A Hunter
- University of Pennsylvania, Department of Pathobiology, School Veterinary Medicine, Philadelphia, PA 19104-4539, USA.
| | | |
Collapse
|