201
|
Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, Santos F, Nagano T, Cobb BS, Fraser P, Reik W. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 2009; 136:525-30. [PMID: 19144718 DOI: 10.1242/dev.031328] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs are implicated in a number of regulatory functions in eukaryotic genomes. The paternally expressed long noncoding RNA (ncRNA) Kcnq1ot1 regulates epigenetic gene silencing in an imprinted gene cluster in cis over a distance of 400 kb in the mouse embryo, whereas the silenced region extends over 780 kb in the placenta. Gene silencing by the Kcnq1ot1 RNA involves repressive histone modifications, including H3K9me2 and H3K27me3, which are partly brought about by the G9a and Ezh2 histone methyltransferases. Here, we show that Kcnq1ot1 is transcribed by RNA polymerase II, is unspliced, is relatively stable and is localised in the nucleus. Analysis of conditional Dicer mutants reveals that the RNAi pathway is not involved in gene silencing in the Kcnq1ot1 cluster. Instead, using RNA/DNA FISH we show that the Kcnq1ot1 RNA establishes a nuclear domain within which the genes that are epigenetically inactivated in cis are frequently found, whereas nearby genes that are not regulated by Kcnq1ot1 are localised outside of the domain. The Kcnq1ot1 RNA domain is larger in the placenta than in the embryo, consistent with more genes in the cluster being silenced in the placenta. Our results show for the first time that autosomal long ncRNAs can establish nuclear domains, which might create a repressive environment for epigenetic silencing of adjacent genes. Long ncRNAs in imprinting clusters and the Xist RNA on the inactive X chromosome thus appear to regulate epigenetic gene silencing by similar mechanisms.
Collapse
Affiliation(s)
- Lisa Redrup
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol 2009; 29:1487-97. [PMID: 19124606 DOI: 10.1128/mcb.01519-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Double-stranded RNA (dsRNA)-binding proteins interact with substrate RNAs via dsRNA-binding domains (dsRBDs). Several proteins harboring these domains exhibit nucleocytoplasmic shuttling and possibly remain associated with their substrate RNAs bound in the nucleus during nuclear export. In the human RNA-editing enzyme ADAR1-c, the nuclear localization signal overlaps the third dsRBD, while the corresponding import factor is unknown. The protein also lacks a clear nuclear export signal but shuttles between the nucleus and the cytoplasm. Here we identify transportin-1 as the import receptor for ADAR1. Interestingly, dsRNA binding interferes with transportin-1 binding. At the same time, each of the dsRBDs in ADAR1 interacts with the export factor exportin-5. RNA binding stimulates this interaction but is not a prerequisite. Thus, our data demonstrate a role for some dsRBDs as RNA-sensitive nucleocytoplasmic transport signals. dsRBD3 in ADAR1 can mediate nuclear import, while interaction of all dsRBDs might control nuclear export. This finding may have implications for other proteins containing dsRBDs and suggests a selective nuclear export mechanism for substrates interacting with these proteins.
Collapse
|
203
|
Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. Bioessays 2009; 31:51-9. [DOI: 10.1002/bies.080099] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
204
|
Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 2008; 93:291-8. [PMID: 19071207 DOI: 10.1016/j.ygeno.2008.11.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/16/2008] [Indexed: 02/07/2023]
Abstract
Recently, it was discovered that non-protein-coding RNAs (ncRNAs) represent the majority of the human transcripts. Regulatory role of many classes of ncRNAs is broadly recognized; however, long intronic ncRNAs have received little attention. In the past few years, evidence that intronic regions are key sources of regulatory ncRNAs has first appeared. Here we present an updated vision of the intronic ncRNA world, giving special attention to the long intronic ncRNAs. We summarize aspects of their expression pattern, evolutionary constraints, biogenesis, and responsiveness to physiological stimuli, and postulate their mechanisms of action. Deciphering nature's choice of different types of messages conveyed by ncRNAs will shed light on the RNA-based layer of regulatory processes in eukaryotic cells.
Collapse
Affiliation(s)
- Rodrigo Louro
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
205
|
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322:750-6. [PMID: 18974356 DOI: 10.1126/science.1163045] [Citation(s) in RCA: 1230] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To equalize X-chromosome dosages between the sexes, the female mammal inactivates one of her two X chromosomes. X-chromosome inactivation (XCI) is initiated by expression of Xist, a 17-kb noncoding RNA (ncRNA) that accumulates on the X in cis. Because interacting factors have not been isolated, the mechanism by which Xist induces silencing remains unknown. We discovered a 1.6-kilobase ncRNA (RepA) within Xist and identified the Polycomb complex, PRC2, as its direct target. PRC2 is initially recruited to the X by RepA RNA, with Ezh2 serving as the RNA binding subunit. The antisense Tsix RNA inhibits this interaction. RepA depletion abolishes full-length Xist induction and trimethylation on lysine 27 of histone H3 of the X. Likewise, PRC2 deficiency compromises Xist up-regulation. Therefore, RepA, together with PRC2, is required for the initiation and spread of XCI. We conclude that a ncRNA cofactor recruits Polycomb complexes to their target locus.
Collapse
Affiliation(s)
- Jing Zhao
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
206
|
Bühler M. RNA turnover and chromatin-dependent gene silencing. Chromosoma 2008; 118:141-51. [DOI: 10.1007/s00412-008-0195-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/31/2022]
|
207
|
Feil R. Epigenetics, an emerging discipline with broad implications. C R Biol 2008; 331:837-43. [DOI: 10.1016/j.crvi.2008.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 12/19/2022]
|
208
|
Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta Gen Subj 2008; 1790:936-47. [PMID: 19015002 DOI: 10.1016/j.bbagen.2008.10.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/09/2008] [Accepted: 10/12/2008] [Indexed: 01/19/2023]
Abstract
Genomic analyses have demonstrated that although less than 2% of the mammalian genome encodes proteins, at least two thirds is transcribed. Many nontranslated RNAs have now been characterized, and several long transcripts, ranging from 0.5 to over 100 kb, have been shown to regulate gene expression by modifying chromatin structure. Functions uncovered at a few well characterized loci demonstrate a wide diversity of mechanisms by which long noncoding RNAs can regulate chromatin over a single promoter, a gene cluster, or an entire chromosome, in order to activate or silence genes in cis or in trans. In reviewing the activities of these ncRNAs, we will look for common features in their interactions with the chromatin modifying machinery, and highlight new experimental approaches by which to address outstanding issues in ncRNA-dependent regulation of gene expression in development, disease and evolution.
Collapse
|
209
|
Seim I, Carter SL, Herington AC, Chopin LK. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Mol Biol 2008; 9:95. [PMID: 18954468 PMCID: PMC2621237 DOI: 10.1186/1471-2199-9-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
210
|
Abstract
X-chromosome inactivation occurs randomly for one of the two X chromosomes in female cells during development. Inactivation occurs when RNA transcribed from the Xist gene on the X chromosome from which it is expressed spreads to coat the whole X chromosome. In the first issue of Epigenetics and Chromatin, Nesterova and colleagues investigate the role of the RNA interference pathway enzyme Dicer in DNA methylation of the Xist promoter.
Collapse
|
211
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
212
|
Baulcombe D. Of maize and men, or peas and people: case histories to justify plants and other model systems. Nat Med 2008; 14:1046-9. [PMID: 18841146 DOI: 10.1038/nm1008-1046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Baulcombe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
213
|
Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res 2008; 37:D122-6. [PMID: 18829717 PMCID: PMC2686506 DOI: 10.1093/nar/gkn617] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, thousands of long non-protein-coding RNAs (ncRNAs) (>200 nt) have recently been described. However, the biological significance and function of the vast majority of these transcripts remain unclear. We have constructed a public repository, the Noncoding RNA Expression Database (NRED), which provides gene expression information for thousands of long ncRNAs in human and mouse. The database contains both microarray and in situ hybridization data, much of which is described here for the first time. NRED also supplies a rich tapestry of ancillary information for featured ncRNAs, including evolutionary conservation, secondary structure evidence, genomic context links and antisense relationships. The database is available at http://jsm-research.imb.uq.edu.au/NRED, and the web interface enables both advanced searches and data downloads. Taken together, NRED should significantly advance the study and understanding of long ncRNAs, and provides a timely and valuable resource to the scientific community.
Collapse
Affiliation(s)
- Marcel E Dinger
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
214
|
Peters J, Robson JE. Imprinted noncoding RNAs. Mamm Genome 2008; 19:493-502. [DOI: 10.1007/s00335-008-9139-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
215
|
Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet 2008; 24:511-7. [PMID: 18778867 DOI: 10.1016/j.tig.2008.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/15/2023]
Abstract
For many decades after its initial characterization, heterochromatin was considered to be transcriptionally inert, but newer work indicates that this highly condensed chromosomal material is transcribed, and rapidly silenced, by an orchestrated sequence of events directed by RNA interference (RNAi). Recent studies shed light on the timely assembly and inheritance of heterochromatin within a short period during the cell cycle, thereby providing an explanation for how 'silent' heterochromatin can be transcribed during the S phase of the cell cycle. Together, these findings suggest a model of RNAi-directed epigenetic inheritance.
Collapse
Affiliation(s)
- Anna Kloc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
216
|
Smalheiser NR, Lugli G, Torvik VI, Mise N, Ikeda R, Abe K. Natural antisense transcripts are co-expressed with sense mRNAs in synaptoneurosomes of adult mouse forebrain. Neurosci Res 2008; 62:236-9. [PMID: 18812194 DOI: 10.1016/j.neures.2008.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 11/25/2022]
Abstract
Natural antisense transcripts and overlapping sense transcripts are expressed in a variety of tissues, including adult mouse brain. Here we show that a subset of mRNA-like sense-antisense transcript pairs are co-expressed within synaptoneurosomes of adult mouse forebrain, a subcellular fraction that is enriched in pinched-off dendritic spines of pyramidal neurons. Several of these pairs involve mRNAs that have been implicated in synaptic functions and in Alzheimer disease pathways. This study provides evidence that a new class of noncoding RNAs (natural antisense transcripts) are expressed near synapses, and encourages further studies of their roles in neuronal function.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry and Psychiatric Institute, University of Illinois-Chicago, 1601 W. Taylor Street MC912, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
217
|
Research highlights. Nat Genet 2008. [DOI: 10.1038/ng0708-825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|