201
|
Jackrel ME, Shorter J. Reversing deleterious protein aggregation with re-engineered protein disaggregases. Cell Cycle 2014; 13:1379-83. [PMID: 24694655 DOI: 10.4161/cc.28709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aberrant protein folding is severely problematic and manifests in numerous disorders, including amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington disease (HD), and Alzheimer disease (AD). Patients with each of these disorders are characterized by the accumulation of mislocalized protein deposits. Treatments for these disorders remain palliative, and no available therapeutics eliminate the underlying toxic conformers. An intriguing approach to reverse deleterious protein misfolding is to upregulate chaperones to restore proteostasis. We recently reported our work to re-engineer a prion disaggregase from yeast, Hsp104, to reverse protein misfolding implicated in human disease. These potentiated Hsp104 variants suppress TDP-43, FUS, and α-synuclein toxicity in yeast, eliminate aggregates, reverse cellular mislocalization, and suppress dopaminergic neurodegeneration in an animal model of PD. Here, we discuss this work and its context, as well as approaches for further developing potentiated Hsp104 variants for application in reversing protein-misfolding disorders.
Collapse
Affiliation(s)
- Meredith E Jackrel
- Department of Biochemistry and Biophysics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - James Shorter
- Department of Biochemistry and Biophysics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
202
|
Davies SE, Hallett PJ, Moens T, Smith G, Mangano E, Kim HT, Goldberg AL, Liu JL, Isacson O, Tofaris GK. Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson's disease. Neurobiol Dis 2014; 64:79-87. [PMID: 24388974 PMCID: PMC3988924 DOI: 10.1016/j.nbd.2013.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 12/24/2013] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder, characterized by accumulation and misfolding of α-synuclein. Although the level of α-synuclein in neurons is fundamentally linked to the onset of neurodegeneration, multiple pathways have been implicated in its degradation, and it remains unclear which are the critical ubiquitination enzymes that protect against α-synuclein accumulation in vivo. The ubiquitin ligase Nedd4 targets α-synuclein to the endosomal-lysosomal pathway in cultured cells. Here we asked whether Nedd4-mediated degradation protects against α-synuclein-induced toxicity in the Drosophila and rodent models of Parkinson's disease. We show that overexpression of Nedd4 can rescue the degenerative phenotype from ectopic expression of α-synuclein in the Drosophila eye. Overexpressed Nedd4 in the Drosophila brain prevented the α-synuclein-induced locomotor defect whereas reduction in endogenous Nedd4 by RNAi led to worsening motor function and increased loss of dopaminergic neurons. Accordingly, AAV-mediated expression of wild-type but not the catalytically inactive Nedd4 decreased the α-synuclein-induced dopaminergic cell loss in the rat substantia nigra and reduced α-synuclein accumulation. Collectively, our data in two evolutionarily distant model organisms strongly suggest that Nedd4 is a modifier of α-synuclein pathobiology and thus a potential target for neuroprotective therapies.
Collapse
Affiliation(s)
- Sian E Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, UK; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, USA
| | - Thomas Moens
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, UK
| | - Gaynor Smith
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, USA
| | - Emily Mangano
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, USA
| | | | | | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, USA
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, UK.
| |
Collapse
|
204
|
SOD1 oxidation and formation of soluble aggregates in yeast: relevance to sporadic ALS development. Redox Biol 2014; 2:632-9. [PMID: 24936435 PMCID: PMC4052529 DOI: 10.1016/j.redox.2014.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Misfolding and aggregation of copper–zinc superoxide dismutase (Sod1) are observed in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Mutations in Sod1 lead to familial ALS (FALS), which is a late-onset disease. Since oxidative damage to proteins increases with age, it had been proposed that oxidation of Sod1 mutants may trigger their misfolding and aggregation in FALS. However, over 90% of ALS cases are sporadic (SALS) with no obvious genetic component. We hypothesized that oxidation could also trigger the misfolding and aggregation of wild-type Sod1 and sought to confirm this in a cellular environment. Using quiescent, stationary-phase yeast cells as a model for non-dividing motor neurons, we probed for post-translational modification (PTM) and aggregation of wild-type Sod1 extracted from these cells. By size-exclusion chromatography (SEC), we isolated two populations of Sod1 from yeast: a low-molecular weight (LMW) fraction that is catalytically active and a catalytically inactive, high-molecular weight (HMW) fraction. High-resolution mass spectrometric analysis revealed that LMW Sod1 displays no PTMs but HMW Sod1 is oxidized at Cys146 and His71, two critical residues for the stability and folding of the enzyme. HMW Sod1 is also oxidized at His120, a copper ligand, which will promote loss of this catalytic metal cofactor essential for SOD activity. Monitoring the fluorescence of a Sod1-green-fluorescent-protein fusion (Sod1-GFP) extracted from yeast chromosomally expressing this fusion, we find that HMW Sod1-GFP levels increase up to 40-fold in old cells. Thus, we speculate that increased misfolding and inclusion into soluble aggregates is a consequence of elevated oxidative modifications of wild-type Sod1 as cells age. Our observations argue that oxidative damage to wild-type Sod1 initiates the protein misfolding mechanisms that give rise to SALS. Key Sod1 catalytic and structure-stabilizing residues (Cys146, His120, His71) are oxidized in stationary-phase yeast. Oxidized Sod1 is isolated in an inactive, high-molecular-weight, soluble aggregate. Sod1 with native mass isolated from the same samples is not oxidized and is catalytically active. Our results argue that oxidation triggers the formation of soluble Sod1-containing aggregates that may contribute to sporadic ALS development.
Collapse
|
205
|
Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 2014; 111:4013-8. [PMID: 24591589 DOI: 10.1073/pnas.1402228111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without effective disease-modifying therapies. The accumulation of amyloid-β peptide (Aβ) is associated with AD. However, identifying new compounds that antagonize the underlying cellular pathologies caused by Aβ has been hindered by a lack of cellular models amenable to high-throughput chemical screening. To address this gap, we use a robust and scalable yeast model of Aβ toxicity where the Aβ peptide transits through the secretory and endocytic compartments as it does in neurons. The pathogenic Aβ 1-42 peptide forms more oligomers and is more toxic than Aβ 1-40 and genome-wide genetic screens identified genes that are known risk factors for AD. Here, we report an unbiased screen of ∼140,000 compounds for rescue of Aβ toxicity. Of ∼30 hits, several were 8-hydroxyquinolines (8-OHQs). Clioquinol (CQ), an 8-OHQ previously reported to reduce Aβ burden, restore metal homeostasis, and improve cognition in mouse AD models, was also effective and rescued the toxicity of Aβ secreted from glutamatergic neurons in Caenorhabditis elegans. In yeast, CQ dramatically reduced Aβ peptide levels in a copper-dependent manner by increasing degradation, ultimately restoring endocytic function. This mirrored its effects on copper-dependent oligomer formation in vitro, which was also reversed by CQ. This unbiased screen indicates that copper-dependent Aβ oligomer formation contributes to Aβ toxicity within the secretory/endosomal pathways where it can be targeted with selective metal binding compounds. Establishing the ability of the Aβ yeast model to identify disease-relevant compounds supports its further exploitation as a validated early discovery platform.
Collapse
|
207
|
Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schüle B, Lippard SJ, Tsai LH, Krainc D, Buchwald SL, Jaenisch R, Lindquist S. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 2013; 342:983-7. [PMID: 24158904 PMCID: PMC4022187 DOI: 10.1126/science.1245296] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Vikram Khurana
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pavan K. Auluck
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel F. Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph R. Mazzulli
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Frank Soldner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Valeriya Baru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Yali Lou
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sukhee Cho
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alison E. Mungenast
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julien Muffat
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Maisam Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael D Pluth
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathan T. Jui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Dimitri Krainc
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|