201
|
The structure of Ca2+ sensor Case16 reveals the mechanism of reaction to low Ca2+ concentrations. SENSORS 2010; 10:8143-60. [PMID: 22163646 PMCID: PMC3231237 DOI: 10.3390/s100908143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/28/2010] [Accepted: 08/12/2010] [Indexed: 12/11/2022]
Abstract
Here we report the first crystal structure of a high-contrast genetically encoded circularly permuted green fluorescent protein (cpGFP)-based Ca2+ sensor, Case16, in the presence of a low Ca2+ concentration. The structure reveals the positioning of the chromophore within Case16 at the first stage of the Ca2+-dependent response when only two out of four Ca2+-binding pockets of calmodulin (CaM) are occupied with Ca2+ ions. In such a “half Ca2+-bound state”, Case16 is characterized by an incomplete interaction between its CaM-/M13-domains. We also report the crystal structure of the related Ca2+ sensor Case12 at saturating Ca2+ concentration. Based on this structure, we postulate that cpGFP-based Ca2+ sensors can form non-functional homodimers where the CaM-domain of one sensor molecule binds symmetrically to the M13-peptide of the partner sensor molecule. Case12 and Case16 behavior upon addition of high concentrations of free CaM or M13-peptide reveals that the latter effectively blocks the fluorescent response of the sensor. We speculate that the demonstrated intermolecular interaction with endogenous substrates and homodimerization can impede proper functioning of this type of Ca2+ sensors in living cells.
Collapse
|
202
|
Feldkamp MD, O'Donnell SE, Yu L, Shea MA. Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin. Proteins 2010; 78:2265-82. [PMID: 20544963 PMCID: PMC2913171 DOI: 10.1002/prot.22739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trifluoperazine (TFP; Stelazine) is an antagonist of calmodulin (CaM), an essential regulator of calcium-dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca(2+))(4)-CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the "open" conformation seen in CaM-kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca(2+))(4)-CaM and explore differential effects on the N- and C-domains of CaM, stoichiometric TFP titrations of CaM were monitored by (15)N-HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca(2+))(4)-CaM. In both cases, the preferred site was in the C-domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP-binding sites in apo CaM appeared distinct from those in (Ca(2+))(4)-CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ-motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N-domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the "closed," "semi-open," and "open" domains of CaM. In physiological processes, apo CaM, as well as (Ca(2+))(4)-CaM, needs to be considered a potential target of drug action.
Collapse
Affiliation(s)
- Michael D. Feldkamp
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| | - Susan E. O'Donnell
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| | - Liping Yu
- NMR Facility Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| | - Madeline A. Shea
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| |
Collapse
|
203
|
Chow JYH, Jeffries CM, Kwan AH, Guss JM, Trewhella J. Calmodulin disrupts the structure of the HIV-1 MA protein. J Mol Biol 2010; 400:702-14. [PMID: 20488189 PMCID: PMC2902600 DOI: 10.1016/j.jmb.2010.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 01/06/2023]
Abstract
The MA protein from HIV-1 is a small, multifunctional protein responsible for regulating various stages of the viral replication cycle. To achieve its diverse tasks, MA interacts with host cell proteins and it has been reported that one of these is the ubiquitous calcium-sensing calmodulin (CaM), which is up-regulated upon HIV-1 infection. The nature of the CaM-MA interaction has been the subject of structural studies, using peptides based on the MA sequence, that have led to conflicting conclusions. The results presented here show that CaM binds intact MA with 1:1 stoichiometry in a Ca(2+)-dependent manner and that the complex adopts a highly extended conformation in solution as revealed by small-angle X-ray scattering. Alterations in tryptophan fluorescence suggest that the two buried tryptophans (W16 and W36) located in the first two alpha-helices of MA mediate the CaM interaction. Major chemical shift changes occur in the NMR spectrum of MA upon complex formation, whereas chemical shift changes in the CaM spectrum are quite modest and are assigned to residues within the normal target protein-binding hydrophobic clefts of CaM. The NMR data indicate that CaM binds MA via its N- and C-terminal lobes and induces a dramatic conformational change involving a significant loss of secondary and tertiary structure within MA. Circular dichroism experiments suggest that MA loses approximately 20% of its alpha-helical content upon CaM binding. Thus, CaM binding is expected to impact upon the accessibility of interaction sites within MA that are involved in its various functions.
Collapse
Affiliation(s)
- John Y. H. Chow
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, AUSTRALIA
| | - Cy M. Jeffries
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, AUSTRALIA
| | - Ann H. Kwan
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, AUSTRALIA
| | - J. Mitchell Guss
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, AUSTRALIA
| | - Jill Trewhella
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, AUSTRALIA
| |
Collapse
|
204
|
Kovacs E, Harmat V, Tóth J, Vértessy BG, Módos K, Kardos J, Liliom K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. FASEB J 2010; 24:3829-39. [PMID: 20522785 DOI: 10.1096/fj.10-155614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin-sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.
Collapse
Affiliation(s)
- Erika Kovacs
- Institute of Enzymology, Hungarian Academy of Sciences, Karolina út 29, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
205
|
Allen BD, Mayo SL. An efficient algorithm for multistate protein design based on FASTER. J Comput Chem 2010; 31:904-16. [PMID: 19637210 DOI: 10.1002/jcc.21375] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most of the methods that have been developed for computational protein design involve the selection of side-chain conformations in the context of a single, fixed main-chain structure. In contrast, multistate design (MSD) methods allow sequence selection to be driven by the energetic contributions of multiple structural or chemical states simultaneously. This methodology is expected to be useful when the design target is an ensemble of related states rather than a single structure, or when a protein sequence must assume several distinct conformations to function. MSD can also be used with explicit negative design to suggest sequences with altered structural, binding, or catalytic specificity. We report implementation details of an efficient multistate design optimization algorithm based on FASTER (MSD-FASTER). We subjected the algorithm to a battery of computational tests and found it to be generally applicable to various multistate design problems; designs with a large number of states and many designed positions are completely feasible. A direct comparison of MSD-FASTER and multistate design Monte Carlo indicated that MSD-FASTER discovers low-energy sequences much more consistently. MSD-FASTER likely performs better because amino acid substitutions are chosen on an energetic basis rather than randomly, and because multiple substitutions are applied together. Through its greater efficiency, MSD-FASTER should allow protein designers to test experimentally better-scoring sequences, and thus accelerate progress in the development of improved scoring functions and models for computational protein design.
Collapse
Affiliation(s)
- Benjamin D Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 E. California Blvd., Pasadena, California 91125, USA
| | | |
Collapse
|
206
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 935] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
207
|
Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ. The role of conformational entropy in molecular recognition by calmodulin. Nat Chem Biol 2010; 6:352-8. [PMID: 20383153 PMCID: PMC3050676 DOI: 10.1038/nchembio.347] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 03/01/2010] [Indexed: 11/28/2022]
Abstract
The physical basis for high-affinity interactions involving proteins is complex and potentially involves a range of energetic contributions. Among these are changes in protein conformational entropy, which cannot yet be reliably computed from molecular structures. We have recently used changes in conformational dynamics as a proxy for changes in conformational entropy of calmodulin upon association with domains from regulated proteins. The apparent change in conformational entropy was linearly related to the overall binding entropy. This view warrants a more quantitative foundation. Here we calibrate an 'entropy meter' using an experimental dynamical proxy based on NMR relaxation and show that changes in the conformational entropy of calmodulin are a significant component of the energetics of binding. Furthermore, the distribution of motion at the interface between the target domain and calmodulin is surprisingly noncomplementary. These observations promote modification of our understanding of the energetics of protein-ligand interactions.
Collapse
Affiliation(s)
- Michael S Marlow
- Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
208
|
Xia JF, Zhao XM, Song J, Huang DS. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics 2010; 11:174. [PMID: 20377884 PMCID: PMC2874803 DOI: 10.1186/1471-2105-11-174] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/08/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required. RESULTS In this work, we introduce an efficient approach that uses support vector machine (SVM) to predict hot spot residues in protein interfaces. We systematically investigate a wide variety of 62 features from a combination of protein sequence and structure information. Then, to remove redundant and irrelevant features and improve the prediction performance, feature selection is employed using the F-score method. Based on the selected features, nine individual-feature based predictors are developed to identify hot spots using SVMs. Furthermore, a new ensemble classifier, namely APIS (A combined model based on Protrusion Index and Solvent accessibility), is developed to further improve the prediction accuracy. The results on two benchmark datasets, ASEdb and BID, show that this proposed method yields significantly better prediction accuracy than those previously published in the literature. In addition, we also demonstrate the predictive power of our proposed method by modelling two protein complexes: the calmodulin/myosin light chain kinase complex and the heat shock locus gene products U and V complex, which indicate that our method can identify more hot spots in these two complexes compared with other state-of-the-art methods. CONCLUSION We have developed an accurate prediction model for hot spot residues, given the structure of a protein complex. A major contribution of this study is to propose several new features based on the protrusion index of amino acid residues, which has been shown to significantly improve the prediction performance of hot spots. Moreover, we identify a compact and useful feature subset that has an important implication for identifying hot spot residues. Our results indicate that these features are more effective than the conventional evolutionary conservation, pairwise residue potentials and other traditional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spot residues. The data and source code are available on web site http://home.ustc.edu.cn/~jfxia/hotspot.html.
Collapse
Affiliation(s)
- Jun-Feng Xia
- Intelligent Computing Laboratory, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | | | | | | |
Collapse
|
209
|
Fromer M, Yanover C, Linial M. Design of multispecific protein sequences using probabilistic graphical modeling. Proteins 2010; 78:530-47. [PMID: 19842166 DOI: 10.1002/prot.22575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In nature, proteins partake in numerous protein- protein interactions that mediate their functions. Moreover, proteins have been shown to be physically stable in multiple structures, induced by cellular conditions, small ligands, or covalent modifications. Understanding how protein sequences achieve this structural promiscuity at the atomic level is a fundamental step in the drug design pipeline and a critical question in protein physics. One way to investigate this subject is to computationally predict protein sequences that are compatible with multiple states, i.e., multiple target structures or binding to distinct partners. The goal of engineering such proteins has been termed multispecific protein design. We develop a novel computational framework to efficiently and accurately perform multispecific protein design. This framework utilizes recent advances in probabilistic graphical modeling to predict sequences with low energies in multiple target states. Furthermore, it is also geared to specifically yield positional amino acid probability profiles compatible with these target states. Such profiles can be used as input to randomly bias high-throughput experimental sequence screening techniques, such as phage display, thus providing an alternative avenue for elucidating the multispecificity of natural proteins and the synthesis of novel proteins with specific functionalities. We prove the utility of such multispecific design techniques in better recovering amino acid sequence diversities similar to those resulting from millions of years of evolution. We then compare the approaches of prediction of low energy ensembles and of amino acid profiles and demonstrate their complementarity in providing more robust predictions for protein design.
Collapse
Affiliation(s)
- Menachem Fromer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel.
| | | | | |
Collapse
|
210
|
Fuchigami S, Omori S, Ikeguchi M, Kidera A. Normal mode analysis of protein dynamics in a non-Eckart frame. J Chem Phys 2010; 132:104109. [DOI: 10.1063/1.3352566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
211
|
Wyttenbach T, Grabenauer M, Thalassinos K, Scrivens JH, Bowers MT. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures. J Phys Chem B 2010; 114:437-47. [PMID: 20000583 DOI: 10.1021/jp906242m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of ion mobility and mass spectrometry methods was used to characterize the molecular shape of the protein calmodulin (CaM) and its complexes with calcium and a number of peptide ligands. CaM, a calcium-binding protein composed of 148 amino acid residues, was found by X-ray crystallography to occur both in a globular shape and in the shape of an extended dumbbell. Here, it was found, as solutions of CaM and CaM complexes were sprayed into the solvent-free environment of the mass spectrometer, that major structural features of the molecule and the stoichiometry of the units constituting a complex in solution were preserved in the desolvation process. Two types of CaM structures were observed in our experiments: a compact and an extended form of CaM with measured cross sections in near-perfect agreement with those calculated for the known globular and extended dumbbell X-ray geometries. Calcium-free solutions yielded predominantly an extended CaM conformation. Ca(n)(2+)-CaM complexes were observed in calcium-containing solutions, n = 0-4, with the population of the compact conformation increasing relative to the elongated conformation as n increases. For n = 4, a predominantly compact globular conformation was observed. Solutions containing the peptide CaMKII(290-309), the CaM target domain of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) enzyme, yielded predominantly globular Ca(4)(2+)-CaM-CaMKII(290-309) complexes. Similar results were obtained with the 26-residue peptide melittin. For the 14-residue C-terminal melittin fragment, on the other hand, formation of both a 1:1 and a 1:2 CaM-peptide complex was detected. On the basis of the entirety of our results, we conclude that the collapse of extended (dumbbell-like) CaM structures into more compact globular structures occurs upon specific binding of four calcium ions. Furthermore, this calcium-induced structural collapse of CaM appears to be a prerequisite for formation of a particularly stable CaM-peptide complex involving peptides long enough to be engaged in interactions with both lobes of CaM.
Collapse
Affiliation(s)
- Thomas Wyttenbach
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
212
|
Huang H, Ishida H, Vogel HJ. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells. Protein Sci 2010; 19:475-85. [PMID: 20054830 PMCID: PMC2866273 DOI: 10.1002/pro.325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/12/2022]
Abstract
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium-binding protein, regulating cellular responses to the second messenger Ca(2+). We have found that the metal ion free (apo-) form of sCaM4 possesses a half unfolded structure, with the N-terminal domain unfolded and the C-terminal domain folded. This result was unexpected as the apo-forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg(2+) ions are always present at high concentrations in cells (0.5-2 mM), we suggest that Mg(2+) should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg(2+) the initially unfolded N-terminal domain of sCaM4 folds into an alpha-helix-rich structure, similar to the Ca(2+) form. We have used the NMR backbone residual dipolar coupling restraints (1)D(NH), (1)D(C alpha H alpha), and (1)D(C'C alpha) to determine the solution structure of the N-terminal domain of Mg(2+)-sCaM4 (Mg(2+)-sCaM4-NT). Compared with the known structure of Ca(2+)-sCaM4, the structure of the Mg(2+)-sCaM4-NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg(2+)-sCaM4 and CaM-binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg(2+)-sCaM4 does not bind to Ca(2+)-CaM target peptides and therefore is functionally similar to apo-mCaM. The Mg(2+)- and apo-structures of the sCaM4-NT provide unique insights into the structure and function of some plant calmodulins in resting cells.
Collapse
Affiliation(s)
| | | | - Hans J Vogel
- Structural Biology Research Group, Department of Biological Sciences, University of CalgaryCalgary, Alberta, Canada T2N 1N4
| |
Collapse
|
213
|
Tidow H, Hein KL, Baekgaard L, Palmgren MG, Nissen P. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:361-3. [PMID: 20208181 DOI: 10.1107/s1744309110003805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/30/2010] [Indexed: 11/10/2022]
Abstract
Plasma-membrane Ca(2+)-ATPases (PMCAs) are calcium pumps that expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca(2+) regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca(2+)-CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca(2+)-ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 A, beta = 113.2 degrees. A complete data set was collected to 3.0 A resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin.
Collapse
Affiliation(s)
- Henning Tidow
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
214
|
Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Comput Biol 2010; 6:e1000675. [PMID: 20168991 PMCID: PMC2820514 DOI: 10.1371/journal.pcbi.1000675] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning.
Collapse
Affiliation(s)
- Shirley Pepke
- Center for Advanced Computing Research, California Institute of Technology, Pasadena, California, United States of America
| | - Tamara Kinzer-Ursem
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Stefan Mihalas
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Mary B. Kennedy
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
215
|
O'Connell DJ, Bauer MC, O'Brien J, Johnson WM, Divizio CA, O'Kane SL, Berggård T, Merino A, Akerfeldt KS, Linse S, Cahill DJ. Integrated protein array screening and high throughput validation of 70 novel neural calmodulin-binding proteins. Mol Cell Proteomics 2010; 9:1118-32. [PMID: 20068228 DOI: 10.1074/mcp.m900324-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin is an essential regulator of intracellular processes in response to extracellular stimuli mediated by a rise in Ca(2+) ion concentration. To profile protein-protein interactions of calmodulin in human brain, we probed a high content human protein array with fluorophore-labeled calmodulin in the presence of Ca(2+). This protein array contains 37,200 redundant proteins, incorporating over 10,000 unique human neural proteins from a human brain cDNA library. We designed a screen to find high affinity (K(D) < or = 1 microm) binding partners of calmodulin and identified 76 human proteins from all intracellular compartments of which 72 are novel. We measured the binding kinetics of 74 targets with calmodulin using a high throughput surface plasmon resonance assay. Most of the novel calmodulin-target complexes identified have low dissociation rates (k(off) < or = 10(-3) s(-1)) and high affinity (K(D) </= 1 mum), consistent with the design of the screen. Many of the identified proteins are known to assemble in neural tissue, forming assemblies such as the spectrin scaffold and the postsynaptic density. We developed a microarray of the identified target proteins with which we can characterize the biochemistry of calmodulin for all targets in parallel. Four novel targets were verified in neural cells by co-immunoprecipitation, and four were selected for exploration of the calmodulin-binding regions. Using synthetic peptides and isothermal titration calorimetry, calmodulin binding motifs were identified in the potassium voltage-gated channel Kv6.1 (residues 474-493), calmodulin kinase-like vesicle-associated protein (residues 302-316), EF-hand domain family member A2 (residues 202-216), and phosphatidylinositol-4-phosphate 5-kinase, type I, gamma (residues 400-415).
Collapse
Affiliation(s)
- David J O'Connell
- Translational Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Hayashi N, Titani K. N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:494-508. [PMID: 20467215 PMCID: PMC3108300 DOI: 10.2183/pjab.86.494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
Abstract
N-myristoylation, one of the co- or post-translational modifications of proteins, has so far been regarded as necessary for anchoring of proteins to membranes. Recently, we have revealed that N(alpha)-myristoylation of several brain proteins unambiguously regulates certain protein-protein interactions that may affect signaling pathways in brain. Comparison of the amino acid sequences of myristoylated proteins including those in other organs suggests that this regulation is involved in signaling pathways not only in brain but also in other organs. Thus, it has been shown that myristoylated proteins in cells regulate the signal transduction between membranes and cytoplasmic fractions. An algorithm we have developed to identify myristoylated proteins in cells predicts the presence of hundreds of myristoylated proteins. Interestingly, a large portion of the myristoylated proteins thought to take part in signal transduction between membranes and cytoplasmic fractions are included in the predicted myristoylated proteins. If the proteins functionally regulated by myristoylation, a posttranslational protein modification, were understood as cross-talk points within the intracellular signal transduction system, known signaling pathways could thus be linked to each other, and a novel map of this intracellular network could be constructed. On the basis of our recent results, this review will highlight the multifunctional aspects of protein N-myristoylation in brain.
Collapse
Affiliation(s)
- Nobuhiro Hayashi
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama-shi, Kanagawa Pref., 226-8501, Japan.
| | | |
Collapse
|
217
|
Fromer M, Shifman JM. Tradeoff between stability and multispecificity in the design of promiscuous proteins. PLoS Comput Biol 2009; 5:e1000627. [PMID: 20041208 PMCID: PMC2790338 DOI: 10.1371/journal.pcbi.1000627] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/24/2009] [Indexed: 12/23/2022] Open
Abstract
Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein, calmodulin (CaM), which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the compromise between the need for favorable interaction energies and the need for multispecificity. We observe that designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal energies. We conclude that multispecific proteins have been subjected to a rigorous optimization process that has fine-tuned their sequences for interactions with a precise set of targets, thus conferring their multiple cellular functions. In nature, some proteins are more social than others, interacting with a large number of partners. These “promiscuous” proteins play key roles in cellular signaling pathways whose disruption may lead to diseases such as cancer. The amino acid sequences of such proteins must have evolved to be optimal for combined interactions with all natural partners. However, the evolutionary process leading to this promiscuity is not fully understood. We address this subject by predicting amino acid sequences that would be most compatible for interaction with each partner on its own and those most compatible for binding multiple proteins. We find that these two types of sequences are substantially different, the latter more closely resembling the natural sequences of promiscuous proteins. We also find that promiscuous proteins contain certain regions that are necessary for interfacing with all of their partners, while other regions convey specific interactions with each particular target protein. We analyze the tradeoffs required for such proteins to bind multiple partners and find that only some degree of compromise is typically needed in order to permit interactions that are seemingly antagonistic. We conclude that the simulations reported here mimic well the natural evolution of proteins that associate with multiple partners.
Collapse
Affiliation(s)
- Menachem Fromer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia M. Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
218
|
Karst JC, Sotomayor Pérez AC, Guijarro JI, Raynal B, Chenal A, Ladant D. Calmodulin-Induced Conformational and Hydrodynamic Changes in the Catalytic Domain of Bordetella pertussis Adenylate Cyclase Toxin. Biochemistry 2009; 49:318-28. [DOI: 10.1021/bi9016389] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johanna C. Karst
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ana Cristina Sotomayor Pérez
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - J. Iñaki Guijarro
- Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Bertrand Raynal
- Institut Pasteur, Plate-Forme de Biophysique des Macromolécules et de leurs Interactions, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, CNRS URA 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
219
|
Zhang Y, Tan H, Chen G, Jia Z. Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation. J Mol Recognit 2009; 23:360-8. [DOI: 10.1002/jmr.1002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
220
|
Juranic N, Atanasova E, Filoteo AG, Macura S, Prendergast FG, Penniston JT, Strehler EE. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J Biol Chem 2009; 285:4015-4024. [PMID: 19996092 DOI: 10.1074/jbc.m109.060491] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using solution NMR spectroscopy, we obtained the structure of Ca(2+)-calmodulin (holoCaM) in complex with peptide C28 from the binding domain of the plasma membrane Ca(2+)-ATPase (PMCA) pump isoform 4b. This provides the first atomic resolution insight into the binding mode of holoCaM to the full-length binding domain of PMCA. Structural comparison of the previously determined holoCaM.C20 complex with this holoCaM.C28 complex supports the idea that the initial binding step is represented by (holoCaM.C20) and the final bound complex by (holoCaM.C28). This affirms the existing multi-step kinetic model of PMCA4b activation by CaM. The complex exhibits a new binding motif in which holoCaM is wrapped around helical C28 peptide using two anchoring residues from the peptide at relative positions 18 and 1. The anchors correspond to Phe-1110 and Trp-1093, respectively, in full-length PMCA4b, and the peptide and CaM are oriented in an anti-parallel manner. This is a greater sequence distance between anchors than in any of the known holoCaM complexes with a helical peptide. Analysis of the geometry of holoCaM-peptide binding for the cases where the target peptide adopts an alpha(D)-helix with its anchors buried in the main hydrophobic pockets of the two CaM lobes establishes that only relative sequential positions of 10, 14, 17, and 18 are allowed for the second anchor.
Collapse
Affiliation(s)
- Nenad Juranic
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| | - Elena Atanasova
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Adelaida G Filoteo
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Slobodan Macura
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Franklyn G Prendergast
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 and
| | | | - Emanuel E Strehler
- From the Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
221
|
Kovacs E, Tóth J, Vértessy BG, Liliom K. Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling. J Biol Chem 2009; 285:1799-808. [PMID: 19910470 DOI: 10.1074/jbc.m109.053116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427-437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.
Collapse
Affiliation(s)
- Erika Kovacs
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest H-1113, Hungary.
| | | | | | | |
Collapse
|
222
|
Murayama K, Sonoyama M, Terada T, Yokoyama Y, Nara M, Tomida M, Matsuda S. Bisphenol A Weakens Calcium Binding Affinity of Sites III and IV in C-Terminal Domain of Bovine Brain Calmodulin. CHEM LETT 2009. [DOI: 10.1246/cl.2009.1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
223
|
Stathopulos PB, Ikura M. Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Immunol Rev 2009; 231:113-31. [PMID: 19754893 DOI: 10.1111/j.1600-065x.2009.00814.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) lumen stores a crucial source of calcium (Ca2+) maintained orders of magnitude higher than the cytosol for the activation of a plethora of cellular responses transmitted in health and disease by a mutually efficient and communicative exchange of Ca2+ between compartments. A coordination of the Ca2+ signal is evident in the development of Ca2+ release-activated Ca2+ (CRAC) entry, vital to lymphocyte activation and replenishing of the ER Ca2+ stores, where modest decreases in ER luminal Ca2+ induce sustained increases in cytosolic Ca2+ sourced from steadfast extracellular Ca2+ supplies. While protein sensors that transduce Ca2+ signals in the cytosol such as calmodulin are succinctly understood, comparative data on the ER luminal Ca2+ sensors is only recently coming to light with the discovery that stromal interaction molecules (STIMs) sense variations in ER stored Ca2+ levels in the functional regulation of plasma membrane Orai proteins, the major component of CRAC channel pores. Drawing from data on the role of STIMs in the modulation of CRAC entry, this review illustrates the structural features that delimit the functional characteristics of ER Ca2+ sensors relative to well known cytoplasmic Ca2+ sensors.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Division of Signaling Biology and Department of Medical Biophysics, Ontario Cancer Institute and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
224
|
Shishido H, Nakazato K, Katayama E, Chaen S, Maruta S. Kinesin-Calmodulin fusion protein as a molecular shuttle. J Biochem 2009; 147:213-23. [DOI: 10.1093/jb/mvp173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
225
|
Fromer M, Yanover C. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Proteins 2009; 75:682-705. [PMID: 19003998 DOI: 10.1002/prot.22280] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The task of engineering a protein to assume a target three-dimensional structure is known as protein design. Computational search algorithms are devised to predict a minimal energy amino acid sequence for a particular structure. In practice, however, an ensemble of low-energy sequences is often sought. Primarily, this is performed because an individual predicted low-energy sequence may not necessarily fold to the target structure because of both inaccuracies in modeling protein energetics and the nonoptimal nature of search algorithms employed. Additionally, some low-energy sequences may be overly stable and thus lack the dynamic flexibility required for biological functionality. Furthermore, the investigation of low-energy sequence ensembles will provide crucial insights into the pseudo-physical energy force fields that have been derived to describe structural energetics for protein design. Significantly, numerous studies have predicted low-energy sequences, which were subsequently synthesized and demonstrated to fold to desired structures. However, the characterization of the sequence space defined by such energy functions as compatible with a target structure has not been performed in full detail. This issue is critical for protein design scientists to successfully continue using these force fields at an ever-increasing pace and scale. In this paper, we present a conceptually novel algorithm that rapidly predicts the set of lowest energy sequences for a given structure. Based on the theory of probabilistic graphical models, it performs efficient inspection and partitioning of the near-optimal sequence space, without making any assumptions of positional independence. We benchmark its performance on a diverse set of relevant protein design examples and show that it consistently yields sequences of lower energy than those derived from state-of-the-art techniques. Thus, we find that previously presented search techniques do not fully depict the low-energy space as precisely. Examination of the predicted ensembles indicates that, for each structure, the amino acid identity at a majority of positions must be chosen extremely selectively so as to not incur significant energetic penalties. We investigate this high degree of similarity and demonstrate how more diverse near-optimal sequences can be predicted in order to systematically overcome this bottleneck for computational design. Finally, we exploit this in-depth analysis of a collection of the lowest energy sequences to suggest an explanation for previously observed experimental design results. The novel methodologies introduced here accurately portray the sequence space compatible with a protein structure and further supply a scheme to yield heterogeneous low-energy sequences, thus providing a powerful instrument for future work on protein design.
Collapse
Affiliation(s)
- Menachem Fromer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
226
|
Krishnan M, Smith JC. Response of small-scale, methyl rotors to protein-ligand association: a simulation analysis of calmodulin-peptide binding. J Am Chem Soc 2009; 131:10083-91. [PMID: 19621963 DOI: 10.1021/ja901276n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in the free energy barrier (DeltaE), entropy, and motional parameters associated with the rotation of methyl groups in a protein (calmodulin (CaM)) on binding a ligand (the calmodulin-binding domain of smooth-muscle myosin (smMLCKp)) are investigated using molecular dynamics simulation. In both the bound and uncomplexed forms of CaM, the methyl rotational free energy barriers follow skewed-Gaussian distributions that are not altered significantly upon ligand binding. However, site-specific perturbations are found. Around 11% of the methyl groups in CaM exhibit changes in DeltaE greater than 0.7 kcal/mol on binding. The rotational entropies of the methyl groups exhibit a nonlinear dependence on DeltaE. The relations are examined between motional parameters (the methyl rotational NMR order parameter and the relaxation time) and DeltaE. Low-barrier methyl group rotational order parameters deviate from ideal tetrahedrality by up to approximately 20%. There is a correlation between rotational barrier changes and proximity to the protein-peptide binding interface. Methyl groups that exhibit large changes in DeltaE are found to report on elements in the protein undergoing structural change on binding.
Collapse
Affiliation(s)
- Marimuthu Krishnan
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | | |
Collapse
|
227
|
Ishida H, Rainaldi M, Vogel HJ. Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode. J Biol Chem 2009; 284:28292-28305. [PMID: 19667066 PMCID: PMC2788880 DOI: 10.1074/jbc.m109.025080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/10/2009] [Indexed: 01/22/2023] Open
Abstract
The calcium regulatory protein calmodulin (CaM) binds in a calcium-dependent manner to numerous target proteins. The calmodulin-binding domain (CaMBD) region of Nicotiana tabacum MAPK phosphatase has an amino acid sequence that does not resemble the CaMBD of any other known Ca(2+)-CaM-binding proteins. Using a unique fusion protein strategy, we have been able to obtain a high resolution solution structure of the complex of soybean Ca(2+)-CaM4 (SCaM4) and this CaMBD. Complete isotope labeling of both parts of the complex in the fusion protein greatly facilitated the structure determination by NMR. The 12-residue CaMBD region was found to bind exclusively to the C-lobe of SCaM4. A specific Trp and Leu side chain are utilized to facilitate strong binding through a novel "double anchor" motif. Moreover, the orientation of the helical peptide on the surface of Ca(2+)-SCaM4 is distinct from other known complexes. The N-lobe of Ca(2+)-SCaM4 in the complex remains free for additional interactions and could possibly act as a calcium-dependent adapter protein. Signaling through the MAPK pathway and increases in intracellular Ca(2+) are both hallmarks of the plant stress response, and our data support the notion that coordination of these responses may occur through the formation of a unique CaM-MAPK phosphatase multiprotein complex.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mario Rainaldi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
228
|
Yan P, Wang T, Newton GJ, Knyushko TV, Xiong Y, Bigelow DJ, Squier TC, Mayer MU. A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking. Chembiochem 2009; 10:1507-18. [PMID: 19441027 DOI: 10.1002/cbic.200900029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification.
Collapse
Affiliation(s)
- Ping Yan
- Novozymes, Inc., 1445 Drew Ave, Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Xia C, Misra I, Iyanagi T, Kim JJP. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 2009; 284:30708-17. [PMID: 19737939 DOI: 10.1074/jbc.m109.031682] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) catalyze the conversion of l-arginine to nitric oxide and citrulline. There are three NOS isozymes, each with a different physiological role: neuronal NOS, endothelial NOS, and inducible NOS (iNOS). NOSs consist of an N-terminal oxygenase domain and a C-terminal reductase domain, linked by a calmodulin (CaM)-binding region. CaM is required for NO production, but unlike other NOS isozymes, iNOS binds CaM independently of the exogenous Ca(2+) concentration. We have co-expressed CaM and the FMN domain of human iNOS, which includes the CaM-binding region. The Ca(2+)-bound protein complex (CaCaMxFMN) forms an air-stable semiquinone when reduced with NADPH and reduces cytochrome c when reconstituted with the iNOS FAD/NADPH domain. We have solved the crystal structure of the CaCaMxFMN complex in four different conformations, each with a different relative orientation, between the FMN domain and the bound CaM. The CaM-binding region together with bound CaM forms a hinge, pivots on the conserved Arg(536), and regulates electron transfer from FAD to FMN and from FMN to heme by adjusting the relative orientation and distance among the three cofactors. In addition, the relative orientations of the N- and C-terminal lobes of CaM are also different among the four conformations, suggesting that the flexibility between the two halves of CaM also contributes to the fine tuning of the orientation/distance between the redox centers. The data demonstrate a possible mode for precise control of electron transfer by altering the distance and orientation of redox centers in a protein displaying domain movement.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
230
|
Filatova A, Leyerer M, Gorboulev V, Chintalapati C, Reinders Y, Müller TD, Srinivasan A, Hübner S, Koepsell H. Novel shuttling domain in a regulator (RSC1A1) of transporter SGLT1 steers cell cycle-dependent nuclear location. Traffic 2009; 10:1599-618. [PMID: 19765263 DOI: 10.1111/j.1600-0854.2009.00982.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gene product of RSC1A1, RS1, participates in the regulation of the Na(+)-D-glucose cotransporter SGLT1. RS1 inhibits release of SGLT1 from the trans Golgi network. In subconfluent LLC-PK(1) cells, RS1 migrates into the nucleus and modulates transcription of SGLT1, whereas most confluent cells do not contain RS1 in the nuclei. We showed that confluence-dependent nuclear location of RS1 is because of different phases of the cell cycle and identified a RS1 nuclear shuttling domain (RNS) with an associated protein kinase C (PKC) phosphorylation site (RNS-PKC) that mediates cell cycle-dependent nuclear location. RNS-PKC contains a novel non-conventional nuclear localization signal interacting with importin beta1, a nuclear export signal mediating export via protein CRM1 and a Ca(2+)-dependent calmodulin binding site. PKC and calmodulin compete for binding to RNS-PKC. Mutagenesis experiments and analyses of the phosphorylation status suggest the following sequences of events. Subconfluent cells without and with synchronization to the G2/M phase contain non-phosphorylated RNS-PKC that mediates nuclear import of RS1 but not its export. During confluence or synchronization of subconfluent cells to the G2/M phase, phosphorylation of RNS-PKC mediates rapid nuclear export of RS1.
Collapse
Affiliation(s)
- Alina Filatova
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Keating KS, Flores SC, Gerstein MB, Kuhn LA. StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci 2009; 18:359-71. [PMID: 19180449 DOI: 10.1002/pro.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hinge motions are important for molecular recognition, and knowledge of their location can guide the sampling of protein conformations for docking. Predicting domains and intervening hinges is also important for identifying structurally self-determinate units and anticipating the influence of mutations on protein flexibility and stability. Here we present StoneHinge, a novel approach for predicting hinges between domains using input from two complementary analyses of noncovalent bond networks: StoneHingeP, which identifies domain-hinge-domain signatures in ProFlex constraint counting results, and StoneHingeD, which does the same for DomDecomp Gaussian network analyses. Predictions for the two methods are compared to hinges defined in the literature and by visual inspection of interpolated motions between conformations in a series of proteins. For StoneHingeP, all the predicted hinges agree with hinge sites reported in the literature or observed visually, although some predictions include extra residues. Furthermore, no hinges are predicted in six hinge-free proteins. On the other hand, StoneHingeD tends to overpredict the number of hinges, while accurately pinpointing hinge locations. By determining the consensus of their results, StoneHinge improves the specificity, predicting 11 of 13 hinges found both visually and in the literature for nine different open protein structures, and making no false-positive predictions. By comparison, a popular hinge detection method that requires knowledge of both the open and closed conformations finds 10 of the 13 known hinges, while predicting four additional, false hinges.
Collapse
Affiliation(s)
- Kevin S Keating
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
232
|
Jama AM, Fenton J, Robertson SD, Török K. Time-dependent autoinactivation of phospho-Thr286-alphaCa2+/calmodulin-dependent protein kinase II. J Biol Chem 2009; 284:28146-28155. [PMID: 19654320 PMCID: PMC2788865 DOI: 10.1074/jbc.m109.005900] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (αCaMKII) is thought to exert its role in memory formation by autonomous Ca2+-independent persistent activity conferred by Thr286 autophosphorylation, allowing the enzyme to remain active even when intracellular [Ca2+] has returned to resting levels. Ca2+ sequestration-induced inhibition, caused by a burst of Thr305/306 autophosphorylation via calmodulin (CaM) dissociation from the Thr305/306 sites, is in conflict with this view. The processes of CaM binding, autophosphorylation, and inactivation are dissected to resolve this conflict. Upon Ca2+ withdrawal, CaM sequential domain dissociation is observed, starting with the rapid release of the first (presumed N-terminal) CaM lobe, thought to be bound at the Thr305/306 sites. The time courses of Thr305/306 autophosphorylation and inactivation, however, correlate with the slow dissociation of the second (presumed C-terminal) CaM lobe. Exposure of the Thr305/306 sites is thus not sufficient for their autophosphorylation. Moreover, Thr305/306 autophosphorylation and autoinactivation are shown to occur in the continuous presence of Ca2+ and bound Ca2+/CaM by time courses similar to those seen following Ca2+ sequestration. Our investigation of the activity and mechanisms of phospho-Thr286-αCaMKII thus shows time-dependent autoinactivation, irrespective of the continued presence of Ca2+ and CaM, allowing a very short, if any, time window for Ca2+/CaM-free phospho-Thr286-αCaMKII activity. Physiologically, the time-dependent autoinactivation mechanisms of phospho-Thr286-αCaMKII (t½ of ∼50 s at 37 °C) suggest a transient kinase activity of ∼1 min duration in the induction of long term potentiation and thus memory formation.
Collapse
Affiliation(s)
- Abdirahman M Jama
- Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Jon Fenton
- Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Saralili D Robertson
- Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Katalin Török
- Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
233
|
Dimova K, Kalkhof S, Pottratz I, Ihling C, Rodriguez-Castaneda F, Liepold T, Griesinger C, Brose N, Sinz A, Jahn O. Structural insights into the calmodulin-Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry 2009; 48:5908-21. [PMID: 19492809 DOI: 10.1021/bi900300r] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Munc13 proteins are essential regulators of synaptic vesicle priming and play a key role in adaptive synaptic plasticity phenomena. We recently identified and characterized the Ca(2+)-dependent interaction of Munc13 and calmodulin (CaM) as the molecular mechanism linking changes in residual Ca(2+) concentrations to presynaptic vesicle priming and short-term plasticity. Here, we used peptidic photoprobes covering the established CaM-binding motif of Munc13 for photoaffinity labeling (PAL) of CaM, followed by structural characterization of the covalent photoadducts. Our innovative analytical workflow based on isotopically labeled CaM and mass spectrometry revealed that, in the bound state, the hydrophobic anchor residue of the CaM-binding motif in Munc13s contacts two distinct methionine residues in the C-terminal domain of CaM. To address the orientation of the peptide during binding, we obtained additional distance constraints from the mass spectrometric analysis of chemically cross-linked CaM-Munc13 peptide adducts. The constraints from both complementary cross-linking approaches were integrated into low-resolution three-dimensional structure models of the CaM-Munc13 peptide complexes. Our experimental data are best compatible with the structure of the complex formed by CaM and a CaM-binding peptide derived from neuronal NO synthase and show that Munc13-1 and ubMunc13-2 bind to CaM in an antiparallel orientation through a 1-5-8 motif. The structural information about the CaM-Munc13 peptide complexes will facilitate the design of Munc13 variants with altered CaM affinity and thereby advance the detailed functional analysis of the role of Munc13 proteins in synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Kalina Dimova
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Shishido H, Yamada MD, Kondo K, Maruta S. Photocontrol of Calmodulin Interaction with Target Peptides using Azobenzene Derivative. J Biochem 2009; 146:581-90. [DOI: 10.1093/jb/mvp107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
235
|
Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci 2009; 66:2231-47. [PMID: 19308324 PMCID: PMC11115794 DOI: 10.1007/s00018-009-0014-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/29/2022]
Abstract
Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions. The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed as an integral part of their structure.
Collapse
Affiliation(s)
- Kaare Teilum
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Johan G. Olsen
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
236
|
Abstract
Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium-depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca(2+))(4)-CaM to a basic amphipathic helix in CaMKII releases auto-inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM-binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C-domain of CaM primarily contacts the N-terminal half of the CaMBD. The two domains of calcium-saturated CaM are believed to play distinct roles in releasing auto-inhibition. To investigate the underlying mechanism of activation, calcium-dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C-domain having a 35-fold greater affinity than the N-domain. Because the interdomain linker of CaM regulates calcium-binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site-knockout mutants affecting the calcium-binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium-binding sites and CaM-domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca(2+))(4)-CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium-binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF-hands of CaM.
Collapse
Affiliation(s)
- T. Idil Apak Evans
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109
| | - Madeline A. Shea
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109
| |
Collapse
|
237
|
Chen PF, Wu KK. Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM. Arch Biochem Biophys 2009; 486:132-40. [PMID: 19358819 PMCID: PMC2702655 DOI: 10.1016/j.abb.2009.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Human endothelial nitric-oxide synthase (eNOS) is a complex enzyme, requiring binding of calmodulin (CaM) for electron transfer. The prevailing view is that calcium-activated CaM binds eNOS at the canonical binding site located at residues 493-510, which induces a conformational change to facilitate electron transfer. Here we demonstrated that the CaM enhances the rate of electron transfer from NADPH to FAD on a truncated eNOS FAD subdomain (residues 682-1204) purified from baculovirus-infected Sf9 cells, suggesting more complicated regulatory mechanism of CaM on eNOS. Metabolically (35)S-labeled CaM overlay on fusion proteins spanning the entire linear sequence of eNOS revealed three positive (35)S-CaM binding fragments: sequence 66-205, sequence 460-592, and sequence 505-759. Synthetic peptides derived from these fragments are tested for their effects on CaM binding and eNOS catalytic activities. Peptides corresponding to the proximal heme-binding site (E1, residues 174-193) and the CD1 linker connecting FAD/FMN subdomains (E4, residues 729-757) bind CaM at both high Ca(2+) (Ca(2+)CaM) and low Ca(2+) (apoCaM) concentrations, whereas peptide of the canonical CaM-binding helix (E2, residues 493-510) binds only Ca(2+)CaM. All three peptides E1, E2 and E4 significantly inhibit oxygenase activity in a concentration-dependent manner, but only E2 effectively inhibits reductase activity. Concurrent experiments with human iNOS showed major differences in the CaM binding properties between eNOS and iNOS. The results suggest that multiple regions of eNOS might interact with CaM with differential Ca(2+) sensitivity in vivo. A possible mechanism in regulating eNOS activation and deactivation is proposed.
Collapse
Affiliation(s)
- Pei-Feng Chen
- Vascular Biology Research Center, Department of Internal Medicine, The University of Texas Health Science Center at Houston, TX, USA.
| | | |
Collapse
|
238
|
Yurimoto S, Hatano N, Tsuchiya M, Kato K, Fujimoto T, Masaki T, Kobayashi R, Tokumitsu H. Identification and characterization of wolframin, the product of the wolfram syndrome gene (WFS1), as a novel calmodulin-binding protein. Biochemistry 2009; 48:3946-55. [PMID: 19292454 DOI: 10.1021/bi900260y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To search for calmodulin (CaM) targets, we performed affinity chromatography purification of a rat brain extract using CaM fused with GST as the affinity ligand. Proteomic analysis was then carried out to identify CaM-binding proteins. In addition to identifying 36 known CaM-binding proteins, including CaM kinases, calcineurin, nNOS, the IP(3) receptor, and Ca(2+)-ATPase, we identified an ER transmembrane protein, wolframin [the product of the Wolfram syndrome gene (WFS1)] as interacting. A CaM overlay and an immunoprecipitation assay revealed that wolframin is capable of binding the Ca(2+)/CaM complex in vitro and in transfected cells. Surface plasmon resonance analysis and zero-length cross-linking showed that the N-terminal cytoplasmic domain (residues 2-285) of wolframin binds to an equimolar unit of CaM in a Ca(2+)-dependent manner with a K(D) for CaM of 0.15 muM. Various truncation and deletion mutants showed that the Ca(2+)/CaM binding region in wolframin is located from Glu90 to Trp186. Furthermore, we demonstrated that three mutations (Ala127Thr, Ala134Thr, and Arg178Pro) associated with Wolfram syndrome completely abolished CaM binding of wolframin. This observation may indicate that CaM binding is important for wolframin function and that impairment of this interaction by mutation contributes to the pathology seen in Wolfram syndrome.
Collapse
Affiliation(s)
- Saki Yurimoto
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University,Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Yang S, Park S, Makowski L, Roux B. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J 2009; 96:4449-63. [PMID: 19486669 PMCID: PMC2711486 DOI: 10.1016/j.bpj.2009.03.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/17/2009] [Accepted: 03/04/2009] [Indexed: 02/03/2023] Open
Abstract
We present a coarse residue-based computational method to rapidly compute the solution scattering profile from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG representation takes advantage of the intrinsic low-resolution and CG nature of solution scattering data. It allows rapid scattering determination from a large number of conformations that can be extracted from CG simulations to obtain scattering characterization of protein conformations. The method includes several important elements, effective residue structure factors derived from the Protein Data Bank, explicit treatment of water molecules in the hydration layer at the surface of the protein, and an ensemble average of scattering from a variety of appropriate conformations to account for macromolecular flexibility. This simplified method is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrated the applications of this CG method by computing the solution scattering patterns of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with the reliable computational method that we developed, show great potential for a better structural description of multidomain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois
| | - Sanghyun Park
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| |
Collapse
|
240
|
DuBay KH, Geissler PL. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions. J Mol Biol 2009; 391:484-97. [PMID: 19481551 DOI: 10.1016/j.jmb.2009.05.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022]
Abstract
Despite the high density within a typical protein fold, the ensemble of sterically permissible side-chain repackings is vast. Here, we examine the extent of this variability that survives energetic biases due to van der Waals interactions, hydrogen bonding, salt bridges, and solvation. Monte Carlo simulations of an atomistic model exhibit thermal fluctuations among a diverse set of side-chain arrangements, even with the peptide backbone fixed in its crystallographic conformation. We have quantified the torsional entropy of this native-state ensemble, relative to that of a noninteracting reference system, for 12 small proteins. The reduction in entropy per rotatable bond due to each kind of interaction is remarkably consistent across this set of molecules. To assess the biophysical importance of these fluctuations, we have estimated side-chain entropy contributions to the binding affinity of several peptide ligands with calmodulin. Calculations for our fixed-backbone model correlate very well with experimentally determined binding entropies over a range spanning more than 80 kJ/(mol x 308 K).
Collapse
Affiliation(s)
- Kateri H DuBay
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
241
|
Halling DB, Georgiou DK, Black DJ, Yang G, Fallon JL, Quiocho FA, Pedersen SE, Hamilton SL. Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. J Biol Chem 2009; 284:20041-51. [PMID: 19473981 DOI: 10.1074/jbc.m109.013326] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin binds to IQ motifs in the alpha(1) subunit of Ca(V)1.1 and Ca(V)1.2, but the affinities of calmodulin for the motif and for Ca(2+) are higher when bound to Ca(V)1.2 IQ. The Ca(V)1.1 IQ and Ca(V)1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to Ca(V)1.1 IQ and compared it with that of calmodulin bound to Ca(V)1.2 IQ. Four methionines in Ca(2+)-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of Ca(V)1.1 and Tyr-1675 of Ca(V)1.2) contacts this calmodulin pocket. However, Tyr-1675 in Ca(V)1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in Ca(V)1.2 contribute significantly to the difference in the Ca(2+) affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca(2+)-bound and one lobe Ca(2+)-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to Ca(V)1.2.
Collapse
Affiliation(s)
- D Brent Halling
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Majava V, Kursula P. Domain swapping and different oligomeric States for the complex between calmodulin and the calmodulin-binding domain of calcineurin a. PLoS One 2009; 4:e5402. [PMID: 19404396 PMCID: PMC2671406 DOI: 10.1371/journal.pone.0005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/25/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is a ubiquitously expressed calcium sensor that engages in regulatory interactions with a large number of cellular proteins. Previously, a unique mode of CaM target recognition has been observed in the crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A. METHODOLOGY/PRINCIPAL FINDINGS We have solved a high-resolution crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A in a novel crystal form, which shows a dimeric assembly of calmodulin, as observed before in the crystal state. We note that the conformation of CaM in this complex is very similar to that of unliganded CaM, and a detailed analysis revels that the CaM-binding motif in calcineurin A is of a novel '1-11' type. However, using small-angle X-ray scattering (SAXS), we show that the complex is fully monomeric in solution, and a structure of a canonically collapsed CaM-peptide complex can easily be fitted into the SAXS data. This result is also supported by size exclusion chromatography, where the addition of the ligand peptide decreases the apparent size of CaM. In addition, we studied the energetics of binding by isothermal titration calorimetry and found them to closely resemble those observed previously for ligand peptides from CaM-dependent kinases. CONCLUSIONS/SIGNIFICANCE Our results implicate that CaM can also form a complex with the CaM-binding domain of calcineurin in a 1 ratio 1 stoichiometry, in addition to the previously observed 2 ratio 2 arrangement in the crystal state. At the structural level, going from 2 ratio 2 association to two 1 ratio 1 complexes will require domain swapping in CaM, accompanied by the characteristic bending of the central linker helix between the two lobes of CaM.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
243
|
Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Biophys J 2009; 96:2832-48. [PMID: 19348766 PMCID: PMC2711270 DOI: 10.1016/j.bpj.2008.12.3941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 12/07/2008] [Accepted: 12/23/2008] [Indexed: 10/20/2022] Open
Abstract
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+](i) in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the alpha-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Wei Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Monica M. Lurtz
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Yanyi Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Jie Jiang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Yun Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Charles F. Louis
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
244
|
Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Wilmanns M, Yuan J. Accurate Solution Structures of Proteins from X-ray Data and a Minimal Set of NMR Data: Calmodulin−Peptide Complexes As Examples. J Am Chem Soc 2009; 131:5134-44. [DOI: 10.1021/ja8080764] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Petri Kursula
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Juha Vahokoski
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Matthias Wilmanns
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Jing Yuan
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| |
Collapse
|
245
|
Macdougall DA, Wachten S, Ciruela A, Sinz A, Cooper DMF. Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition. J Biol Chem 2009; 284:15573-88. [PMID: 19305019 PMCID: PMC2708854 DOI: 10.1074/jbc.m809585200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ubiquitous Ca2+-sensing protein calmodulin (CaM) fulfills its numerous signaling functions through a wide range of modular binding and activation mechanisms. By activating adenylyl cyclases (ACs) 1 and 8, Ca2+ acting via calmodulin impacts on the signaling of the other major cellular second messenger cAMP. In possessing two CaM-binding domains, a 1-5-8-14 motif at the N terminus and an IQ-like motif (IQlm) at the C terminus, AC8 offers particularly sophisticated regulatory possibilities. The IQlm has remained unexplored beyond the suggestion that it bound CaM, and the larger C2b region of which it is part was involved in the relief of autoinhibition of AC8. Here we attempt to distinguish the function of individual residues of the IQlm. From a complementary approach of in vitro and cell population AC activity assays, as well as CaM binding, we propose that the IQlm alone, and not the majority of the C2b, imparts CaM binding and autoinhibitory functions. Moreover, this duality of function is spatially separated and depends on amino acid side-chain character. Accordingly, residues critical for CaM binding are positively charged and clustered toward the C terminus, and those essential for the maintenance of autoinhibition are hydrophobic and more N-terminal. Secondary structure prediction of the IQlm supports this separation, with an ideally placed break in the α-helical nature of the sequence. We additionally find that the N and C termini of AC8 interact, which is an association specifically abrogated by fully Ca2+-bound, but not Ca2+-free, CaM. These data support a sophisticated activation mechanism of AC8 by CaM, in which the duality of the IQlm function is critical.
Collapse
Affiliation(s)
- David A Macdougall
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
246
|
Akerboom J, Rivera JDV, Guilbe MMR, Malavé ECA, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 2009; 284:6455-64. [PMID: 19098007 PMCID: PMC2649101 DOI: 10.1074/jbc.m807657200] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/08/2008] [Indexed: 11/06/2022] Open
Abstract
The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.
Collapse
Affiliation(s)
- Jasper Akerboom
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Yamniuk AP, Ishida H, Lippert D, Vogel HJ. Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Biophys J 2009; 96:1495-507. [PMID: 19217866 PMCID: PMC2717255 DOI: 10.1016/j.bpj.2008.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/28/2008] [Indexed: 11/16/2022] Open
Abstract
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19-26 degrees C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding.
Collapse
Affiliation(s)
- Aaron P. Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hiroaki Ishida
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Dustin Lippert
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hans J. Vogel
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
248
|
Computational Design of Calmodulin Mutants with up to 900-Fold Increase in Binding Specificity. J Mol Biol 2009; 385:1470-80. [DOI: 10.1016/j.jmb.2008.09.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/14/2008] [Accepted: 09/17/2008] [Indexed: 11/15/2022]
|
249
|
Furusawa H, Komatsu M, Okahata Y. In Situ Monitoring of Conformational Changes of and Peptide Bindings to Calmodulin on a 27 MHz Quartz-Crystal Microbalance. Anal Chem 2009; 81:1841-7. [DOI: 10.1021/ac8022229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroyuki Furusawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Mayu Komatsu
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
250
|
|