202
|
Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel) 2019; 11:E748. [PMID: 31146464 PMCID: PMC6627759 DOI: 10.3390/cancers11060748] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/28/2022] Open
Abstract
As medicine continues to advance our understanding of and knowledge about the complex and multifactorial nature of cancer, new major technological challenges have emerged in the design of analytical methods capable of characterizing and assessing the dynamic heterogeneity of cancer for diagnosis, prognosis and monitoring, as required by precision medicine. With this aim, novel nanotechnological approaches have been pursued and developed for overcoming intrinsic and current limitations of conventional methods in terms of rapidity, sensitivity, multiplicity, non-invasive procedures and cost. Eminently, a special focus has been put on their implementation in liquid biopsy analysis. Among optical nanosensors, those based on surface-enhanced Raman scattering (SERS) have been attracting tremendous attention due to the combination of the intrinsic prerogatives of the technique (e.g., sensitivity and structural specificity) and the high degree of refinement in nano-manufacturing, which translate into reliable and robust real-life applications. In this review, we categorize the diverse strategic approaches of SERS biosensors for targeting different classes of tumor biomarkers (cells, nucleic acids and proteins) by illustrating key recent research works. We will also discuss the current limitations and future research challenges to be addressed to improve the competitiveness of SERS over other methodologies in cancer medicine.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
203
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
205
|
Uygur B, Leikina E, Melikov K, Villasmil R, Verma SK, Vary CPH, Chernomordik LV. Interactions with Muscle Cells Boost Fusion, Stemness, and Drug Resistance of Prostate Cancer Cells. Mol Cancer Res 2019; 17:806-820. [PMID: 30587522 PMCID: PMC8312562 DOI: 10.1158/1541-7786.mcr-18-0500] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Poorly understood interactions with nonmalignant cells within the tumor microenvironment play an important role in cancer progression. Here, we explored interactions between prostate cancer and muscle cells that surround the prostate. We found that coculturing of prostate cancer cells with skeletal or smooth muscle cells expands the subpopulations of cancer cells with features characteristic of cancer stem-like cells, including anchorage-independent growth, elevated CD133 expression, and drug resistance. These changes in the properties of cancer cells depend on: (i) the muscle cell-induced increases in the concentrations of interleukins 4 and 13; (ii) the cytokine-induced upregulation of the expression of syncytin 1 and annexin A5; and (iii) cancer cell fusion. In human prostate cancer tissues, expression of syncytin 1 and annexin A5, proteins that we found to be required for the cell fusion, positively correlated with the cancer development suggesting that these proteins can be used as biomarkers to evaluate cancer progression and potential therapeutic targets. IMPLICATIONS: The discovered effects of muscle cells on prostate cancer cells reveal a novel and specific pathway by which muscle cells in the microenvironment of prostate cancer cells promote cell fusion and cancer progression.
Collapse
Affiliation(s)
- Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | - Santosh K Verma
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| |
Collapse
|
207
|
Laberge GS, Duvall E, Haedicke K, Pawelek J. Leukocyte⁻Cancer Cell Fusion-Genesis of a Deadly Journey. Cells 2019; 8:cells8020170. [PMID: 30781683 PMCID: PMC6406780 DOI: 10.3390/cells8020170] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/20/2022] Open
Abstract
According to estimates from the International Agency for Research on Cancer, by the year 2030 there will be 22 million new cancer cases and 13 million deaths per year. The main cause of cancer mortality is not the primary tumor itself but metastasis to distant organs and tissues, yet the mechanisms of this process remain poorly understood. Leukocyte–cancer cell fusion and hybrid formation as an initiator of metastasis was proposed more than a century ago by the German pathologist Prof. Otto Aichel. This proposal has since been confirmed in more than 50 animal models and more recently in one patient with renal cell carcinoma and two patients with malignant melanoma. Leukocyte–tumor cell fusion provides a unifying explanation for metastasis. While primary tumors arise in a wide variety of tissues representing not a single disease but many different diseases, metastatic cancer may be only one disease arising from a common, nonmutational event: Fusion of primary tumor cells with leukocytes. From the findings to date, it would appear that such hybrid formation is a major pathway for metastasis. Studies on the mechanisms involved could uncover new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Greggory S Laberge
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Eric Duvall
- Denver Police Crime Lab-Forensics and Evidence Division, Denver, CO 80204.
| | - Kay Haedicke
- Department of Internal Medicine Section of Medical Oncology and the Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8059, USA.
| | - John Pawelek
- Department of Dermatology and The Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8059, USA.
| |
Collapse
|
208
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
212
|
Cao MF, Chen L, Dang WQ, Zhang XC, Zhang X, Shi Y, Yao XH, Li Q, Zhu J, Lin Y, Liu S, Chen Q, Cui YH, Zhang X, Bian XW. Hybrids by tumor-associated macrophages × glioblastoma cells entail nuclear reprogramming and glioblastoma invasion. Cancer Lett 2018; 442:445-452. [PMID: 30472185 DOI: 10.1016/j.canlet.2018.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Hybrid formation is a fundamental process in normal development and tissue homeostasis, while the presence and the biological role of hybrids between tumor-associated macrophages (TAMs) and glioblastoma (GBM) cells remain elusive. In this study, we observed that TAM-GBM cell hybrids existed in human GBM specimens as demonstrated by co-expression of glioma biomarkers (GFAP, IDH1R132H and PDGFRA) and macrophage biomarkers (CD68 and CD14). Furthermore, TAM-GBM cell hybrids could also be found in C57BL/6 mice orthotopically inoculated with mouse GBM cells labeled with RFP and after co-culture of bone marrow-derived macrophages from GFP-expressed mice with RFP-labeled GBM cells. The hybrids underwent nuclear reprogramming with unique gene expression profile as compared to parental cells. Moreover, glioma invasion-associated genes were enriched in the hybrids that possessed higher invasiveness, and more hybrids in the invasive margin of GBM were observed as compared to GBM core area. Our data demonstrate the presence of TAM-GBM cell hybrids that enhance GBM invasion. With a better understanding of TAM-GBM cell hybrids, new therapeutic strategies targeting GBM will be developed to treat GBM patients.
Collapse
Affiliation(s)
- Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Wei-Qi Dang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xian-Chao Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiang Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yong Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Sha Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yong-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|