201
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
202
|
Treating COVID-19: Targeting the Host Response, Not the Virus. Life (Basel) 2023; 13:life13030712. [PMID: 36983871 PMCID: PMC10054780 DOI: 10.3390/life13030712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE inhibitors, and ARBs, especially if used in combination, might be the only practical way to save the lives of patients with severe COVID-19. These drugs will already be available in all countries on the first pandemic day. Because they target the host response to infection instead of the virus, they could be used to save lives during any pandemic. Observational studies show that inpatient statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic research must include testing combination generic drug treatments that could be used in LMICs.
Collapse
|
203
|
Gebrezgiher GB, Makundi RH, Katakweba AAS, Belmain SR, Lyimo CM, Meheretu Y. Arthropod Ectoparasites of Two Rodent Species Occurring in Varied Elevations on Tanzania’s Second Highest Mountain. BIOLOGY 2023; 12:biology12030394. [PMID: 36979086 PMCID: PMC10045264 DOI: 10.3390/biology12030394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Climate change causes organisms, including species that act as parasite reservoirs and vectors, to shift their distribution to higher altitudes, affecting wildlife infestation patterns. We studied how ectoparasite distributions varied with altitude using two rodent species, Montemys delectorum and Rhabdomys dilectus, at different elevations (1500–3500 m). The ectoparasites infesting the two rodent species were influenced by the host sex, species, and temperature. We expected host density to predict parasite infestation patterns, because hosts in higher densities should have more parasites due to increased contact between individuals. However, temperature, not host density, affected ectoparasite distribution. Since temperatures decrease with elevation, parasite prevalences and abundances were lower at higher elevations, highlighting that the cold conditions at higher elevations limit reproduction and development—this shows that higher elevation zones are ideal for conservation. The rodents and ectoparasite species described in this study have been reported as vectors of diseases of medical and veterinary importance, necessitating precautions. Moreover, Mount Meru is a refuge for a number of endemic and threatened species on the IUCN Red List. Thus, the parasitic infection can also be an additional risk to these critical species as well as biodiversity in general. Therefore, our study lays the groundwork for future wildlife disease surveillance and biodiversity conservation management actions. The study found a previously uncharacterized mite species in the Mesostigmata group that was previously known to be a parasite of honeybees. Further investigations may shed light into the role of this mite species on Mount Meru.
Collapse
Affiliation(s)
- Genet B. Gebrezgiher
- African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro P.O. Box 3073, Tanzania
- Department of Biology, Mekelle University, Mekelle P.O. Box 231, Ethiopia
- Correspondence: ; Tel.:+255-710-421-237
| | - Rhodes H. Makundi
- African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
| | - Abdul A. S. Katakweba
- African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro P.O. Box 3110, Tanzania
| | - Steven R. Belmain
- Natural Resources Institute, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Charles M. Lyimo
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro P.O. Box 3004, Tanzania
| | - Yonas Meheretu
- Department of Biology, Mekelle University, Mekelle P.O. Box 231, Ethiopia
- Institute of Mountain Research and Development, Mekelle University, Mekelle P.O. Box 3102, Ethiopia
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden
| |
Collapse
|
204
|
Palma Albornoz SP, Fraga-Silva TF, de Carvalho RV, Rodrigues TS, Gembre AF, de Oliveira RS, de Souza FM, Corrêa GF, Ramalho LN, Carlos D, de Almeida DC, Câmara NO, Zamboni DS, Takahashi VN, Sorgi CA, Faccioli LH, Medeiros AI, Costa DL, Bonato VL. Cell death induced by NLRP3-palmitate axis impairs pulmonary damage tolerance and aggravates immunopathology during obesity-tuberculosis comorbidity. J Pathol 2023; 259:291-303. [PMID: 36441400 DOI: 10.1002/path.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A low-grade and persistent inflammation, which is the hallmark of obesity, requires the participation of NLRP3 and cell death. During Mycobacterium tuberculosis infection, NLRP3 signaling is important for bacterial killing by macrophages in vitro but was shown to be dispensable for host protection in vivo. We hypothesized that during obesity-tuberculosis (TB) comorbidity, NLRP3 signaling might play a detrimental role by inducing excessive inflammation. We employed a model of high-fat-diet-induced obesity, followed by M. tuberculosis infection in C57BL/6 mice. Obese mice presented increased susceptibility to infection and pulmonary immunopathology compared to lean mice. Using treatment with NLRP3 antagonist and Nlrp3-/- mice, we showed that NLRP3 signaling promoted cell death, with no effect in bacterial loads. The levels of palmitate were higher in the lungs of obese infected mice compared to lean counterparts, and we observed that this lipid increased M. tuberculosis-induced macrophage death in vitro, which was dependent on NLRP3 and caspase-1. At the chronic phase, although lungs of obese Nlrp3-/- mice showed an indication of granuloma formation compared to obese wild-type mice, there was no difference in the bacterial load. Our findings indicate that NLRP3 may be a potential target for host-directed therapy to reduce initial and severe inflammation-mediated disease and to treat comorbidity-associated TB. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sandra P Palma Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Thais Fc Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Renan Vh de Carvalho
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Tamara S Rodrigues
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Fernanda Mesquita de Souza
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Giseli Furlan Corrêa
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Leandra Nz Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Danilo C de Almeida
- Department of Immunology, Institute of Biomedical Sciences IV, University of Sao Paulo, São Paulo, Brazil
| | - Niels Os Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of Sao Paulo, São Paulo, Brazil
| | - Dario S Zamboni
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Viviani Nardini Takahashi
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Carlos A Sorgi
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Lucia H Faccioli
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Alexandra I Medeiros
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Diego Luís Costa
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Vânia Ld Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
205
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
206
|
Kemna J, Gout E, Daniau L, Lao J, Weißert K, Ammann S, Kühn R, Richter M, Molenda C, Sporbert A, Zocholl D, Klopfleisch R, Schütz A, Lortat-Jacob H, Aichele P, Kammertoens T, Blankenstein T. IFNγ binding to extracellular matrix prevents fatal systemic toxicity. Nat Immunol 2023; 24:414-422. [PMID: 36732425 PMCID: PMC9977683 DOI: 10.1038/s41590-023-01420-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
Interferon-γ (IFNγ) is an important mediator of cellular immune responses, but high systemic levels of this cytokine are associated with immunopathology. IFNγ binds to its receptor (IFNγR) and to extracellular matrix (ECM) via four positively charged C-terminal amino acids (KRKR), the ECM-binding domain (EBD). Across evolution, IFNγ is not well conserved, but the EBD is highly conserved, suggesting a critical function. Here, we show that IFNγ lacking the EBD (IFNγΔKRKR) does not bind to ECM but still binds to the IFNγR and retains bioactivity. Overexpression of IFNγΔKRKR in tumors reduced local ECM binding, increased systemic levels and induced sickness behavior, weight loss and toxicity. To analyze the function of the EBD during infection, we generated IFNγΔKRKR mice lacking the EBD by using CRISPR-Cas9. Infection with lymphocytic choriomeningitis virus resulted in higher systemic IFNγΔKRKR levels, enhanced sickness behavior, weight loss and fatal toxicity. We conclude that local retention of IFNγ is a pivotal mechanism to protect the organism from systemic toxicity during prolonged immune stimulation.
Collapse
Affiliation(s)
- Josephine Kemna
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany
| | - Evelyne Gout
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Grenoble, France
| | - Leon Daniau
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Molenda
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dario Zocholl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anja Schütz
- Protein Production & Characterization Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Grenoble, France
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Kammertoens
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany
- Institute of Immunology, Charité Unversitätsmedizin, Campus Buch, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany.
| |
Collapse
|
207
|
Kutzer MAM, Gupta V, Neophytou K, Doublet V, Monteith KM, Vale PF. Intraspecific genetic variation in host vigour, viral load and disease tolerance during Drosophila C virus infection. Open Biol 2023; 13:230025. [PMID: 36854375 PMCID: PMC9974301 DOI: 10.1098/rsob.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Genetic variation for resistance and disease tolerance has been described in a range of species. In Drosophila melanogaster, genetic variation in mortality following systemic Drosophila C virus (DCV) infection is driven by large-effect polymorphisms in the restriction factor pastrel (pst). However, it is unclear if pst contributes to disease tolerance. We investigated systemic DCV challenges spanning nine orders of magnitude, in males and females of 10 Drosophila Genetic Reference Panel lines carrying either a susceptible (S) or resistant (R) pst allele. We find among-line variation in fly survival, viral load and disease tolerance measured both as the ability to maintain survival (mortality tolerance) and reproduction (fecundity tolerance). We further uncover novel effects of pst on host vigour, as flies carrying the R allele exhibited higher survival and fecundity even in the absence of infection. Finally, we found significant genetic variation in the expression of the JAK-STAT ligand upd3 and the epigenetic regulator of JAK-STAT G9a. However, while G9a has been previously shown to mediate tolerance of DCV infection, we found no correlation between the expression of either upd3 or G9a on fly tolerance or resistance. Our work highlights the importance of both resistance and tolerance in viral defence.
Collapse
Affiliation(s)
- Megan A. M. Kutzer
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Vanika Gupta
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Kyriaki Neophytou
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, UK
| | - Vincent Doublet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Katy M. Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
208
|
Wu Q, Sacomboio E, Valente de Souza L, Martins R, Kitoko J, Cardoso S, Ademolue TW, Paixão T, Lehtimäki J, Figueiredo A, Norden C, Tharaux PL, Weiss G, Wang F, Ramos S, Soares MP. Renal control of life-threatening malarial anemia. Cell Rep 2023; 42:112057. [PMID: 36735532 DOI: 10.1016/j.celrep.2023.112057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Iron recycling prevents the development of anemia under homeostatic conditions. Whether iron recycling was co-opted as a defense strategy to prevent the development of anemia in response to infection is unclear. We find that in severe Plasmodium falciparum malaria, the onset of life-threatening anemia is associated with acute kidney injury (AKI), irrespective of parasite load. Using a well-established experimental rodent model of malaria anemia, we identify a transcriptional response that endows renal proximal tubule epithelial cells (RPTECs) with the capacity to store and recycle iron during P. chabaudi chabaudi (Pcc) infection. This response encompasses the induction of ferroportin 1/SLC40A1, which exports iron from RPTECs and counteracts AKI while supporting compensatory erythropoiesis and preventing the onset of life-threatening malarial anemia. Iron recycling by myeloid cells is dispensable to this protective response, suggesting that RPTECs provide an iron-recycling salvage pathway that prevents the pathogenesis of life-threatening malarial anemia.
Collapse
Affiliation(s)
- Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jamil Kitoko
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Caren Norden
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Center (PARCC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris Cité, Paris, France
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
209
|
Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 2023; 19:401-417. [PMID: 36823168 DOI: 10.1038/s41581-023-00683-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients and is strongly associated with adverse outcomes, including an increased risk of chronic kidney disease, cardiovascular events and death. The pathophysiology of SA-AKI remains elusive, although microcirculatory dysfunction, cellular metabolic reprogramming and dysregulated inflammatory responses have been implicated in preclinical studies. SA-AKI is best defined as the occurrence of AKI within 7 days of sepsis onset (diagnosed according to Kidney Disease Improving Global Outcome criteria and Sepsis 3 criteria, respectively). Improving outcomes in SA-AKI is challenging, as patients can present with either clinical or subclinical AKI. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Accordingly, the discovery of biomarkers associated with AKI that can aid in early diagnosis is an area of intensive investigation. Additionally, high-quality evidence on best-practice care of patients with AKI, sepsis and SA-AKI has continued to accrue. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches. Here we provide graded recommendations for managing SA-AKI and highlight priorities for future research.
Collapse
|
210
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
211
|
Glucocorticoids increase tissue cell protection against pore-forming toxins from pathogenic bacteria. Commun Biol 2023; 6:186. [PMID: 36807406 PMCID: PMC9938277 DOI: 10.1038/s42003-023-04568-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.
Collapse
|
212
|
Abdulla ZA, Al-Bashir SM, Alzoubi H, Al-Salih NS, Aldamen AA, Abdulazeez AZ. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023; 12:329. [PMID: 36839601 PMCID: PMC9967364 DOI: 10.3390/pathogens12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study aims to review the available data regarding the central role of immunity in combating SARS-CoV-2 infection and in the generation of protection by vaccination against COVID-19 in different age groups. Physiologically, the immune response and the components involved in it are variable, both functionally and quantitatively, in neonates, infants, children, adolescents, and adults. These immunological differences are mirrored during COVID-19 infection and in the post-vaccination period. The outcome of SARS-CoV-2 infection is greatly dependent on the reaction orchestrated by the immune system. This is clearly obvious in relation to the clinical status of COVID-19 infection, which can be symptomless, mild, moderate, or severe. Even the complications of the disease show a proportional pattern in relation to the immune response. On the contrary, the commonly used anti-COVID-19 vaccines generate protective humoral and cellular immunity. The magnitude of this immunity and the components involved in it are discussed in detail. Furthermore, many of the adverse effects of these vaccines can be explained on the basis of immune reactions against the different components of the vaccines. Regarding the appropriate choice of vaccine for different age groups, many factors have to be considered. This is a cornerstone, particularly in the following age groups: 1 day to 5 years, 6 to 11 years, and 12 to 17 years. Many factors are involved in deciding the route, doses, and schedule of vaccination for children. Another important issue in this dilemma is the hesitancy of families in making the decision about whether to vaccinate their children. Added to these difficulties is the choice by health authorities and governments concerning whether to make children's vaccination compulsory. In this respect, although rare and limited, adverse effects of vaccines in children have been detected, some of which, unfortunately, have been serious or even fatal. However, to achieve comprehensive control over COVID-19 in communities, both children and adults have to be vaccinated, as the former group represents a reservoir for viral transmission. The understanding of the various immunological mechanisms involved in SARS-CoV-2 infection and in the preparation and application of its vaccines has given the sciences a great opportunity to further deepen and expand immunological knowledge. This will hopefully be reflected positively on other diseases through gaining an immunological background that may aid in diagnosis and therapy. Humanity is still in continuous conflict with SARS-CoV-2 infection and will be for a while, but the future is expected to be in favor of the prevention and control of this disease.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | | |
Collapse
|
213
|
Zach M, Greslehner GP. Understanding immunity: an alternative framework beyond defense and strength. BIOLOGY & PHILOSOPHY 2023; 38:7. [PMID: 36819127 PMCID: PMC9929241 DOI: 10.1007/s10539-023-09893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/10/2023] [Indexed: 05/25/2023]
Abstract
In this paper we address the issue of how to think about immunity. Many immunological writings suggest a straightforward option: the view that the immune system is primarily a system of defense, which naturally invites the talk of strong immunity and strong immune response. Despite their undisputable positive role in immunology, such metaphors can also pose a risk of establishing a narrow perspective, omitting from consideration phenomena that do not neatly fit those powerful metaphors. Building on this analysis, we argue two things. First, we argue that the immune system is involved not only in defense. Second, by disentangling various possible meanings of 'strength' and 'weakness' in immunology, we also argue that such a construal of immunity generally contributes to the distortion of the overall picture of what the immune system is, what it does, and why it sometimes fails. Instead, we propose to understand the nature of the immune system in terms of contextuality, regulation, and trade-offs. We suggest that our approach provides lessons for a general understanding of the organizing principles of the immune system in health and disease. For all this to work, we discuss a wide range of immunological phenomena.
Collapse
Affiliation(s)
- Martin Zach
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 352/1, 110 00 Prague, Czech Republic
| | - Gregor P. Greslehner
- Department of Philosophy, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| |
Collapse
|
214
|
Old and New Precipitants in Hepatic Encephalopathy: A New Look at a Field in Continuous Evolution. J Clin Med 2023; 12:jcm12031187. [PMID: 36769836 PMCID: PMC9917479 DOI: 10.3390/jcm12031187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication in patients with advanced liver disease. It is a brain dysfunction characterized by neurological and psychiatric symptoms that significantly affects quality of life, morbidity and mortality of patients. HE has various precipitants that can potentially promote its onset, alone or in combination. Among the historically well-known precipitants, such as infections, gastrointestinal bleeding, dehydration, electrolyte disorders and constipation, recent studies have highlighted the role of malnutrition and portosystemic shunts as new precipitating factors of HE. The identification, management and correction of these factors are fundamental for effective HE treatment, in addition to pharmacological therapy with non-absorbable disaccharides and/or antibiotics.
Collapse
|
215
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
216
|
Low impact of tuberculosis severity on wild boar body condition. Res Vet Sci 2023; 155:161-167. [PMID: 36706665 DOI: 10.1016/j.rvsc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Body condition (BC), is a measure to assess the health status of domestic and wild animals. When food resources are abundant, a decrease in BC may indicate an increase in the energetic expenditure due to the effects of growth, reproduction, or disease. BC impoverishment is one of the most common clinical effects of diseases progressing chronically, such as animal tuberculosis (TB) caused by bacteria belonging to the Mycobacterium tuberculosis complex. The Eurasian wild boar (Sus scrofa) is the main wild TB reservoir in the Mediterranean basin. The specific aims of this work were to assess the relationship between sex, age and TB severity altogether on the BC of wild boar. For this purpose, we used the kidney fat index (KFI), to assess the impact of TB progression on the BC of 1372 hunter-harvested free-ranging wild boar in seven populations in southern Spain. Surprisingly, TB had only slight effects on wild boar BC and individuals exhibiting severe TB showed greater BC than TB-free individuals. The age (adults had greater BC than juveniles) and sex (females had greater BC than males) were the main BC determinants in wild boar. Sampling population and season explained more BC variability than individual factors, suggesting that other external factors might play an important role in the BC, and probably on the impact of the disease on this wild reservoir. The low impact of TB on wild boar BC suggests that individuals with severe TB and good BC represent potential long-term super-shedders of this pathogen.
Collapse
|
217
|
Serezani CH, Divangahi M, Peters-Golden M. Leukotrienes in Innate Immunity: Still Underappreciated after All These Years? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:221-227. [PMID: 36649580 PMCID: PMC11749155 DOI: 10.4049/jimmunol.2200599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase pathway of arachidonate metabolism. Though best known for their role in asthma, they have broad actions that touch on virtually every aspect of mammalian biology. In a Brief Review published in the journal in 2005, we presented the existing evidence supporting a role for LTs in host defense. In this updated Brief Review, we focus on selected advances since then. We detail new insights into mechanisms and regulation of LT biosynthesis; the protective roles of LTs in the host response to diverse classes of pathogens, with an emphasis on viruses, including SARS-CoV-2; the phagocyte signal transduction mechanisms by which LTs exert their antimicrobial actions; the capacity for overexuberant LT production to promote tissue damage; and roles of LTs in the noninfectious immune-relevant conditions neuroinflammation and cancer.
Collapse
Affiliation(s)
- C. Henrique Serezani
- Department of Medicine, Division of Infectious Diseases; Department of Pathology, Microbiology, and Immunology; and Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maziar Divangahi
- Departments of Medicine, Pathology, Microbiology & Immunology; Meakins-Christie Laboratories; and McGill International TB Centre, McGill University Health Centre, Montreal, Canada
| | - Marc Peters-Golden
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, and Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
218
|
Grossman Z, Meyerhans A, Bocharov G. An integrative systems biology view of host-pathogen interactions: The regulation of immunity and homeostasis is concomitant, flexible, and smart. Front Immunol 2023; 13:1061290. [PMID: 36761169 PMCID: PMC9904014 DOI: 10.3389/fimmu.2022.1061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
The systemic bio-organization of humans and other mammals is essentially "preprogrammed", and the basic interacting units, the cells, can be crudely mapped into discrete sets of developmental lineages and maturation states. Over several decades, however, and focusing on the immune system, we and others invoked evidence - now overwhelming - suggesting dynamic acquisition of cellular properties and functions, through tuning, re-networking, chromatin remodeling, and adaptive differentiation. The genetically encoded "algorithms" that govern the integration of signals and the computation of new states are not fully understood but are believed to be "smart", designed to enable the cells and the system to discriminate meaningful perturbations from each other and from "noise". Cellular sensory and response properties are shaped in part by recurring temporal patterns, or features, of the signaling environment. We compared this phenomenon to associative brain learning. We proposed that interactive cell learning is subject to selective pressures geared to performance, allowing the response of immune cells to injury or infection to be progressively coordinated with that of other cell types across tissues and organs. This in turn is comparable to supervised brain learning. Guided by feedback from both the tissue itself and the neural system, resident or recruited antigen-specific and innate immune cells can eradicate a pathogen while simultaneously sustaining functional homeostasis. As informative memories of immune responses are imprinted both systemically and within the targeted tissues, it is desirable to enhance tissue preparedness by incorporating attenuated-pathogen vaccines and informed choice of tissue-centered immunomodulators in vaccination schemes. Fortunately, much of the "training" that a living system requires to survive and function in the face of disturbances from outside or within is already incorporated into its design, so it does not need to deep-learn how to face a new challenge each time from scratch. Instead, the system learns from experience how to efficiently select a built-in strategy, or a combination of those, and can then use tuning to refine its organization and responses. Efforts to identify and therapeutically augment such strategies can take advantage of existing integrative modeling approaches. One recently explored strategy is boosting the flux of uninfected cells into and throughout an infected tissue to rinse and replace the infected cells.
Collapse
Affiliation(s)
- Zvi Grossman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
- Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
219
|
Guryanova SV, Kataeva A. Inflammation Regulation by Bacterial Molecular Patterns. Biomedicines 2023; 11:biomedicines11010183. [PMID: 36672691 PMCID: PMC9855958 DOI: 10.3390/biomedicines11010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Stimulation of innate immunity by bacterial molecular patterns can induce an enhanced cellular immune response to pathogens that are associated with innate immune memory shaped by epigenetic changes. Immunological memory can be expressed in the acceleration/intensification of inflammation, as well as in the exact opposite-to maintain tolerance and non-response to a repeated stimulus. Tolerance is one of the central concepts of immunity and is ensured by the consistency of all parts of the immune response. The severe consequences of inflammation force researchers to study in detail all stages of the downstream pathways that are activated after exposure to a stimulus, while the formation of non-response to a pro-inflammatory stimulus has not yet received a detailed description. Elucidation of the mechanism of tolerance is an urgent task for the prevention and treatment of inflammatory diseases. The aim of this investigation was to study the dynamic changes in the gene expression of A20 and ATF3, the inflammation suppressors, against the background of the expression of the genes of the innate immunity receptors TLR4 and NOD2 and the pro-inflammatory cytokine TNF-α under the influence of TLR4 and NOD2 agonists, lipopolysaccharide (LPS) and glucosaminylmuramyl dipeptide (GMDP). The mechanism of inflammation regulation by bioregulators of bacterial origin-LPS and GMDP-was evaluated in vitro in human peripheral blood mononuclear cells and in vivo after i.p. administration of LPS and GMDP to mice. Gene expression was assessed by RT-PCR. Innate immune receptors and the pro-inflammatory cytokine TNF-α were found to develop early in response to LPS and GMDP, both in vitro and in vivo. Genes of cytosolic proteins controlling inflammation (A20 and ATF3) were expressed later. Prior exposure of the innate immune system to LPS and muramyl peptides may modulate host defense against acute inflammation. As a result of the study, new data were obtained on dynamic changes in deubiquitinase A20 and the transcription factor ATF3, which are involved in the limitation and suppression of inflammatory reactions caused by fragments of bacterial cell walls-LPS and GMDP. Thus, bioregulators of bacterial origin LPS and GMDP, along with pro-inflammatory factors, activate the expression of genes that suppress inflammation, which should be considered when analyzing data from studies of the pro-inflammatory properties of LPS and GMDP and when developing drugs based on them.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
- Correspondence: ; Tel.: +7-9153150073
| | | |
Collapse
|
220
|
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023; 31:146-157. [PMID: 36634620 PMCID: PMC9832587 DOI: 10.1016/j.chom.2022.11.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A, SARS-CoV-2, endemic coronaviruses, RSV, and many other "common cold" viruses, cause significant mortality and morbidity and are important public health concerns. Because these viruses generally do not elicit complete and durable protective immunity by themselves, they have not to date been effectively controlled by licensed or experimental vaccines. In this review, we examine challenges that have impeded development of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-generation vaccines against these viruses, in consideration of several variables such as vaccine antigen configuration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and options for public health vaccination polices.
Collapse
Affiliation(s)
- David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Anthony S. Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
221
|
Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, Brakhage A, Li Z, Liégeois S, Ferrandon D. The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins. EMBO Rep 2023; 24:e56036. [PMID: 36322050 PMCID: PMC9827548 DOI: 10.15252/embr.202256036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.
Collapse
Affiliation(s)
- Rui Xu
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Yanyan Lou
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Antonin Tidu
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209CNRS UMR 5309GrenobleFrance
- Platform BioPark ArchampsArchampsFrance
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
| | - Franck Martin
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Axel Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Zi Li
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Samuel Liégeois
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Dominique Ferrandon
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| |
Collapse
|
222
|
Zou J, Li H, Deng G, Wang X, Zheng X, Chen J, Meng Z, Zheng Y, Gao Y, Qian Z, Liu F, Lu X, Shi Y, Shang J, Huang Y, Chen R. A novel prognostic nomogram for older patients with acute-on-chronic liver diseases (AoCLD): a nationwide, multicentre, prospective cohort study. Age Ageing 2023; 52:afac313. [PMID: 36626326 PMCID: PMC9831261 DOI: 10.1093/ageing/afac313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND the incidence of acute-on-chronic liver disease (AoCLD) is increasing. OBJECTIVE to investigate the clinical features and risk factors of AoCLD and construct an effective prognostic nomogram model for older patients with AoCLD. METHODS data from 3,970 patients included in the CATCH-LIFE study were used, including 2,600 and 1,370 patients in the training and validation sets, respectively. Multivariate Cox regression analyses were performed to identify predictive risk factors in older individuals, and an easy-to-use nomogram was established. Performance was assessed using area under the curve, calibration plots and decision curve analysis (DCA). RESULTS of the 3,949 patients with AoCLD, 809 were older with a higher proportion of autoimmune-related abnormalities, hepatitis C viral infection and schistosomiasis. In the older patient group, the incidence of cirrhosis, hepatic encephalopathy (HE), infection, ascites and gastrointestinal bleeding; neutrophil-to-lymphocyte ratio (NLR), aspartate-to-alanine transaminase ratio (AST/ALT), creatinine and blood urea nitrogen levels were higher, whereas incidence of acute-on-chronic liver failure, white blood cell, platelet and haemoglobin levels; albumin, total bilirubin (TB), AST and ALT levels; international normalised ratio (INR), estimated glomerular filtration rate and blood potassium levels were lower than in the younger group. The final nomogram was developed based on the multivariate Cox analysis in training cohort using six risk factors: ascites, HE grades, NLR, TB, INR and AST/ALT. Liver transplantation-free mortality predictions were comparable between the training and validation sets. DCA showed higher net benefit for the nomograph than the treat-all or treat-none strategies, with wider threshold probabilities ranges. CONCLUSIONS our analysis will assist clinical predictions and prognoses in older patients with AoCLD.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Hai Li
- Department of Gastroenterology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Chinese Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
| | - Guohong Deng
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianbo Wang
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin Zheng
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases, Institute of Infection and Immunology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjun Chen
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongji Meng
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yubao Zheng
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhang Gao
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhiping Qian
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Feng Liu
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases and Hepatology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaobo Lu
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yu Shi
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Shang
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
- Department of Infectious Diseases, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Huang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
- Chinese Chronic Liver Failure (CLIF) Consortium, Shanghai, China
| | - Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
223
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
224
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
225
|
Xu J, Xiao N, Zhou D, Xie L. Disease tolerance: a protective mechanism of lung infections. Front Cell Infect Microbiol 2023; 13:1037850. [PMID: 37207185 PMCID: PMC10189053 DOI: 10.3389/fcimb.2023.1037850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
Resistance and tolerance are two important strategies employed by the host immune response to defend against pathogens. Multidrug-resistant bacteria affect the resistance mechanisms involved in pathogen clearance. Disease tolerance, defined as the ability to reduce the negative impact of infection on the host, might be a new research direction for the treatment of infections. The lungs are highly susceptible to infections and thus are important for understanding host tolerance and its precise mechanisms. This review focuses on the factors that induce lung disease tolerance, cell and molecular mechanisms involved in tissue damage control, and the relationship between disease tolerance and sepsis immunoparalysis. Understanding the exact mechanism of lung disease tolerance could allow better assessment of the immune status of patients and provide new ideas for the treatment of infections.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| |
Collapse
|
226
|
Reyes J, Yap GS. Emerging Roles of Growth Differentiation Factor 15 in Immunoregulation and Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:5-11. [PMID: 36542831 PMCID: PMC9779231 DOI: 10.4049/jimmunol.2200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Growth differentiation factor 15 (GDF-15) is a cytokine that is widely used as a biomarker for the severity of diverse disease states. It also has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes. In addition to its metabolic effects, GDF-15 also regulates the host's immune responses to infectious and noninfectious diseases. GDF-15 can suppress a type 1 and, in contrast, promote a type 2 inflammatory response. In this brief review, we discuss how GDF-15 affects the effector function and recruitment of immune cells, the pathways that induce its expression, and the diverse mechanisms by which it is regulated during inflammation and infection. We further highlight outstanding questions that should be the focus of future investigations in this emerging field.
Collapse
Affiliation(s)
- Jojo Reyes
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| |
Collapse
|
227
|
Distinct gene programs underpinning disease tolerance and resistance in influenza virus infection. Cell Syst 2022; 13:1002-1015.e9. [PMID: 36516834 DOI: 10.1016/j.cels.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
When challenged with an invading pathogen, the host-defense response is engaged to eliminate the pathogen (resistance) and to maintain health in the presence of the pathogen (disease tolerance). However, the identification of distinct molecular programs underpinning disease tolerance and resistance remained obscure. We exploited transcriptional and physiological monitoring across 33 mouse strains, during in vivo influenza virus infection, to identify two host-defense gene programs-one is associated with hallmarks of disease tolerance and the other with hallmarks of resistance. Both programs constitute generic responses in multiple mouse and human cell types. Our study describes the organizational principles of these programs and validates Arhgdia as a regulator of disease-tolerance states in epithelial cells. We further reveal that the baseline disease-tolerance state in peritoneal macrophages is associated with the pathophysiological response to injury and infection. Our framework provides a paradigm for the understanding of disease tolerance and resistance at the molecular level.
Collapse
|
228
|
Acevedo MA, Fankhauser C, Papa R. Recolonization of secondary forests by locally extinct fauna through the lens of range expansion: Four open questions. Biotropica 2022. [DOI: 10.1111/btp.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Carly Fankhauser
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Riccardo Papa
- Department of Biology University of Puerto Rico San Juan Puerto Rico
| |
Collapse
|
229
|
McCall CE, Zhu X, Zabalawi M, Long D, Quinn MA, Yoza BK, Stacpoole PW, Vachharajani V. Sepsis, pyruvate, and mitochondria energy supply chain shortage. J Leukoc Biol 2022; 112:1509-1514. [PMID: 35866365 PMCID: PMC9796618 DOI: 10.1002/jlb.3mr0322-692rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Balancing high energy-consuming danger resistance and low energy supply of disease tolerance is a universal survival principle that often fails during sepsis. Our research supports the concept that sepsis phosphorylates and deactivates mitochondrial pyruvate dehydrogenase complex control over the tricarboxylic cycle and the electron transport chain. StimulatIng mitochondrial energetics in septic mice and human sepsis cell models can be achieved by inhibiting pyruvate dehydrogenase kinases with the pyruvate structural analog dichloroacetate. Stimulating the pyruvate dehydrogenase complex by dichloroacetate reverses a disruption in the tricarboxylic cycle that induces itaconate, a key mediator of the disease tolerance pathway. Dichloroacetate treatment increases mitochondrial respiration and ATP synthesis, decreases oxidant stress, overcomes metabolic paralysis, regenerates tissue, organ, and innate and adaptive immune cells, and doubles the survival rate in a murine model of sepsis.
Collapse
Affiliation(s)
- Charles E. McCall
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Xuewei Zhu
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Manal Zabalawi
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - David Long
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Matthew A. Quinn
- Department of Pathology – Comparative MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Barbara K. Yoza
- Department of SurgeryWake Forest School of MedicineWinston SalemNCUSA
| | - Peter W. Stacpoole
- Department of Medicine and BiochemistryUniversity of Florida Medical SchoolGainesvilleFloridaUSA
| | - Vidula Vachharajani
- Department of Critical Care MedicineCleveland Clinic Lerner College of Medicine of CWRUClevelandOhioUSA
| |
Collapse
|
230
|
Avirulence: an essential feature of the parasitic lifestyle. Trends Parasitol 2022; 38:1028-1030. [PMID: 36195508 DOI: 10.1016/j.pt.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The host plays an essential role in parasite transmission. The viability of the host-parasite relationship depends upon development of immune resistance and the induction of disease tolerance. Here I propose that pathogen coevolution of avirulence factors promoting host disease tolerance is an essential feature of the parasitic lifestyle.
Collapse
|
231
|
Zach M, Greslehner GP. Towards an extended view of immunity: A philosophical perspective. Anaesth Crit Care Pain Med 2022; 41:101156. [PMID: 36089284 DOI: 10.1016/j.accpm.2022.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Martin Zach
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 352/1, 110 00 Prague, Czechia.
| | - Gregor P Greslehner
- Department of Philosophy, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| |
Collapse
|
232
|
McConnel CS, Slanzon GS, Parrish LM, Trombetta SC, Shaw LF, Moore DA, Sischo WM. Transcriptional changes detected in fecal RNA from neonatal dairy calves of different breeds following gastrointestinal disease of varying severity. PLoS One 2022; 17:e0278664. [PMID: 36454999 PMCID: PMC9714867 DOI: 10.1371/journal.pone.0278664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Gastrointestinal (GI) disease is a major health concern in preweaned dairy calves. The objective of this fixed cohort study was to use RNA isolated from preweaned Holstein and Jersey heifer calf feces to study the molecular adaptations to variable clinical GI disease. The study was conducted on a commercial calf ranch in the western U.S. Enrolled calves were assessed twice daily for variations in demeanor, milk intake, and hydration. Fecal consistency scores were recorded at enrollment (day 1), and on the day (day 10) that a fecal sample was collected for differential gene expression (DGE). Calves with diarrhea on either day were classified as having either uncomplicated, localized GI disease (scours), or systemic GI disease (systemic enteritis). Eighty-four calves' fecal RNA was evaluated for DGE, of which 33 calves (n = 20 Holstein; n = 13 Jersey) were consistently healthy. The remaining 51 calves (n = 23 Holstein; n = 28 Jersey) experienced varying severity of GI disease during the sampling window. Genes of interest were related to the inflammatory response (i.e., IFNG, NFKB1, NOD2, TLR2, and TLR4) and cell membrane or cytoplasmic transport (i.e., AQP3, FABP2, KRT8 and SLC5A1). Breed-specific findings indicated that AQP3, IFNG, and TLR4 were upregulated in Holsteins with systemic enteritis, whereas KRT8 was downregulated in systemically affected Jerseys. Holsteins did not appear affected by scours aside from a tendency for DGE of toll-like receptors (TLRs) on the day of diarrhea. However, Jersey calves consistently demonstrated a tendency to upregulate IFNG, NFKB1, and TLR4 when affected with either scours or systemic enteritis. These findings were more pronounced in systemically affected Jersey calves and were observed as a delayed response to both scours and systemic enteritis. These findings support previous observations suggesting that Holstein calves may be better equipped than Jersey calves to rapidly fight pathogen invasion.
Collapse
Affiliation(s)
- C. S. McConnel
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - G. S. Slanzon
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - L. M. Parrish
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - S. C. Trombetta
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - L. F. Shaw
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - D. A. Moore
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - W. M. Sischo
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
233
|
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol 2022; 58:102553. [PMID: 36459716 PMCID: PMC9713374 DOI: 10.1016/j.redox.2022.102553] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous small molecules are metabolic regulators of cell function. Itaconate is a key molecule that accumulates in cells when the Krebs cycle is disrupted. Itaconate is derived from cis-aconitate decarboxylation by cis-aconitate decarboxylase (ACOD1) in the mitochondrial matrix and is also known as immune-responsive gene 1 (IRG1). Studies have demonstrated that itaconate plays an important role in regulating signal transduction and posttranslational modification through its immunoregulatory activities. Itaconate is also an important bridge among metabolism, inflammation, oxidative stress, and the immune response. This review summarizes the structural characteristics and classical pathways of itaconate, its derivatives, and the compounds that release itaconate. Here, the mechanisms of itaconate action, including its transcriptional regulation of ATF3/IκBζ axis and type I IFN, its protein modification regulation of KEAP1, inflammasome, JAK1/STAT6 pathway, TET2, and TFEB, and succinate dehydrogenase and glycolytic enzyme metabolic action, are presented. Moreover, the roles of itaconate in diseases related to inflammation and oxidative stress induced by autoimmune responses, viruses, sepsis and IRI are discussed in this review. We hope that the information provided in this review will help increase the understanding of cellular immune metabolism and improve the clinical treatment of diseases related to inflammation and oxidative stress.
Collapse
|
234
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiang Ye
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Meredith Rogers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - John V Williams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA, 15224, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - John Karijolich
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
235
|
Basso P, Dang EV, Urisman A, Cowen LE, Madhani HD, Noble SM. Deep tissue infection by an invasive human fungal pathogen requires lipid-based suppression of the IL-17 response. Cell Host Microbe 2022; 30:1589-1601.e5. [PMID: 36323314 PMCID: PMC9744107 DOI: 10.1016/j.chom.2022.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Candida albicans is the most common cause of fungal infection in humans. IL-17 is critical for defense against superficial fungal infections, but the role of this response in invasive disease is less understood. We show that C. albicans secretes a lipase, Lip2, that facilitates invasive disease via lipid-based suppression of the IL-17 response. Lip2 was identified as an essential virulence factor in a forward genetic screen in a mouse model of bloodstream infection. Murine infection with C. albicans strains lacking Lip2 display exaggerated IL-17 responses that lead to fungal clearance from solid organs and host survival. Both IL-17 signaling and lipase activity are required for Lip2-mediated suppression. Lip2 inhibits IL-17 production indirectly by suppressing IL-23 production by tissue-resident dendritic cells. The lipase hydrolysis product, palmitic acid, similarly suppresses dendritic cell activation in vitro. Thus, C. albicans suppresses antifungal IL-17 defense in solid organs by altering the tissue lipid milieu.
Collapse
Affiliation(s)
- Pauline Basso
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Eric V Dang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
236
|
Amich I, Anguita E, Escribano-Serrat S, Alvarez C, Rodríguez-Muñoz D, García V, Bello R, Peña-Pedrosa JA, Martínez-Micaelo N, Amigó N, Ortiz P, Torrejón MJ, Boscá L, Martín-Sánchez J, Aranda A, Alemany S. Free triiodothyronine levels and age influences the metabolic profile and COVID-19 severity parameters in euthyroid and levothyroxine-treated patients. Front Endocrinol (Lausanne) 2022; 13:1025032. [PMID: 36440226 PMCID: PMC9682171 DOI: 10.3389/fendo.2022.1025032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Metabolic reprogramming is required to fight infections and thyroid hormones are key regulators of metabolism. We have analyzed in hospitalized COVID-19 patients: 40 euthyroid and 39 levothyroxine (LT4)-treated patients in the ward and 29 euthyroid and 9 LT4-treated patients in the intensive care unit (ICU), the baseline characteristics, laboratory data, thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), the FT3/FT4 ratio, 11 antiviral cytokines and 74 metabolomic parameters. No evidence for significant differences between euthyroid and LT4-treated patients were found in the biochemical, metabolomic and cytokines parameters analyzed. Only TSH (p=0.009) and ferritin (p=0.031) showed significant differences between euthyroid and LT4-treated patients in the ward, and TSH (p=0.044) and FT4 (p=0.012) in the ICU. Accordingly, severity and mortality were similar in euthyroid and LT4-treated patients. On the other hand, FT3 was negatively related to age (p=0.012), independently of sex and body mass index in hospitalized COVID-19 patients. Patients with low FT3 and older age showed a worse prognosis and higher levels of the COVID-19 severity markers IL-6 and IL-10 than patients with high FT3. IL-6 negatively correlated with FT3 (p=0.023) independently of age, body mass index and sex, whereas IL-10 positively associated with age (p=0.035) independently of FT3, body mass index and sex. A metabolomic cluster of 6 parameters defined low FT3 ward patients. Two parameters, esterified cholesterol (p=4.1x10-4) and small HDL particles (p=6.0x10-5) correlated with FT3 independently of age, body mass index and sex, whereas 3-hydroxybutyrate (p=0.010), acetone (p=0.076), creatinine (p=0.017) and high-density-lipoprotein (HDL) diameter (p=8.3x10-3) were associated to FT3 and also to age, with p-values of 0.030, 0.026, 0.017 and 8.3x10-3, respectively. In conclusion, no significant differences in FT3, cytokines, and metabolomic profile, or in severity and outcome of COVID-19, were found during hospitalization between euthyroid patients and hypothyroid patients treated with LT4. In addition, FT3 and age negatively correlate in COVID-19 patients and parameters that predict poor prognosis were associated with low FT3, and/or with age. A metabolomic cluster indicative of a high ketogenic profile defines non-critical hospitalized patients with low FT3 levels.
Collapse
Affiliation(s)
- Inés Amich
- Department of Emergency, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Eduardo Anguita
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Medicina de Laboratorio (IML), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Escribano-Serrat
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Medicina de Laboratorio (IML), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Alvarez
- Clinical Analysis Laboratory, IML, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Diego Rodríguez-Muñoz
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Verónica García
- Hospital Pharmacy, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Rocío Bello
- Hospital Pharmacy, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Neus Martínez-Micaelo
- Biosfer Teslab, Department of Basic Medical Sciences, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Nuria Amigó
- Biosfer Teslab, Department of Basic Medical Sciences, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Ortiz
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - María José Torrejón
- Clinical Analysis Laboratory, IML, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Lisardo Boscá
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédicas en enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Martín-Sánchez
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Emergency, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Ana Aranda
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Centro de Investigación Biomédicas en Red de Cáncer (CIBERONC), Madrid, Spain
- Centro de Investigación Biomédicas de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Susana Alemany
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| |
Collapse
|
237
|
Gómez H. Reprogramming Metabolism to Enhance Kidney Tolerance during Sepsis: The Role of Fatty Acid Oxidation, Aerobic Glycolysis, and Epithelial De-Differentiation. Nephron Clin Pract 2022; 147:31-34. [PMID: 36349802 PMCID: PMC9928807 DOI: 10.1159/000527392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The recognition that sepsis induces acute kidney injury (AKI) in the absence of overt necrosis or apoptosis and even in the presence of increased renal blood flow has led to the consideration that kidney tubular epithelial cells (TECs) may deploy defense mechanisms to survive the insult. SUMMARY This concept dovetails well with the notion that the defense against infection not only depends on the capacity of the immune system to limit the microbial burden or resistance capacity but also on the capacity of the host to limit tissue injury, collectively known as tolerance. To sustain the high energy requirement that ion transport mandates, kidney TECs use fatty acid oxidation (FAO) as one of the preferred sources of energy. Inflammatory processes like endotoxemia and sepsis decrease mitochondrial FAO and hinder mitochondrial respiration. Impaired FAO is associated with TEC de-differentiation, loss of kidney function, and TEC injury through lipotoxicity and oxidative stress in the acute setting, and with maladaptive repair and fibrosis after AKI in the latter stages. AMP-activated protein kinase (AMPK) is a master regulator of energy and promoter of FAO that can be activated pharmacologically to protect against AKI and death during experimental sepsis, operating through a tolerance mechanism. KEY MESSAGES Organ dysfunction during sepsis is the expression of tissue injury and adaptive defense mechanisms operating through resistance or tolerance that prioritize cell survival over organ function. Metabolic reprogramming away from FAO/oxidative phosphorylation seems to be a common pathological denominator throughout the AKI continuum that may be targeted through the activation of AMPK.
Collapse
Affiliation(s)
- Hernando Gómez
- Department of Critical Care Medicine, Program for Critical Care Nephrology, The CRISMA Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
238
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
239
|
Cootes TA, Bhattacharyya ND, Huang SS, Daniel L, Bell-Anderson KS, Stifter SA, Chew T, Solon-Biet SM, Saraiva LR, Cai Y, Chen X, Simpson SJ, Feng CG. The quality of energy- and macronutrient-balanced diets regulates host susceptibility to influenza in mice. Cell Rep 2022; 41:111638. [DOI: 10.1016/j.celrep.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
|
240
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
241
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
242
|
Lopez BS. Can Infectious Disease Control Be Achieved without Antibiotics by Exploiting Mechanisms of Disease Tolerance? Immunohorizons 2022; 6:730-740. [DOI: 10.4049/immunohorizons.2200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Antimicrobial use in animal agriculture may be contributing to the emerging public health crisis of antimicrobial resistance. The sustained prevalence of infectious diseases driving antimicrobial use industry-wide suggests that traditional methods of bolstering disease resistance are, for some diseases, ineffective. A paradigm shift in our approach to infectious disease control is needed to reduce antimicrobial use and sustain animal and human health and the global economy. Targeting the defensive mechanisms that promote the health of an infected host without impacting pathogen fitness, termed “disease tolerance,” is a novel disease control approach ripe for discovery. This article presents examples of disease tolerance dictating clinical outcomes for several infectious diseases in humans, reveals evidence suggesting a similarly critical role of disease tolerance in the progression of infectious diseases plaguing animal agriculture, and thus substantiates the assertion that exploiting disease tolerance mechanisms can positively impact animal and human health.
Collapse
Affiliation(s)
- Brina S. Lopez
- Department of Farm Animal Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ
| |
Collapse
|
243
|
Yang Y, Zhong W, Zhang Y, Cheng Y, Lai H, Yu H, Feng N, Han Y, Huang R, Zhai Q. Sustained Inflammation Induced by LPS Leads to Tolerable Anorexia and Fat Loss via Tlr4 in Mice. J Inflamm Res 2022; 15:5635-5648. [PMID: 36211223 PMCID: PMC9534160 DOI: 10.2147/jir.s358518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Sustained inflammation is implicated in a variety of pathological conditions like infection, obesity and type 2 diabetes. Lipid metabolism is crucial to support immune response during infection of bacteria. However, how sustained inflammation affects lipid metabolism, especially in white adipose tissue remains largely unknown. Methods Sustained inflammation was induced by daily injection of Lipopolysaccharide (LPS). Tlr4 knockout mice were used to study the mechanism. Inflammation and lipid metabolism were evaluated by quantitative PCR, white blood cell counting, nuclear magnetic resonance, fat cell size quantification, lipolysis and fatty acid uptake assays, respiratory exchange ratio, and energy expenditure. Results Here, we found that sustained inflammation leads to fat loss in mice with a quick loss and gradual increase manner. Moreover, LPS injection leads to inflammation, anorexia, decreased lipid anabolism, and increased lipid catabolism. Mechanically, we show that LPS induces fat loss, inflammation, anorexia, and alteration of lipid metabolism mainly dependent on Tlr4. Interestingly, sustained inflammation induces less fat loss, especially in epididymal white adipose tissue, than pair-feeding, and pair-feeding has no significant effect on inflammation and leads to less fatty acid uptake, more lipid catabolism and energy expenditure than LPS injection. In addition, we demonstrate that short-term sustained inflammation leads to relative long-term tolerance for LPS-induced anorexia, inflammation and altered lipid metabolism. Conclusion These findings demonstrate that sustained inflammation induced by LPS leads to tolerable anorexia and fat loss via Tlr4 in mice, and provide new insights into the effect of sustained inflammation on lipid metabolism and subsequent tolerance.
Collapse
Affiliation(s)
- Yale Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Wuling Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yali Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yalan Cheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Huimin Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yumo Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Rui Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Correspondence: Qiwei Zhai, Shanghai, 200031, People’s Republic of China, Tel +86 21 5492 0903, Fax +86 21 5492 0291, Email
| |
Collapse
|
244
|
Gawish R, Maier B, Obermayer G, Watzenboeck ML, Gorki AD, Quattrone F, Farhat A, Lakovits K, Hladik A, Korosec A, Alimohammadi A, Mesteri I, Oberndorfer F, Oakley F, Brain J, Boon L, Lang I, Binder CJ, Knapp S. A neutrophil-B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. eLife 2022; 11:e78291. [PMID: 36178806 PMCID: PMC9525059 DOI: 10.7554/elife.78291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a life-threatening condition characterized by uncontrolled systemic inflammation and coagulation, leading to multiorgan failure. Therapeutic options to prevent sepsis-associated immunopathology remain scarce. Here, we established a mouse model of long-lasting disease tolerance during severe sepsis, manifested by diminished immunothrombosis and organ damage in spite of a high pathogen burden. We found that both neutrophils and B cells emerged as key regulators of tissue integrity. Enduring changes in the transcriptional profile of neutrophils include upregulated Cxcr4 expression in protected, tolerant hosts. Neutrophil Cxcr4 upregulation required the presence of B cells, suggesting that B cells promoted disease tolerance by improving tissue damage control via the suppression of neutrophils' tissue-damaging properties. Finally, therapeutic administration of a Cxcr4 agonist successfully promoted tissue damage control and prevented liver damage during sepsis. Our findings highlight the importance of a critical B-cell/neutrophil interaction during sepsis and establish neutrophil Cxcr4 activation as a potential means to promote disease tolerance during sepsis.
Collapse
Affiliation(s)
- Riem Gawish
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Barbara Maier
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Georg Obermayer
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Laboratory Medicine, Medical University of ViennaViennaAustria
| | - Martin L Watzenboeck
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Anna-Dorothea Gorki
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Federica Quattrone
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Asma Farhat
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Karin Lakovits
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
| | - Ana Korosec
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
| | - Arman Alimohammadi
- Department of Medicine II, Division of Cardiology, Medical University of ViennaViennaAustria
| | - Ildiko Mesteri
- Department of Pathology, Medical University ViennaViennaAustria
| | | | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle UniversityNewcastleUnited Kingdom
| | - John Brain
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Irene Lang
- Department of Medicine II, Division of Cardiology, Medical University of ViennaViennaAustria
| | - Christoph J Binder
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Laboratory Medicine, Medical University of ViennaViennaAustria
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University ViennaViennaAustria
- Ce-M-M-, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
245
|
Sorci G, Faivre B. Age-dependent virulence of human pathogens. PLoS Pathog 2022; 18:e1010866. [PMID: 36137159 PMCID: PMC9531802 DOI: 10.1371/journal.ppat.1010866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Host age is often evoked as an intrinsic factor aggravating the outcome of host-pathogen interactions. However, the shape of the relationship between age and infection-induced mortality might differ among pathogens, with specific clinical and ecological traits making some pathogens more likely to exert higher mortality in older hosts. Here, we used a large dataset on age-specific case fatality rate (CFR) of 28 human infectious diseases to investigate i) whether age is consistently associated to increased CFR, ii) whether pathogen characteristics might explain higher CFR in older adults. We found that, for most of the infectious diseases considered here, CFR slightly decreased during the first years of life and then steeply increased in older adults. Pathogens inducing diseases with long-lasting symptoms had the steepest increase of age-dependent CFR. Similarly, bacterial diseases and emerging viruses were associated with increasing mortality risk in the oldest age classes. On the contrary, we did not find evidence suggesting that systemic infections have steeper slopes between CFR and age; similarly, the relationship between age and CFR did not differ according to the pathogen transmission mode. Overall, our analysis shows that age is a key trait affecting infection-induced mortality rate in humans, and that the extent of the aggravating effect on older adults depends on some key traits, such as the duration of illness. Mortality due to infectious diseases varies tremendously among infectious agents, with some pathogens producing no mortality, and others being often associated with a fatal outcome. Such variability depends on characteristics of the pathogen, the host and the environment where hosts and pathogens interact. Age is one of the main host traits that accounts for differences in infection-induced mortality (with mortality being higher at the extremes of the age spectrum). Here, we used a large dataset on 28 human infectious diseases to explore the clinical and ecological traits that might account for differences in age-specific mortality risk. We found that pathogens producing long-lasting disease symptoms exert the highest mortality risk in the older adults. Similarly, emerging pathogens are also associated with higher mortality risk in the oldest age classes. These results confirm that age is a key trait affecting infection-induced mortality rate in humans, and show that the extent of the aggravating effect in older adults depends on some key traits, such as the duration of illness.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
246
|
Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis. Nat Commun 2022; 13:5545. [PMID: 36138043 PMCID: PMC9500047 DOI: 10.1038/s41467-022-33327-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The β-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Nicolas Millet
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Norma V. Solis
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Diane Aguilar
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Michail S. Lionakis
- grid.419681.30000 0001 2164 9667Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD USA
| | - Robert T. Wheeler
- grid.21106.340000000121820794Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME USA
| | - Nicholas Jendzjowsky
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Marc Swidergall
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
247
|
Alonso-Hearn M, Badia-Bringué G, Canive M. Genome-wide association studies for the identification of cattle susceptible and resilient to paratuberculosis. Front Vet Sci 2022; 9:935133. [PMID: 36172612 PMCID: PMC9510743 DOI: 10.3389/fvets.2022.935133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease or paratuberculosis (PTB), with important animal health and economic implications. There are no therapeutic strategies to control this disease, and vaccination with inactivated vaccines is limited in many countries because it can interfere with the intradermal test used for bovine tuberculosis detection. Thus, infected animals either get culled after a positive ELISA or fecal PCR result or die due to clinical disease. In this study, we review recent studies aimed to discover genetic markers which could help to identify and select cattle less susceptible and more resilient to PTB. In recent years, the genotyping and subsequent imputation to whole-genome sequence (WGS) has allowed the identification of single-nucleotide polymorphisms (SNPs), quantitative trait loci (QTL), and candidate genes in the Bos taurus genome associated with susceptibility to MAP infection. In most of these genome-wide association studies (GWAS), phenotypes were based on ante-mortem test results including serum ELISA, milk ELISA, and detection of MAP by fecal PCR and bacteriological culture. Cattle infected with MAP display lesions with distinct severity but the associations between host genetics and PTB-associated pathology had not been explored until very recently. On the contrary, the understanding of the mechanisms and genetic loci influencing pathogen resistance, and disease tolerance in asymptomatic individuals is currently very limited. The identification of long-time asymptomatic cattle that is able to resist the infection and/or tolerate the disease without having their health and milk production compromised is important for disease control and breeding purposes.
Collapse
|
248
|
Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010825. [PMID: 36084158 PMCID: PMC9491580 DOI: 10.1371/journal.ppat.1010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing “travelers’ diarrhea”, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species—P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs. Pathogens express special molecules or structures called virulence factors to successfully infect a host. By identifying these factors, we can learn how hosts fight and how pathogens cause infections. Here, we identified virulence factors of the human and fruit fly pathogen Providencia alcalifaciens, by infecting flies with a series of mutants of this pathogen. In this way, we detected 23 mutants that were less virulent. Some of these less virulent mutants were hypersensitive to fruit fly immune defense molecules called antimicrobial peptides (AMPs), while others were sensitive to reactive oxygen species (ROS) produced by the immune cells. Notably, AMPs-sensitive mutants remained virulent in a Drosophila mutant that lacks AMPs, while pathogens sensitive to oxidative stress retained their virulence in a fruit fly mutant devoid of oxidative species. These results suggest that the ability of P. alcalifaciens to resist two major host immune molecules, namely AMPs and ROS, is the major virulence mechanism. Overall, our systematic analysis of P. alcalifaciens virulence factors has identified the major defense mechanisms of the fruit fly against this pathogen and the bacterial mechanisms to combat these immune responses.
Collapse
|
249
|
Dar MA, Ahmad SM, Bhat BA, Dar TA, Haq ZU, Wani BA, Shabir N, Kashoo ZA, Shah RA, Ganai NA, Heidari M. Comparative RNA-Seq analysis reveals insights in Salmonella disease resistance of chicken; and database development as resource for gene expression in poultry. Genomics 2022; 114:110475. [PMID: 36064074 DOI: 10.1016/j.ygeno.2022.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avβ-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.
Collapse
Affiliation(s)
- Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India; Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India.
| | - Basharat A Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Zulfqar Ul Haq
- Division of Livestock Poultry and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Basharat A Wani
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | | | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, 4279 E. Mount Hope Rd., East Lansing, MI 48823, USA
| |
Collapse
|
250
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|