201
|
Fujita Y, Ishikawa J, Furuta H, Ikawa Y. Generation and development of RNA ligase ribozymes with modular architecture through "design and selection". Molecules 2010; 15:5850-65. [PMID: 22273983 PMCID: PMC6257700 DOI: 10.3390/molecules15095850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/27/2022] Open
Abstract
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.
Collapse
Affiliation(s)
- Yuki Fujita
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Junya Ishikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Hiroyuki Furuta
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
| | - Yoshiya Ikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-92-802-2866; Fax: +81-92-802-2865
| |
Collapse
|
202
|
Chen Z, Wilmanns M, Zeng AP. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol 2010; 28:534-42. [PMID: 20727604 DOI: 10.1016/j.tibtech.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The future of industrial biotechnology requires efficient development of highly productive and robust strains of microorganisms. Present praxis of strain development cannot adequately fulfill this requirement, primarily owing to the inability to control reactions precisely at a molecular level, or to predict reliably the behavior of cells upon perturbation. Recent developments in two areas of biology are changing the situation rapidly: structural biology has revealed details about enzymes and associated bioreactions at an atomic level; and synthetic biology has provided tools to design and assemble precisely controllable modules for re-programming cellular metabolic circuitry. However, because of different emphases, to date, these two areas have developed separately. A linkage between them is desirable to harness their concerted potential. We therefore propose structural synthetic biotechnology as a new field in biotechnology, specifically for application to the development of industrial microbial strains.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | | | | |
Collapse
|
203
|
Protein engineering for bioenergy and biomass-based chemicals. Curr Opin Struct Biol 2010; 20:527-32. [DOI: 10.1016/j.sbi.2010.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
204
|
Cortajarena AL, Liu TY, Hochstrasser M, Regan L. Designed proteins to modulate cellular networks. ACS Chem Biol 2010; 5:545-52. [PMID: 20020775 DOI: 10.1021/cb9002464] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major challenge of protein design is to create useful new proteins that interact specifically with biological targets in living cells. Such binding modules have many potential applications, including the targeted perturbation of protein networks. As a general approach to create such modules, we designed a library with approximately 10(9) different binding specificities based on a small 3-tetratricopeptide repeat (TPR) motif framework. We employed a novel strategy, based on split GFP reassembly, to screen the library for modules with the desired binding specificity. Using this approach, we identified modules that bind tightly and specifically to Dss1, a small human protein that interacts with the tumor suppressor protein BRCA2. We showed that these modules also bind the yeast homologue of Dss1, Sem1. Furthermore, we demonstrated that these modules inhibit Sem1 activity in yeast. This strategy will be generally applicable to make novel genetically encoded tools for systems/synthetic biology applications.
Collapse
Affiliation(s)
| | - Tina Y. Liu
- Department of Molecular Biophysics & Biochemistry
| | | | - Lynne Regan
- Department of Molecular Biophysics & Biochemistry
- Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
205
|
Abstract
Living cells have evolved a broad array of complex signalling responses, which enables them to survive diverse environmental challenges and execute specific physiological functions. Our increasingly sophisticated understanding of the molecular mechanisms of cell signalling networks in eukaryotes has revealed a remarkably modular organization and synthetic biologists are exploring how this can be exploited to engineer cells with novel signalling behaviours. This approach is beginning to reveal the logic of how cells might evolve innovative new functions and moves us towards the exciting possibility of engineering custom cells with precise sensing-response functions that could be useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94158, USA.
| |
Collapse
|
206
|
Reinke AW, Grant RA, Keating AE. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J Am Chem Soc 2010; 132:6025-31. [PMID: 20387835 PMCID: PMC2940225 DOI: 10.1021/ja907617a] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein "interactome" includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of special interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.
Collapse
|
207
|
Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 2010; 328:368-72. [PMID: 20395511 DOI: 10.1126/science.1182376] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell signaling proteins are often modular, containing distinct catalytic and regulatory domains. Recombination of such biological modules has been proposed to be a major source of evolutionary innovation. We systematically analyzed the phenotypic diversity of a signaling response that results from domain recombination by using 11 proteins in the yeast mating pathway to construct a library of 66 chimeric domain recombinants. Domain recombination resulted in greater diversity in pathway response dynamics than did duplication of genes, of single domains, or of two unlinked domains. Domain recombination also led to changes in mating phenotype, including recombinants with increased mating efficiency over the wild type. Thus, novel linkages between preexisting domains may have a major role in the evolution of protein networks and novel phenotypic behaviors.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
208
|
Abstract
Early synthetic biology designs, namely the genetic toggle switch and repressilator, showed that regulatory components can be characterized and assembled to bring about complex, electronics-inspired behaviours in living systems (for example, memory storage and timekeeping). Through the characterization and assembly of genetic parts and biological building blocks, many more devices have been constructed, including switches, memory elements, oscillators, pulse generators, digital logic gates, filters and communication modules. Advances in the field are now allowing expansion beyond small gene networks to the realm of larger biological programs, which hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biosensing circuits consist of sensitive elements that bind analytes and transducer modules that mobilize cellular responses. Balancing these two modules involves engineering modularity and specificity into the various circuits. Biosensor sensitive elements include environment-responsive promoters (transcriptional), RNA aptamers (translational) and protein receptors (post-translational). Biosensor transducer modules include engineered gene networks (transcriptional), non-coding regulatory RNAs (translational) and protein signal-transduction circuits (post-translational). The contributions of synthetic biology to therapeutics include: engineered networks and organisms for disease-mechanism elucidation, drug-target identification, drug-discovery platforms, therapeutic treatment, therapeutic delivery, and drug production and access. In the microbial production of biofuels and pharmaceuticals, synthetic biology has supplemented traditional genetic and metabolic engineering efforts by aiding the construction of optimized biosynthetic pathways. Optimizing metabolic flux through biosynthetic pathways is traditionally accomplished by driving the expression of pathway enzymes with strong, inducible promoters. New synthetic approaches include the rapid diversification of various pathway components, the rational and model-guided assembly of pathway components, and hybrid solutions.
Advances in the synthetic biology field are allowing an expansion beyond small gene networks towards larger biological programs that hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Collapse
Affiliation(s)
- Ahmad S Khalil
- Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
209
|
Abstract
Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain.
| | | |
Collapse
|
210
|
Bauer AL, Jackson TL, Jiang Y, Rohlf T. Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J Theor Biol 2010; 264:838-46. [PMID: 20307549 DOI: 10.1016/j.jtbi.2010.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 01/24/2010] [Accepted: 03/16/2010] [Indexed: 01/08/2023]
Abstract
Cancer invasion and metastasis depend on tumor-induced angiogenesis, the means by which cancer cells attract and maintain a blood supply. During angiogenesis, cellular processes are tightly coordinated by signaling molecules and their receptors. Understanding how endothelial cells synthesize multiple biochemical signals can catalyze the development of novel therapeutic strategies to combat cancer. This study is the first to propose a signal transduction model highlighting the cross-talk between key receptors involved in angiogenesis, namely the VEGF, integrin, and cadherin receptors. From experimental data, we construct a network model of receptor cross-talk and analyze its dynamics. We identify relationships between receptor activation combinations and cellular function, and show that cross-talk is crucial to phenotype determination. The network converges to a unique set of output states that correspond to known cell phenotypes: migratory, proliferating, quiescent, apoptotic, and it predicts one phenotype that challenges the "go or grow" hypothesis. Finally, we use the model to study protein inhibition and to suggest molecular targets for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Amy L Bauer
- Theoretical Division, Los Alamos National Laboratory, Los Alamos 87545, USA.
| | | | | | | |
Collapse
|
211
|
Havrylov S, Redowicz MJ, Buchman VL. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 2010; 11:721-31. [PMID: 20331533 DOI: 10.1111/j.1600-0854.2010.01061.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ruk/CIN85 is an adaptor protein. Similar to many other proteins of this type, Ruk/CIN85 is known to take part in multiple cellular processes including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, programmed cell death and viral infection. Recent studies have also revealed the potential importance of Ruk/CIN85 in cancer cell invasiveness. In this review we summarize the various roles of this protein as well as the potential contribution of Ruk/CIN85 to malignancy and the invasiveness of cancer cells. In the last section of the paper we also speculate on the utility of Ruk/CIN85 as a target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Nencki Institute of Experimental Biology, Pasteura 3 Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
212
|
Foley PL, Shuler ML. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng 2010; 105:26-36. [PMID: 19816966 DOI: 10.1002/bit.22575] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The design and construction of an artificial bacterial cell could revolutionize biotechnological processes and technologies. A functional platform cell that can be easily customized for a pre-defined task would be useful for applications from producing therapeutics to decontaminating waste streams. The platform cell must be robust and highly efficient. A biotechnological platform cell is related to the concept of a minimal cell, but several factors beyond those necessary for a minimal cell must be considered for a synthetic organism designed for biotechnological applications. Namely, a platform cell must exhibit robust cell reproduction, decreased genetic drift, a physically robust cell envelope, efficient and simplified transcription and translation controls, and predictable metabolic interactions. Achieving a biotechnological platform cell will benefit from insights acquired from a minimal cell, but an approach of minimizing an existing organism's genome may be a more practical experimental approach. Escherichia coli possess many of the desired characteristics of a platform cell and could serve as a useful model organism for the design and construction of a synthetic platform organism. In this article we review briefly the current state of research in this field and outline specific characteristics that will be important for a biotechnologically relevant synthetic cell that has a minimized genome and efficient regulatory structure.
Collapse
Affiliation(s)
- P L Foley
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
213
|
Grünberg R, Ferrar TS, van der Sloot AM, Constante M, Serrano L. Building blocks for protein interaction devices. Nucleic Acids Res 2010; 38:2645-62. [PMID: 20215443 PMCID: PMC2860130 DOI: 10.1093/nar/gkq152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
214
|
Dunlop MJ, Keasling JD, Mukhopadhyay A. A model for improving microbial biofuel production using a synthetic feedback loop. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:95-104. [PMID: 20805930 PMCID: PMC2923299 DOI: 10.1007/s11693-010-9052-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
Abstract
Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.
Collapse
Affiliation(s)
- Mary J. Dunlop
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
- Department of Chemical Engineering, University of California, Berkeley, CA 94720 USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| |
Collapse
|
215
|
Agapakis CM, Ducat DC, Boyle PM, Wintermute EH, Way JC, Silver PA. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 2010; 4:3. [PMID: 20184755 PMCID: PMC2847965 DOI: 10.1186/1754-1611-4-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/25/2010] [Indexed: 02/04/2023] Open
Abstract
Background The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued. Results Here we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds. Conclusions Through the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.
Collapse
|
216
|
Abstract
Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.
Collapse
|
217
|
Establishment of extracellular signal-regulated kinase 1/2 bistability and sustained activation through Sprouty 2 and its relevance for epithelial function. Mol Cell Biol 2010; 30:1783-99. [PMID: 20123980 DOI: 10.1128/mcb.01003-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our objective was to establish an experimental model of a self-sustained and bistable extracellular signal-regulated kinase 1/2 (ERK1/2) signaling process. A single stimulation of cells with cytokines causes rapid ERK1/2 activation, which returns to baseline in 4 h. Repeated stimulation leads to sustained activation of ERK1/2 but not Jun N-terminal protein kinase (JNK), p38, or STAT6. The ERK1/2 activation lasts for 3 to 7 days and depends upon a positive-feedback mechanism involving Sprouty 2. Overexpression of Sprouty 2 induces, and its genetic deletion abrogates, ERK1/2 bistability. Sprouty 2 directly activates Fyn kinase, which then induces ERK1/2 activation. A genome-wide microarray analysis shows that the bistable phospho-ERK1/2 (pERK1/2) does not induce a high level of gene transcription. This is due to its nuclear exclusion and compartmentalization to Rab5+ endosomes. Cells with sustained endosomal pERK1/2 manifest resistance against growth factor withdrawal-induced cell death. They are primed for heightened cytokine production. Epithelial cells from cases of human asthma and from a mouse model of chronic asthma manifest increased pERK1/2, which is associated with Rab5+ endosomes. The increase in pERK1/2 was associated with a simultaneous increase in Sprouty 2 expression in these tissues. Thus, we have developed a cellular model of sustained ERK1/2 activation, which may provide a mechanistic understanding of self-sustained biological processes in chronic illnesses such as asthma.
Collapse
|
218
|
Jørgensen C, Linding R. Simplistic pathways or complex networks? Curr Opin Genet Dev 2010; 20:15-22. [PMID: 20096559 DOI: 10.1016/j.gde.2009.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/17/2009] [Accepted: 12/28/2009] [Indexed: 01/09/2023]
Abstract
Signaling events are frequently described in textbooks as linear cascades. However, in reality, input cues are processed by dynamic and context-specific networks, which are assembled from numerous signaling molecules. Diseases, such as cancer, are typically associated with multiple genomic alterations that likely change the structure and dynamics of cellular signaling networks. To assess the impact of such genomic alterations on the structure of signaling networks and on the ability of cells to accurately translate environmental cues into phenotypic changes, we argue studies must be conducted on a network level. Advances in technologies and computational approaches for data integration have permitted network studies of signaling events in both cancer and normal cells. Here we will review recent advances and how they have impacted our view on signaling networks with a specific angle on signal processing in cancer.
Collapse
Affiliation(s)
- Claus Jørgensen
- Cell Communication Team, The Institute of Cancer Research, Section of Cell and Molecular Biology, SW3 6JB, London, UK.
| | | |
Collapse
|
219
|
Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD. BglBricks: A flexible standard for biological part assembly. J Biol Eng 2010; 4:1. [PMID: 20205762 PMCID: PMC2822740 DOI: 10.1186/1754-1611-4-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 01/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standard biological parts, such as BioBricks parts, provide the foundation for a new engineering discipline that enables the design and construction of synthetic biological systems with a variety of applications in bioenergy, new materials, therapeutics, and environmental remediation. Although the original BioBricks assembly standard has found widespread use, it has several shortcomings that limit its range of potential applications. In particular, the system is not suitable for the construction of protein fusions due to an unfavorable scar sequence that encodes an in-frame stop codon. RESULTS Here, we present a similar but new composition standard, called BglBricks, that addresses the scar translation issue associated with the original standard. The new system employs BglII and BamHI restriction enzymes, robust cutters with an extensive history of use, and results in a 6-nucleotide scar sequence encoding glycine-serine, an innocuous peptide linker in most protein fusion applications. We demonstrate the utility of the new standard in three distinct applications, including the construction of constitutively active gene expression devices with a wide range of expression profiles, the construction of chimeric, multi-domain protein fusions, and the targeted integration of functional DNA sequences into specific loci of the E. coli genome. CONCLUSIONS The BglBrick standard provides a new, more flexible platform from which to generate standard biological parts and automate DNA assembly. Work on BglBrick assembly reactions, as well as on the development of automation and bioinformatics tools, is currently underway. These tools will provide a foundation from which to transform genetic engineering from a technically intensive art into a purely design-based discipline.
Collapse
Affiliation(s)
- J Christopher Anderson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
| | - Mariana Leguia
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
| | - Gabriel C Wu
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
| | - Jonathan A Goler
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
| | - Jay D Keasling
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
220
|
Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K, Matsuda M. The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J Biol Chem 2010; 285:7818-26. [PMID: 20051520 DOI: 10.1074/jbc.m109.053975] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.
Collapse
Affiliation(s)
- Rie Matsunaga-Udagawa
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. ACTA ACUST UNITED AC 2010; 6:65-80. [DOI: 10.1039/b909200p] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
222
|
|
223
|
Kämpf MM, Weber W. Synthetic biology in the analysis and engineering of signaling processes. Integr Biol (Camb) 2010; 2:12-24. [DOI: 10.1039/b913490e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
224
|
Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 2010; 39:515-37. [PMID: 20192780 PMCID: PMC2965450 DOI: 10.1146/annurev.biophys.050708.133652] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.
Collapse
Affiliation(s)
- Caleb J. Bashor
- Dept. of Cellular and Molecular Pharmacology University of California San Francisco San Francisco, CA 94143
| | - Andrew A. Horwitz
- Dept. of Cellular and Molecular Pharmacology University of California San Francisco San Francisco, CA 94143
| | - Sergio G. Peisajovich
- Dept. of Cellular and Molecular Pharmacology University of California San Francisco San Francisco, CA 94143
| | - Wendell A. Lim
- Dept. of Cellular and Molecular Pharmacology University of California San Francisco San Francisco, CA 94143
| |
Collapse
|
225
|
Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they're apart. Science 2009; 326:1220-4. [PMID: 19965465 DOI: 10.1126/science.1175668] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction can be defined as the coordinated relay of messages derived from extracellular cues to intracellular effectors. More simply put, information received on the cell surface is processed across the plasma membrane and transmitted to intracellular targets. This requires that the activators, effectors, enzymes, and substrates that respond to cellular signals come together when they need to.
Collapse
Affiliation(s)
- John D Scott
- Department of Pharmacology, Howard Hughes Medical Institute, Box 357750, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | |
Collapse
|
226
|
Weroński KJ, Cea P, Diez-Peréz I, Busquets MA, Prat J, Girona V. Time-Lapse Atomic Force Microscopy Observations of the Morphology, Growth Rate, and Spontaneous Alignment of Nanofibers Containing a Peptide-Amphiphile from the Hepatitis G Virus (NS3 Protein). J Phys Chem B 2009; 114:620-5. [DOI: 10.1021/jp9088436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Konrad J. Weroński
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Pilar Cea
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Ismael Diez-Peréz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Maria Antonia Busquets
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Victoria Girona
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
227
|
Houk AR, Millius A, Weiner OD. Compete globally, bud locally. Cell 2009; 139:656-8. [PMID: 19914160 DOI: 10.1016/j.cell.2009.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
How cells generate a single axis of polarity for mating, division, and movement is unknown. In this issue, Howell et al. (2009) use a synthetic biology approach to demonstrate that rapid competition for a soluble signaling component (Bem1) is essential to ensure a unique axis of polarity in budding yeast.
Collapse
Affiliation(s)
- Andrew R Houk
- Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
228
|
Mukherji S, van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 2009; 10:859-71. [PMID: 19898500 PMCID: PMC3138802 DOI: 10.1038/nrg2697] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems - from synthetic promoters to the control of cell-cell interactions - has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics.
Collapse
Affiliation(s)
- Shankar Mukherji
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
229
|
Abstract
Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological "devices" that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This review surveys recent advances in eukaryotic synthetic biology and describes how synthetic systems can be linked to natural cellular processes in order to manipulate cell behavior and to foster new discoveries in cell biology research.
Collapse
Affiliation(s)
- Karmella A Haynes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
230
|
Alterovitz G, Muso T, Ramoni MF. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms. Brief Bioinform 2009; 11:80-95. [PMID: 19906839 DOI: 10.1093/bib/bbp054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms.
Collapse
Affiliation(s)
- Gil Alterovitz
- Children's Hospital Informatics Program, Harvard/MITDivision of Health Sciences and Technology, USA
| | | | | |
Collapse
|
231
|
Chapman SA, Asthagiri AR. Quantitative effect of scaffold abundance on signal propagation. Mol Syst Biol 2009; 5:313. [PMID: 19888208 PMCID: PMC2779087 DOI: 10.1038/msb.2009.73] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 09/09/2009] [Indexed: 11/10/2022] Open
Abstract
Protein scaffolds bring together multiple components of a signalling pathway, thereby promoting signal propagation along a common physical ‘backbone'. Scaffolds play a prominent role in natural signalling pathways and provide a promising platform for synthetic circuits. To better understand how scaffolding quantitatively affects signal transmission, we conducted an in vivo sensitivity analysis of the yeast mating pathway to a broad range of perturbations in the abundance of the scaffold Ste5. Our measurements show that signal throughput exhibits a biphasic dependence on scaffold concentration and that altering the amount of scaffold binding partners reshapes this biphasic dependence. Unexpectedly, the wild-type level of Ste5 is ∼10-fold below the optimum needed to maximize signal throughput. This sub-optimal configuration may be a tradeoff as increasing Ste5 expression promotes baseline activation of the mating pathway. Furthermore, operating at a sub-optimal level of Ste5 may provide regulatory flexibility as tuning Ste5 expression up or down directly modulates the downstream phenotypic response. Our quantitative analysis reveals performance tradeoffs in scaffold-based modules and defines engineering challenges for implementing molecular scaffolds in synthetic pathways.
Collapse
Affiliation(s)
- Stephen A Chapman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
232
|
Dougherty MJ, Arnold FH. Directed evolution: new parts and optimized function. Curr Opin Biotechnol 2009; 20:486-91. [PMID: 19720520 DOI: 10.1016/j.copbio.2009.08.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Constructing novel biological systems that function in a robust and predictable manner requires better methods for discovering new functional molecules and for optimizing their assembly in novel biological contexts. By enabling functional diversification and optimization in the absence of detailed mechanistic understanding, directed evolution is a powerful complement to 'rational' engineering approaches. Aided by clever selection schemes, directed evolution has generated new parts for genetic circuits, cell-cell communication systems, and non-natural metabolic pathways in bacteria.
Collapse
Affiliation(s)
- Michael J Dougherty
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
233
|
Stein A, Pache RA, Bernadó P, Pons M, Aloy P. Dynamic interactions of proteins in complex networks: a more structured view. FEBS J 2009; 276:5390-405. [PMID: 19712106 DOI: 10.1111/j.1742-4658.2009.07251.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
234
|
The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 2009; 10:410-22. [PMID: 19461664 DOI: 10.1038/nrm2698] [Citation(s) in RCA: 689] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic biology is a research field that combines the investigative nature of biology with the constructive nature of engineering. Efforts in synthetic biology have largely focused on the creation and perfection of genetic devices and small modules that are constructed from these devices. But to view cells as true 'programmable' entities, it is now essential to develop effective strategies for assembling devices and modules into intricate, customizable larger scale systems. The ability to create such systems will result in innovative approaches to a wide range of applications, such as bioremediation, sustainable energy production and biomedical therapies.
Collapse
|
235
|
Zeke A, Lukács M, Lim WA, Reményi A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol 2009; 19:364-74. [PMID: 19651513 DOI: 10.1016/j.tcb.2009.05.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022]
Abstract
Scaffold proteins influence cellular signalling by binding to multiple signalling enzymes, receptors or ion channels. Although normally devoid of catalytic activity, they have a big impact on controlling the flow of signalling information. By assembling signalling proteins into complexes, they play the part of signal processing hubs. As we learn more about the way signalling components are linked into natural signalling circuits, researchers are becoming interested in building non-natural signalling pathways to test our knowledge and/or to intentionally reprogram cellular behaviour. In this review, we discuss the role of scaffold proteins as efficient tools for assembling intracellular signalling complexes, both natural and artificial.
Collapse
Affiliation(s)
- András Zeke
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | | | | | | |
Collapse
|
236
|
Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 2009; 27:753-9. [PMID: 19648908 DOI: 10.1038/nbt.1557] [Citation(s) in RCA: 932] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/07/2009] [Indexed: 11/08/2022]
Abstract
Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/l) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux.
Collapse
|
237
|
Tian XJ, Zhang XP, Liu F, Wang W. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011926. [PMID: 19658748 DOI: 10.1103/physreve.80.011926] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Indexed: 05/28/2023]
Abstract
Positive and negative feedback loops are often coupled to perform various functions in gene regulatory networks, acting as bistable switches, oscillators, and excitable devices. It is implied that such a system with interlinked positive and negative feedback loops is a flexible motif that can modulate itself among various functions. Here, we developed a minimal model for the system and systematically explored its dynamics and performance advantage in response to stimuli in a unifying framework. The system indeed displays diverse behaviors when the strength of feedback loops is changed. First, the system can be tunable from monostability to bistability by increasing the strength of positive feedback, and the bistability regime is modulated by the strength of negative feedback. Second, the system undergoes transitions from bistability to excitability and to oscillation with increasing the strength of negative feedback, and the reverse conversion occurs by enhancing the strength of positive feedback. Third, the system is more flexible than a single feedback loop; it can produce robust larger-amplitude oscillations over a wider stimulus regime compared with a single time-delayed negative feedback loop. Furthermore, the tunability of the system depends mainly on the topology of coupled feedback loops but less on the exact parameter values or the mode of interactions between model components. Thus, our results interpret why such a system represents a tunable motif and can accomplish various functions. These also suggest that coupled feedback loops can act as toolboxes for engineering diverse functional circuits in synthetic biology.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
238
|
Abstract
Biocomputers are man-made biological networks whose goal is to probe and control biological hosts--cells and organisms--in which they operate. Their key design features, informed by computer science and engineering, are programmability, modularity and versatility. While still a work in progress, biocomputers will eventually enable disease diagnosis and treatment with single-cell precision, lead to "designer" cell functions for biotechnology, and bring about a new generation of biological measurement tools. This review describes the intellectual foundation of the "biocomputer" concept as well as surveys the state of the art in the field.
Collapse
Affiliation(s)
- Yaakov Benenson
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
239
|
Abstract
Scaffold proteins contribute to the spatiotemporal control of MAPK signaling and KSR1 is an ERK cascade scaffold that localizes to the plasma membrane in response to growth factor treatment. To better understand the molecular mechanisms of KSR1 function, we examined the interaction of KSR1 with each of the ERK cascade components, Raf, MEK, and ERK. Here, we identify a hydrophobic motif within the proline-rich sequence (PRS) of MEK1 and MEK2 that is required for constitutive binding to KSR1 and find that MEK binding and residues in the KSR1 CA1 region enable KSR1 to form a ternary complex with B-Raf and MEK following growth factor treatment that enhances MEK activation. We also find that docking of active ERK to the KSR1 scaffold allows ERK to phosphorylate KSR1 and B-Raf on feedback S/TP sites. Strikingly, feedback phosphorylation of KSR1 and B-Raf promote their dissociation and result in the release of KSR1 from the plasma membrane. Together, these findings provide unique insight into the signaling dynamics of the KSR1 scaffold and reveal that through regulated interactions with Raf and ERK, KSR1 acts to both potentiate and attenuate ERK cascade activation, thus regulating the intensity and duration of ERK cascade signaling emanating from the plasma membrane during growth factor signaling.
Collapse
|
240
|
Abstract
Redesigning ‘surface patches’ on a mitogen-activated protein kinase can change its interactions with other proteins. Recent studies on the modularity of mitogen-activated protein kinases show how redesigning 'surface patches' on a protein can change the topology of a signaling network.
Collapse
|
241
|
Ostermeier M. Designing switchable enzymes. Curr Opin Struct Biol 2009; 19:442-8. [PMID: 19473830 DOI: 10.1016/j.sbi.2009.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/20/2009] [Indexed: 12/01/2022]
Abstract
The modulation of enzyme function is a key regulatory feature of biological systems. The ability to engineer synthetic enzymes that can be controlled by any arbitrary signal would enable a wide array of sensing applications and therapeutics and provide us with powerful tools for the basic study of biology. Here several recent advances in the engineering of switchable enzymes through domain fusion are discussed.
Collapse
Affiliation(s)
- Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
242
|
Pryciak PM. Designing new cellular signaling pathways. ACTA ACUST UNITED AC 2009; 16:249-54. [PMID: 19318206 DOI: 10.1016/j.chembiol.2009.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 01/09/2023]
Abstract
All cells respond to signals from the environment. Extracellular stimuli activate intracellular signal transduction pathways that make decisions about cell identity, behavior, and survival. A nascent field aims to design and construct new signaling pathways beyond those found in nature. Current strategies exploit the structural modularity of many signaling proteins, which makes them inherently amenable to domain-swapping tactics that exchange their input and output connections. The results reveal a remarkable degree of functional plasticity in signaling proteins and pathways, as well as regulatory logic that can be transported to new proteins. Modified adaptor and scaffold proteins can reroute signal traffic and adjust the response behavior of the pathway circuit. These synthetic biology approaches promise to deepen our understanding of existing signaling pathways and spur the development of new cellular tools for research, industry, and medicine.
Collapse
Affiliation(s)
- Peter M Pryciak
- Department of Molecular Genetics & Microbiology, and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605,USA.
| |
Collapse
|
243
|
Groban ES, Clarke EJ, Salis HM, Miller SM, Voigt CA. Kinetic buffering of cross talk between bacterial two-component sensors. J Mol Biol 2009; 390:380-93. [PMID: 19445950 DOI: 10.1016/j.jmb.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Two-component systems are a class of sensors that enable bacteria to respond to environmental and cell-state signals. The canonical system consists of a membrane-bound sensor histidine kinase that autophosphorylates in response to a signal and transfers the phosphate to an intracellular response regulator. Bacteria typically have dozens of two-component systems. The key questions are whether these systems are linear and, if they are, how cross talk between systems is buffered. In this work, we studied the EnvZ/OmpR and CpxA/CpxR systems from Escherichia coli, which have been shown previously to exhibit slow cross talk in vitro. Using in vitro radiolabeling and a rapid quenched-flow apparatus, we experimentally measured 10 biochemical parameters capturing the cognate and non-cognate phosphotransfer reactions between the systems. These data were used to parameterize a mathematical model that was used to predict how cross talk is affected as different genes are knocked out. It was predicted that significant cross talk between EnvZ and CpxR only occurs for the triple mutant DeltaompR DeltacpxA DeltaactA-pta. All seven combinations of these knockouts were made to test this prediction and only the triple mutant demonstrated significant cross talk, where the cpxP promoter was induced 280-fold upon the activation of EnvZ. Furthermore, the behavior of the other knockouts agrees with the model predictions. These results support a kinetic model of buffering where both the cognate bifunctional phosphatase activity and the competition between regulator proteins for phosphate prevent cross talk in vivo.
Collapse
Affiliation(s)
- Eli S Groban
- University of California, San Francisco, 94158, USA
| | | | | | | | | |
Collapse
|
244
|
Miyatake M, Rubinstein TJ, McLennan GP, Belcheva MM, Coscia CJ. Inhibition of EGF-induced ERK/MAP kinase-mediated astrocyte proliferation by mu opioids: integration of G protein and beta-arrestin 2-dependent pathways. J Neurochem 2009; 110:662-74. [PMID: 19457093 DOI: 10.1111/j.1471-4159.2009.06156.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although micro, kappa, and delta opioids activate extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase, the mechanisms involved in their signaling pathways and the cellular responses that ensue differ. Here we focused on the mechanisms by which micro opioids rapidly (min) activate ERK and their slower (h) actions to inhibit epidermal growth factor (EGF)-induced ERK-mediated astrocyte proliferation. The micro-opioid agonists ([d-ala(2), mephe(4), gly-ol(5)] enkephalin and morphine) promoted the phosphorylation of ERK/MAP kinase within 5 min via G(i/o) protein, calmodulin (CaM), and beta-arrestin2-dependent signaling pathways in immortalized and primary astrocytes. This was based on the attenuation of the micro-opioid activation of ERK by pertussis toxin (PTX), the CaM antagonist, W-7, and siRNA silencing of beta-arrestin2. All three pathways were shown to activate ERK via an EGF receptor transactivation-mediated mechanism. This was disclosed by abolishment of micro-opioid-induced ERK phosphorylation with the EGF receptor-specific tyrosine phosphorylation inhibitor, AG1478, and micro-opioid-induced reduction of EGF receptor tyrosine phosphorylation by PTX, and beta-arrestin2 targeting siRNA in the present studies and formerly by CaM antisense. Long-term (h) treatment of primary astrocytes with [d-ala(2),mephe(4),gly-ol(5)] enkephalin or morphine, attenuated EGF-induced ERK phosphorylation and proliferation (as measured by 5'-bromo-2'-deoxy-uridine labeling). PTX and beta-arrestin2 siRNA but not W-7 reversed the micro-opioid inhibition. Unexpectedly, beta-arrestin-2 siRNA diminished both EGF-induced ERK activation and primary astrocyte proliferation suggesting that this adaptor protein plays a novel role in EGF signaling as well as in the opioid receptor phase of this pathway. The results lend insight into the integration of the different micro-opioid signaling pathways to ERK and their cellular responses.
Collapse
Affiliation(s)
- Mayumi Miyatake
- E. A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
245
|
Soyer OS, Kuwahara H, Csikász-Nagy A. Regulating the total level of a signaling protein can vary its dynamics in a range from switch like ultrasensitivity to adaptive responses. FEBS J 2009; 276:3290-8. [PMID: 19438711 DOI: 10.1111/j.1742-4658.2009.07054.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological signaling networks can exhibit rich response dynamics including ultrasensitivity, adaptation to persistent stimuli and oscillations. Previous modeling efforts have considered the proteins in these networks as two-state entities and their total levels as fixed quantities. However, inside the cell, most molecules are in constant flux because of various processes such as degradation, synthesis, binding of scaffold proteins and release from vesicles. The resulting freedom in the amount of signaling protein that is available for signaling has not been explored. Here, we analyze the response dynamics of a signaling protein when it enters the signaling pool in one state (modified or unmodified) and exits in both states. When the exit rates of these two states are comparable, a persistent stimulus results in step responses and can produce ultrasensitivity, as shown previously. However, we find that when the exit rates are imbalanced, the signaling protein gives transient responses to persistent stimuli even though the system does not have any explicit feedback. Further, these rates determine the signal range over which the system is responsive. Building small networks from signaling proteins with different exit rates, we show that these systems can exhibit rich behavior. Taken together, these findings indicate that altering the total level of signaling proteins can significantly change their response and provide additional richness in system dynamics. We discuss relevant biological examples in which regulating total protein levels could be exploited to alter signaling behavior.
Collapse
Affiliation(s)
- Orkun S Soyer
- Microsoft Research-University of Trento Centre for Computational and Systems Biology, Italy.
| | | | | |
Collapse
|
246
|
Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Enzyme cascades activated on topologically programmed DNA scaffolds. NATURE NANOTECHNOLOGY 2009; 4:249-54. [PMID: 19350036 DOI: 10.1038/nnano.2009.50] [Citation(s) in RCA: 553] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/18/2009] [Indexed: 05/02/2023]
Abstract
The ability of DNA to self-assemble into one-, two- and three-dimensional nanostructures, combined with the precision that is now possible when positioning nanoparticles or proteins on DNA scaffolds, provide a promising approach for the self-organization of composite nanostructures. Predicting and controlling the functions that emerge in self-organized biomolecular nanostructures is a major challenge in systems biology, and although a number of innovative examples have been reported, the emergent properties of systems in which enzymes are coupled together have not been fully explored. Here, we report the self-assembly of a DNA scaffold made of DNA strips that include 'hinges' to which biomolecules can be tethered. We attach either two enzymes or a cofactor-enzyme pair to the scaffold, and show that enzyme cascades or cofactor-mediated biocatalysis can proceed effectively; similar processes are not observed in diffusion-controlled homogeneous mixtures of the same components. Furthermore, because the relative position of the two enzymes or the cofactor-enzyme pair is determined by the topology of the DNA scaffold, it is possible to control the reactivity of the system through the design of the individual DNA strips. This method could lead to the self-organization of complex multi-enzyme cascades.
Collapse
Affiliation(s)
- Ofer I Wilner
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
247
|
Modularity of MAP kinases allows deformation of their signalling pathways. Nat Cell Biol 2009; 11:484-91. [PMID: 19295513 DOI: 10.1038/ncb1856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinase pathways have both grown in number and changed their network architecture during evolution. We wondered if there are pivotal proteins in these pathways that have been repeatedly responsible for forming new connections through evolution, thus changing the topology of the network; and if so, whether the underlying properties of these proteins could be exploited to re-engineer and rewire these pathways. We addressed these questions in the context of the mitogen-activated protein kinase (MAPK) pathways. MAPK proteins were found to have repeatedly acquired new specificities and interaction partners during evolution, suggesting that these proteins are pivotal in the kinase network. Using the MAPKs Fus3 and Hog1 of the Saccharomyces cerevisiae mating and hyper-osmolar pathways, respectively, we show that these pivotal proteins can be re-designed to achieve a wide variety of changes in the input-output properties of the MAPK network. Through an analysis of our experimental results and of the sequence and structure of these proteins, we show that rewiring of the network is possible due to the underlying modular design of the MAPKs. We discuss the implications of our findings on the radiation of MAPKs through evolution and on how these proteins achieve their specificity.
Collapse
|
248
|
Mou Z, Tapper AR, Gardner PD. The armadillo repeat-containing protein, ARMCX3, physically and functionally interacts with the developmental regulatory factor Sox10. J Biol Chem 2009; 284:13629-13640. [PMID: 19304657 DOI: 10.1074/jbc.m901177200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sox10 is a member of the group E Sox transcription factor family and plays key roles in neural crest development and subsequent cellular differentiation. Sox10 binds to regulatory sequences in target genes via its conserved high mobility group domain. In most cases, Sox10 exerts its transcriptional effects in concert with other DNA-binding factors, adaptor proteins, and nuclear import proteins. These interactions can lead to synergistic gene activation and can be cell type-specific. In earlier work, we demonstrated that Sox10 transactivates the nicotinic acetylcholine receptor alpha3 and beta4 subunit genes and does so only in neuronal-like cell lines, raising the possibility that Sox10 mediates its effects via interactions with co-regulatory factors. Here we describe the identification of the armadillo repeat-containing protein, ARMCX3, as a Sox10-interacting protein. Biochemical analyses indicate that ARMCX3 is an integral membrane protein of the mitochondrial outer membrane. Others have shown that Sox10 is a nucleocytoplasmic shuttling protein. We extend this observation and demonstrate that, in the cytoplasm, Sox10 is peripherally associated with the mitochondrial outer membrane. Both Sox10 and ARMCX3 are expressed in mouse brain and spinal cord as well as several cell lines. Overexpression of ARMCX3 increased the amount of mitochondrially associated Sox10. In addition, although ARMCX3 does not possess intrinsic transcriptional activity, it does enhance transactivation of the nicotinic acetylcholine receptor alpha3 and beta4 subunit gene promoters by Sox10. These results suggest that Sox10 is a membrane-associated factor whose transcriptional function is increased by direct interactions with ARMCX3 and raise the possibility of a signal transduction cascade between the nucleus and mitochondria through Sox10/ARMCX3 interactions.
Collapse
Affiliation(s)
- Zhongming Mou
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604.
| |
Collapse
|
249
|
Weber W, Luzi S, Karlsson M, Sanchez-Bustamante CD, Frey U, Hierlemann A, Fussenegger M. A synthetic mammalian electro-genetic transcription circuit. Nucleic Acids Res 2009; 37:e33. [PMID: 19190091 PMCID: PMC2651811 DOI: 10.1093/nar/gkp014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.
Collapse
Affiliation(s)
- Wilfried Weber
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
250
|
KSR1 modulates the sensitivity of mitogen-activated protein kinase pathway activation in T cells without altering fundamental system outputs. Mol Cell Biol 2009; 29:2082-91. [PMID: 19188442 DOI: 10.1128/mcb.01634-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that regulate cell fate decisions. They generate a wide range of signal outputs, including graded and digital responses. In T cells, MAPK activation is digital in response to T-cell-receptor stimulation; however, whether other receptors on T cells that lead to MAPK activation are graded or digital is unknown. Here we evaluate MAPK activation in T cells at the single-cell level. We show that T cells responded digitally to stimulation with superantigen-loaded antigen-presenting cells, whereas they responded in a graded manner to the chemokine SDF-1, demonstrating that the system output of the MAPK module is highly plastic and determined by components upstream of the MAPK module. These findings also confirm that different MAPK system outputs are used by T cells to control discrete biological functions. Scaffold proteins are essential for proper MAPK signaling and function as they physically assemble multiple components and regulators of MAPK cascades. We found that the scaffold protein KSR1 regulated the threshold required for MAPK activation in T cells without affecting the nature of the response. We conclude that KSR1 plays a central role in determining the sensitivity of T-cell responses and is thus well positioned as a key control point.
Collapse
|