201
|
Qiu S, Bergero R, Guirao-Rico S, Campos JL, Cezard T, Gharbi K, Charlesworth D. RAD mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region. Mol Ecol 2015; 25:414-30. [PMID: 26139514 DOI: 10.1111/mec.13297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023]
Abstract
How loss of genetic exchanges (recombination) evolves between sex chromosomes is a long-standing question. Suppressed recombination may evolve when a sexually antagonistic (SA) polymorphism occurs in a partially sex-linked 'pseudoautosomal' region (or 'PAR'), maintaining allele frequency differences between the two sexes, and creating selection for closer linkage with the fully sex-linked region of the Y chromosome in XY systems, or the W in ZW sex chromosome systems. Most evidence consistent with the SA polymorphism hypothesis is currently indirect, and more studies of the genetics and population genetics of PAR genes are clearly needed. The sex chromosomes of the plant Silene latifolia are suitable for such studies, as they evolved recently and the loss of recombination could still be ongoing. Here, we used RAD sequencing to genetically map sequences in this plant, which has a large genome (c. 3 gigabases) and no available whole-genome sequence. We mapped 83 genes on the sex chromosomes, and comparative mapping in the related species S. vulgaris supports previous evidence for additions to an ancestral PAR and identified at least 12 PAR genes. We describe evidence that recombination rates have been reduced in meiosis of both sexes, and differences in recombination between S. latifolia families suggest ongoing recombination suppression. Large allele frequency differences between the sexes were found at several loci closely linked to the PAR boundary, and genes in different regions of the PAR showed striking sequence diversity patterns that help illuminate the evolution of the PAR.
Collapse
Affiliation(s)
- S Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - T Cezard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - K Gharbi
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
202
|
Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JAM, Matsuda Y, Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 2015; 125:111-23. [DOI: 10.1007/s00412-015-0531-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/05/2023]
|
203
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Smeds L, Warmuth V, Bolivar P, Uebbing S, Burri R, Suh A, Nater A, Bureš S, Garamszegi LZ, Hogner S, Moreno J, Qvarnström A, Ružić M, Sæther SA, Sætre GP, Török J, Ellegren H. Evolutionary analysis of the female-specific avian W chromosome. Nat Commun 2015; 6:7330. [PMID: 26040272 PMCID: PMC4468903 DOI: 10.1038/ncomms8330] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/28/2015] [Indexed: 02/07/2023] Open
Abstract
The typically repetitive nature of the sex-limited chromosome means that it is often excluded from or poorly covered in genome assemblies, hindering studies of evolutionary and population genomic processes in non-recombining chromosomes. Here, we present a draft assembly of the non-recombining region of the collared flycatcher W chromosome, containing 46 genes without evidence of female-specific functional differentiation. Survival of genes during W chromosome degeneration has been highly non-random and expression data suggest that this can be attributed to selection for maintaining gene dose and ancestral expression levels of essential genes. Re-sequencing of large population samples revealed dramatically reduced levels of within-species diversity and elevated rates of between-species differentiation (lineage sorting), consistent with low effective population size. Concordance between W chromosome and mitochondrial DNA phylogenetic trees demonstrates evolutionary stable matrilineal inheritance of this nuclear–cytonuclear pair of chromosomes. Our results show both commonalities and differences between W chromosome and Y chromosome evolution. The evolution of non-recombining chromosomes is poorly understood. Here, the authors sequence the collared flycatcher female-specific W chromosome and show nonrandom survival of genes during W chromosome degeneration which is due to selection for maintaining gene dose and expression levels of essential genes.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Vera Warmuth
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Paulina Bolivar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Stanislav Bureš
- Laboratory of Ornithology, Department of Zoology, Palacky University, 77146 Olomouc, Czech Republic
| | - Laszlo Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, 41092 Seville, Spain
| | - Silje Hogner
- 1] Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway [2] Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Juan Moreno
- Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Milan Ružić
- Bird Protection and Study Society of Serbia, Radnička 20a, 21000 Novi Sad, Serbia
| | - Stein-Are Sæther
- 1] Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway [2] Norwegian Institute for Nature Research (NINA), 7034 Trondheim, Norway
| | - Glenn-Peter Sætre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway
| | - Janos Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
205
|
Zhang J, Li C, Zhou Q, Zhang G. Improving the ostrich genome assembly using optical mapping data. Gigascience 2015; 4:24. [PMID: 25969728 PMCID: PMC4427950 DOI: 10.1186/s13742-015-0062-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background The ostrich (Struthio camelus) is the tallest and heaviest living bird. Ostrich meat is considered a healthy red meat, with an annual worldwide production ranging from 12,000 to 15,000 tons. As part of the avian phylogenomics project, we sequenced the ostrich genome for phylogenetic and comparative genomics analyses. The initial Illumina-based assembly of this genome had a scaffold N50 of 3.59 Mb and a total size of 1.23 Gb. Since longer scaffolds are critical for many genomic analyses, particularly for chromosome-level comparative analysis, we generated optical mapping (OM) data to obtain an improved assembly. The OM technique is a non-PCR-based method to generate genome-wide restriction enzyme maps, which improves the quality of de novo genome assembly. Findings In order to generate OM data, we digested the ostrich genome with KpnI, which yielded 1.99 million DNA molecules (>250 kb) and covered the genome at least 500×. The pattern of molecules was subsequently assembled to align with the Illumina-based assembly to achieve sequence extension. This resulted in an OM assembly with a scaffold N50 of 17.71 Mb, which is 5 times as large as that of the initial assembly. The number of scaffolds covering 90% of the genome was reduced from 414 to 75, which means an average of ~3 super-scaffolds for each chromosome. Upon integrating the OM data with previously published FISH (fluorescence in situ hybridization) markers, we recovered the full PAR (pseudoatosomal region) on the ostrich Z chromosome with 4 super-scaffolds, as well as most of the degenerated regions. Conclusions The OM data significantly improved the assembled scaffolds of the ostrich genome and facilitated chromosome evolution studies in birds. Similar strategies can be applied to other genome sequencing projects to obtain better assemblies.
Collapse
Affiliation(s)
- Jilin Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen,, 518083 China
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen,, 518083 China ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen,, 518083 China ; Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, DK Denmark
| |
Collapse
|
206
|
Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr Biol 2015; 25:1234-40. [PMID: 25913399 DOI: 10.1016/j.cub.2015.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 12/31/2022]
Abstract
Sex chromosomes have evolved independently in numerous animal and plant lineages. After recombination becomes suppressed between two homologous sex chromosomes, genes on the non-recombining Y chromosomes (and W chromosomes in ZW systems) undergo genetic degeneration, losing functions retained by their X- or Z-linked homologs, changing their expression, and becoming lost [1, 2]. Adaptive changes may also occur, both on the non-recombining Y chromosome, to shut down expression of maladapted genes [3], and on the X chromosome (or the Z in ZW systems), which may evolve dosage compensation to increase low expression or compensate for poor protein function in the heterogametic sex [2, 4, 5]. Although empirical approaches to studying genetic degeneration have been developed for model species [3, 6], the onset and dynamics of these changes are still poorly understood, particularly in de novo evolving sex chromosomes. Sex chromosomes of some plants evolved much more recently than those of mammals, birds, and Drosophila [7-9], making them suitable for studying the early stages of genetic degeneration in de novo evolving sex chromosomes. In plants, haploid selection should oppose gene loss from Y chromosomes, but recent work on sex chromosomes of two plant species has estimated that Y-linked transcripts are lacking for 10%-30% of X-linked genes [10-12]. Here, we provide evidence that, in Silene latifolia, this largely involved losses of Y-linked genes, and not suppressed expression of Y-linked alleles, or gene additions to the X chromosome. Our results also suggest that chromosome-wide dosage compensation does not occur in this plant.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK.
| | - Suo Qiu
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3JT Edinburgh, UK
| |
Collapse
|
207
|
Ruiz-Arellano RR, Medrano FJ, Moreno A, Romero A. Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms. ACTA ACUST UNITED AC 2015; 71:809-18. [PMID: 25849392 DOI: 10.1107/s139900471500125x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022]
Abstract
Biomineralization is the process by which living organisms produce minerals. One remarkable example is the formation of eggshells in birds. Struthiocalcins present in the ostrich (Struthio camellus) eggshell matrix act as biosensors of calcite growth during eggshell formation. Here, the crystal structure of struthiocalcin-1 (SCA-1) is reported in two different crystal forms. The structure is a compact single domain with an α/β fold characteristic of the C-type lectin family. In contrast to the related avian ovocleidin OC17, the electrostatic potential on the molecular surface is dominated by an acidic patch. Scanning electron microscopy combined with Raman spectroscopy indicates that these intramineral proteins (SCA-1 and SCA-2) induce calcium carbonate precipitation, leading to the formation of a stable form of calcite in the mature eggshell. Finally, the implications of these two intramineral proteins SCA-1 and SCA-2 in the nucleation of calcite during the formation of eggshells in ratite birds are discussed.
Collapse
Affiliation(s)
- Rayana R Ruiz-Arellano
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Francisco J Medrano
- Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Antonio Romero
- Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
208
|
VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R. Origin and domestication of papaya Yh chromosome. Genome Res 2015; 25:524-33. [PMID: 25762551 PMCID: PMC4381524 DOI: 10.1101/gr.183905.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XY(h)). The hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Y(h) regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations' geographic locations, but gene flow is detected for other genomic regions. The Y(h) sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Y(h) divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Y(h) arose only ∼ 4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Y(h) chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Y(h) chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males.
Collapse
Affiliation(s)
- Robert VanBuren
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fanchang Zeng
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Cuixia Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer Han
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rishi Aryal
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrea R Gschwend
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianping Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jong-Kuk Na
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lixian Huang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lingmao Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjing Miao
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiqing Gou
- Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, Texas 75252, USA
| | - Jie Arro
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Romain Guyot
- IRD, UMR DIADE, EVODYN, BP 64501, 34394 Montpellier Cedex 5, France
| | - Richard C Moore
- Department of Botany, Miami University, Oxford, Ohio 45056, USA
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Kunia, Hawaii 96759, USA
| | - Francis Zee
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, Hawaii 96720, USA
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Paul H Moore
- Hawaii Agriculture Research Center, Kunia, Hawaii 96759, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, Texas 75252, USA
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
209
|
Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Núñez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farré M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Håstad O, Sawyer RH, Kim H, Kim KW, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O'Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, et alZhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Núñez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farré M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Håstad O, Sawyer RH, Kim H, Kim KW, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O'Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alström P, Fjeldså J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Jarvis ED, Gilbert MTP, Wang J. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014; 346:1311-20. [PMID: 25504712 PMCID: PMC4390078 DOI: 10.1126/science.1251385] [Show More Authors] [Citation(s) in RCA: 717] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
Collapse
Affiliation(s)
- Guojie Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Cai Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Qiye Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Bo Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Denis M Larkin
- Royal Veterinary College, University of London, London, UK
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Agostinho Antunes
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Robert W Meredith
- Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Anders Ödeen
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36 Uppsala, Sweden
| | - Jie Cui
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Qi Zhou
- Department of Integrative Biology University of California, Berkeley, CA 94720, USA
| | - Luohao Xu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailin Pan
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zongji Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Lijun Jin
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Pei Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Haofu Hu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Wei Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jiang Hu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jin Xiao
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhikai Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yang Liu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Qiaolin Xie
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Hao Yu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jinmin Lian
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Ping Wen
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Fang Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Hui Li
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yongli Zeng
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zijun Xiong
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Shiping Liu
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Long Zhou
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhiyong Huang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Na An
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jie Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China
| | - Qiumei Zheng
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yingqi Xiong
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Guangbiao Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Bo Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Jingjing Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Rute R da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alonzo Alfaro-Núñez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ganeshkumar Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam V Rivas
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Erina Hara
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Julia Smith
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Marta Farré
- Royal Veterinary College, University of London, London, UK
| | - Jitendra Narayan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gancho Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - Rui Borges
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - João Paulo Machado
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Imran Khan
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)/Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mark S Springer
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Olle Håstad
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyeon Jeong Kim
- Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Seoae Cho
- Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | - Michael W Bruford
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Xiangjiang Zhan
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China
| | - Andrew Dixon
- International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Elizabeth Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wesley Warren
- The Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute at Washington University, St. Louis, MO 63108, USA
| | - Shengbin Li
- College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China
| | - David A Ray
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Oliver A Ryder
- Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Gary R Graves
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark
| | - David P Mindell
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David W Burt
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Peter Houde
- Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA
| | - Yong Zhang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Huanming Yang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China
| | - Jian Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia.
| | - Jun Wang
- China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
210
|
Wang Z, Zhang J, Yang W, An N, Zhang P, Zhang G, Zhou Q. Temporal genomic evolution of bird sex chromosomes. BMC Evol Biol 2014; 14:250. [PMID: 25527260 PMCID: PMC4272511 DOI: 10.1186/s12862-014-0250-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous protein-coding sites than autosomes, driven by the male-to-female mutation bias ('male-driven evolution' effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual changes with that of introns, between chrZ and autosomes or regions with increasing ages of becoming Z-linked, therefore codon usage bias in birds is probably driven by the mutational bias. On the other hand, Z chromosomes also evolve significantly faster at nonsynonymous sites relative to autosomes ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic drift. Finally, we show in species except for chicken, gene expression becomes more male-biased within Z-linked regions that have became hemizygous in females for a longer time, suggesting a lack of global dosage compensation in birds, and the reported regional dosage compensation in chicken has only evolved very recently. CONCLUSIONS In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due to the opposite sex-biased inheritance of Z vs. X.
Collapse
Affiliation(s)
- Zongji Wang
- />School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 China
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Jilin Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Wei Yang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Na An
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Pei Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Guojie Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
- />Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Qi Zhou
- />Department of Integrative Biology, University of California, Berkeley, CA94720 USA
| |
Collapse
|
211
|
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Vargas Velazquez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli KP, O'Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, et alJarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Vargas Velazquez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli KP, O'Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014; 346:1320-31. [PMID: 25504713 PMCID: PMC4405904 DOI: 10.1126/science.1253451] [Show More Authors] [Citation(s) in RCA: 1171] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA.
| | - Siavash Mirarab
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andre J Aberer
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Bo Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Benoit Nabholz
- CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Université Montpellier II Montpellier, France
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Claudia C Weber
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Rute R da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Jianwen Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Hui Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Long Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Nitish Narula
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ganesh Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Université de Lyon, F-69622 Villeurbanne, France
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Volodymyr Zavidovych
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Sankar Subramanian
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaime Huerta-Cepas
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | - Bhanu Rekepalli
- Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mikkel Schierup
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bent Lindow
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA
| | - David Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Richard E Green
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Michael W Bruford
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK
| | - Xiangjiang Zhan
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Dixon
- International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK
| | - Shengbin Li
- College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mads Frost Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maria Paula Cruz Schneider
- Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil
| | - Francisco Prosdocimi
- Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil
| | - José Alfredo Samaniego
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Amhed Missael Vargas Velazquez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alonzo Alfaro-Núñez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Bent Petersen
- Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark
| | - Thomas Sicheritz-Ponten
- Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark
| | - An Pas
- Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates
| | - Tom Bailey
- Dubai Falcon Hospital, Dubai, United Arab Emirates
| | - Paul Scofield
- Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand
| | - Michael Bunce
- Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - David M Lambert
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Polina Perelman
- Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia
| | - Amy C Driskell
- Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Zijun Xiong
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yongli Zeng
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Shiping Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenyu Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Binghang Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Kui Wu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Xiao
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiong Yinqi
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiuemei Zheng
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Linnea Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Michael Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA
| | - Jon Fjeldsa
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - F Keith Barker
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA
| | - Knud Andreas Jønsson
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Warren Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Stephen O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Gary R Graves
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - John McCormack
- Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Dave Burt
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Per Alström
- Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Alexandros Stamatakis
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany
| | - David P Mindell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Tandy Warnow
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wang Jun
- BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong.
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
212
|
Romanov MN, Farré M, Lithgow PE, Fowler KE, Skinner BM, O’Connor R, Fonseka G, Backström N, Matsuda Y, Nishida C, Houde P, Jarvis ED, Ellegren H, Burt DW, Larkin DM, Griffin DK. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 2014; 15:1060. [PMID: 25496766 PMCID: PMC4362836 DOI: 10.1186/1471-2164-15-1060] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.
Collapse
Affiliation(s)
| | - Marta Farré
- />Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU UK
| | - Pamela E Lithgow
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Katie E Fowler
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
- />School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent CT1 1QU UK
| | - Benjamin M Skinner
- />Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Rebecca O’Connor
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Gothami Fonseka
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Niclas Backström
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Yoichi Matsuda
- />Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Chizuko Nishida
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 Japan
| | - Peter Houde
- />Department of Biology, New Mexico State University, Las Cruces, NM 88003 USA
| | - Erich D Jarvis
- />Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710 USA
| | - Hans Ellegren
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - David W Burt
- />Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9PS UK
| | - Denis M Larkin
- />Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU UK
| | - Darren K Griffin
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|