201
|
Abu-Hamad S, Kahn J, Leyton-Jaimes MF, Rosenblatt J, Israelson A. Misfolded SOD1 Accumulation and Mitochondrial Association Contribute to the Selective Vulnerability of Motor Neurons in Familial ALS: Correlation to Human Disease. ACS Chem Neurosci 2017; 8:2225-2234. [PMID: 28715630 DOI: 10.1021/acschemneuro.7b00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, with a 10% genetic linkage, of which 20% of these cases may be attributed to mutations in superoxide dismutase (SOD1). Specific mutations in SOD1 have been associated with disease duration, which can be highly variable ranging from a life expectancy of 3 to beyond 10 years. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles disrupting their function or forms insoluble toxic aggregates. To understand whether these biophysical properties of the mutant protein may influence disease onset and duration, we generated 19 point mutations in the SOD1 gene, based on available clinical data of disease onset and progression from patients. By overexpressing these mutants in motor-neuron-like NSC-34 cells, we demonstrate a variability in misfolding capacity between the different mutants with a correlation between the degree of protein misfolding and mutation severity. We also show a clear variation of the different SOD1 mutants to associate with mitochondrial-enriched fractions with a correlation between mutation severity and this association. In summary, these findings reveal a correlation between the accumulation of misfolded SOD1 species and their mitochondrial association with disease duration but not with disease onset, and they have implications for the potential therapeutic role of suppressing the accumulation of misfolded SOD1.
Collapse
Affiliation(s)
- Salah Abu-Hamad
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, ‡Department of Industrial
Engineering and Management, and §The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, ‡Department of Industrial
Engineering and Management, and §The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Marcel F. Leyton-Jaimes
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, ‡Department of Industrial
Engineering and Management, and §The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Jonathan Rosenblatt
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, ‡Department of Industrial
Engineering and Management, and §The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, ‡Department of Industrial
Engineering and Management, and §The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| |
Collapse
|
202
|
Van Dam D, Vermeiren Y, Dekker AD, Naudé PJW, Deyn PPD. Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies? Curr Alzheimer Res 2017; 13:1145-64. [PMID: 27137218 PMCID: PMC5070416 DOI: 10.2174/1567205013666160502123607] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms (NPS) are an integral part of the dementia syndrome and were therefore recently included in the core diagnostic criteria of dementia. The near universal prevalence of NPS in Alzheimer's disease (AD), combined with their disabling effects on patients and caregivers, is contrasted by the fact that few effective and safe treatments exist, which is in part to be attributed to our incomplete understanding of the neurobiology of NPS. In this review, we describe the pathological alterations typical for AD, including spreading and evolution of burden, effect on the molecular and cellular integrity, functional consequences and atrophy of NPS-relevant brain regions and circuits in correlation with specific NPS assessments. It is thereby clearly established that NPS are fundamental expressions of the underlying neurodegenerative brain disease and not simply reflect the patients' secondary response to their illness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which may not correctly represent the pathophysiological environment responsible for particular NPS that may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and other relevant approaches to further improve our apprehension of the neurobiology of NPS.
Collapse
Affiliation(s)
| | | | | | | | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, and, Faculty of Medical and Health Care Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
203
|
Endo S, Takada S, Honda RP, Müller K, Weishaupt JH, Andersen PM, Ludolph AC, Kamatari YO, Matsunaga T, Kuwata K, El-Kabbani O, Ikari A. Instability of C154Y variant of aldo-keto reductase 1C3. Chem Biol Interact 2017; 276:194-202. [DOI: 10.1016/j.cbi.2016.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
|
204
|
Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human-A Discrete Molecular Dynamics Study. Cell Biochem Biophys 2017; 76:231-241. [PMID: 28952073 DOI: 10.1007/s12013-017-0830-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harboring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.
Collapse
|
205
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
206
|
Ramesh N, Pandey UB. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Front Mol Neurosci 2017; 10:263. [PMID: 28878620 PMCID: PMC5572252 DOI: 10.3389/fnmol.2017.00263] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their interactors due to defective protein quality control. This apparent imbalance in the cellular protein homeostasis could be a crucial factor in causing motor neuron death in the later stages of the disease in patients. Autophagy is a major protein degradation pathway that is involved in the clearance of protein aggregates and damaged organelles. Abnormalities in autophagy have been observed in numerous neurodegenerative disorders, including ALS. In this review, we discuss the contribution of autophagy dysfunction in various in vitro and in vivo models of ALS. Furthermore, we examine the crosstalk between autophagy and other cellular stresses implicated in ALS pathogenesis and the therapeutic implications of regulating autophagy in ALS.
Collapse
Affiliation(s)
- Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| |
Collapse
|
207
|
Prakash A, Kumar V, Pandey P, Bharti DR, Vishwakarma P, Singh R, Hassan MI, Lynn AM. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. J Biomol Struct Dyn 2017; 36:2605-2617. [PMID: 28782426 DOI: 10.1080/07391102.2017.1364670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation 'building blocks' by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Amresh Prakash
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Vijay Kumar
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Preeti Pandey
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Deepak R Bharti
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Poonam Vishwakarma
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Ruhar Singh
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Andrew M Lynn
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| |
Collapse
|
208
|
Banerjee V, Oren O, Ben-Zeev E, Taube R, Engel S, Papo N. A computational combinatorial approach identifies a protein inhibitor of superoxide dismutase 1 misfolding, aggregation, and cytotoxicity. J Biol Chem 2017; 292:15777-15788. [PMID: 28768772 DOI: 10.1074/jbc.m117.789610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular agents that specifically bind and neutralize misfolded and toxic superoxide dismutase 1 (SOD1) mutant proteins may find application in attenuating the disease progression of familial amyotrophic lateral sclerosis. However, high structural similarities between the wild-type and mutant SOD1 proteins limit the utility of this approach. Here we addressed this challenge by converting a promiscuous natural human IgG-binding domain, the hyperthermophilic variant of protein G (HTB1), into a highly specific aggregation inhibitor (designated HTB1M) of two familial amyotrophic lateral sclerosis-linked SOD1 mutants, SOD1G93A and SOD1G85R We utilized a computational algorithm for mapping protein surfaces predisposed to HTB1 intermolecular interactions to construct a focused HTB1 library, complemented with an experimental platform based on yeast surface display for affinity and specificity screening. HTB1M displayed high binding specificity toward SOD1 mutants, inhibited their amyloid aggregation in vitro, prevented the accumulation of misfolded proteins in living cells, and reduced the cytotoxicity of SOD1G93A expressed in motor neuron-like cells. Competition assays and molecular docking simulations suggested that HTB1M binds to SOD1 via both its α-helical and β-sheet domains at the native dimer interface that becomes exposed upon mutated SOD1 misfolding and monomerization. Our results demonstrate the utility of computational mapping of the protein-protein interaction potential for designing focused protein libraries to be used in directed evolution. They also provide new insight into the mechanism of conversion of broad-spectrum immunoglobulin-binding proteins, such as HTB1, into target-specific proteins, thereby paving the way for the development of new selective drugs targeting the amyloidogenic proteins implicated in a variety of human diseases.
Collapse
Affiliation(s)
- Victor Banerjee
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ofek Oren
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Efrat Ben-Zeev
- the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Ran Taube
- the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Stanislav Engel
- the Department of Clinical Biochemistry and Pharmacology and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel,
| |
Collapse
|
209
|
Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 2017; 114:8770-8775. [PMID: 28760994 DOI: 10.1073/pnas.1705091114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register β-sheet structures and identifies a target for structure-based therapeutics in ALS.
Collapse
|
210
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
211
|
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 2017; 6:20. [PMID: 28702179 PMCID: PMC5504572 DOI: 10.1186/s40035-017-0088-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Collapse
Affiliation(s)
- Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| | - Joseph Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
212
|
Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 2017; 301:83-91. [PMID: 28679106 DOI: 10.1016/j.expneurol.2017.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions. More recently, a chaperone-like activity has been added to its repertoire. In this review, we focus on the implication of MIF in the central nervous system and peripheries, its role in neurological disorders, and the mechanisms by which MIF is regulated. Numerous studies have associated MIF with various disease settings. MIF plays an important role in advocating tumorigenic processes, Alzheimer's disease, and is also upregulated in autism-spectrum disorders and spinal cord injury where it contributes to the severity of the injured area. The protective effect of MIF has been reported in amyotrophic lateral sclerosis by its reduction of aggregated misfolded SOD1, subsequently reducing the severity of this disease. Interestingly, a protective as well as pathological role for MIF has been implicated in stroke and cerebral ischemia, as well as depression. Thus, the role of MIF in neurological disorders appears to be diverse with both beneficial and adversary effects. Furthermore, its modulation is rather complex and it is regulated by different proteins, either on a molecular or protein level. This complexity might be dependent on the pathophysiological context and/or cellular microenvironment. Hence, further clarification of its diverse roles in neurological pathologies is warranted to provide new mechanistic insights which may lead in the future to the development of therapeutic strategies based on MIF, to fight some of these neurological disorders.
Collapse
|
213
|
Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 2017; 134:97-111. [PMID: 28247063 DOI: 10.1007/s00401-017-1688-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
A common feature of inherited and sporadic ALS is accumulation of abnormal proteinaceous inclusions in motor neurons and glia. SOD1 is the major protein component accumulating in patients with SOD1 mutations, as well as in mutant SOD1 mouse models. ALS-linked mutations of SOD1 have been shown to increase its propensity to misfold and/or aggregate. Antibodies specific for monomeric or misfolded SOD1 have detected misfolded SOD1 accumulating predominantly in spinal cord motor neurons of ALS patients with SOD1 mutations. We now use seven different conformationally sensitive antibodies to misfolded human SOD1 (including novel high affinity antibodies currently in pre-clinical development) coupled with immunohistochemistry, immunofluorescence and immunoprecipitation to test for the presence of misfolded SOD1 in high quality human autopsy samples. Whereas misfolded SOD1 is readily detectable in samples from patients with SOD1 mutations, it is below detection limits for all of our measures in spinal cord and cortex tissues from patients with sporadic or non-SOD1 inherited ALS. The absence of evidence for accumulated misfolded SOD1 supports a conclusion that SOD1 misfolding is not a primary component of sporadic ALS.
Collapse
|
214
|
Stamenković S, Pavićević A, Mojović M, Popović-Bijelić A, Selaković V, Andjus P, Bačić G. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radic Biol Med 2017; 108:258-269. [PMID: 28366802 DOI: 10.1016/j.freeradbiomed.2017.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS.
Collapse
Affiliation(s)
- Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Aleksandra Pavićević
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia.
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
215
|
Kato S, Kato M, Kusano T, Nishino T. New Strategy That Delays Progression of Amyotrophic Lateral Sclerosis in G1H-G93A Transgenic Mice: Oral Administration of Xanthine Oxidoreductase Inhibitors That Are Not Substrates for the Purine Salvage Pathway. J Neuropathol Exp Neurol 2017; 75:1124-1144. [PMID: 27815397 DOI: 10.1093/jnen/nlw088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Lou Gehrig's disease, is a progressive fatal neurodegenerative disease that involves both upper and lower motor neurons. We orally administered 4 xanthine oxidoreductase (XOR) inhibitors to G1H-G93A mice carrying 25 transgene copy numbers of human mutant G93A superoxide dismutase 1, from 80 days of age. Three nonpurine-analogue inhibitors (TEI-6720: Febuxostat, Y-700 and FYX-051), but not allopurinol with a purine analogue ring (pyrazolo pyrimidine ring), significantly delayed disease onset, prolonged survival and the duration of disease stages, improved clinical signs, and alleviated weight loss. Exercise testing (extension reflex, inclined plane, footprint, rotarod, and beam balance tests) showed significantly improved motor function in the G1H-G93A mice treated with these 3 inhibitors. Significant amelioration of disease was seen even when TEI-6720 or Y-700 was administered after the appearance of early signs. Histopathological evaluation in the late stage revealed that G1H-G93A mice treated with TEI-6720 had well-preserved motor neurons and fewer inclusion bodies, compared with mice treated with placebo or with allopurinol. Our results indicate that these 3 nonpurine-analogue XOR inhibitors might increase the supply of high-energy compounds via the purine salvage pathway, thereby protecting motor neurons against death. This strategy may be applicable for oral therapy of ALS patients.
Collapse
Affiliation(s)
- Shinsuke Kato
- From the Division of Neuropathology (SK) and the Division of Molecular Pathology (MK), Department of Pathology, Tottori University Faculty of Medicine, Yonago, Japan; and the Department of Biochemistry and Molecular Biology (TK, TN), Nippon Medical School, Tokyo, Japan
| | - Masako Kato
- From the Division of Neuropathology (SK) and the Division of Molecular Pathology (MK), Department of Pathology, Tottori University Faculty of Medicine, Yonago, Japan; and the Department of Biochemistry and Molecular Biology (TK, TN), Nippon Medical School, Tokyo, Japan
| | - Teruo Kusano
- From the Division of Neuropathology (SK) and the Division of Molecular Pathology (MK), Department of Pathology, Tottori University Faculty of Medicine, Yonago, Japan; and the Department of Biochemistry and Molecular Biology (TK, TN), Nippon Medical School, Tokyo, Japan
| | - Takeshi Nishino
- From the Division of Neuropathology (SK) and the Division of Molecular Pathology (MK), Department of Pathology, Tottori University Faculty of Medicine, Yonago, Japan; and the Department of Biochemistry and Molecular Biology (TK, TN), Nippon Medical School, Tokyo, Japan
| |
Collapse
|
216
|
|
217
|
Tachu BJ, Wüsten KA, Garza MC, Wille H, Tamgüney G. An easy method for bacterial expression and purification of wild-type and mutant superoxide dismutase 1 (SOD1). Protein Expr Purif 2017; 134:63-71. [DOI: 10.1016/j.pep.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/06/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022]
|
218
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
219
|
Zhong Y, Wang J, Henderson MJ, Yang P, Hagen BM, Siddique T, Vogel BE, Deng HX, Fang S. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. eLife 2017; 6:e23759. [PMID: 28463106 PMCID: PMC5449186 DOI: 10.7554/elife.23759] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
Over 170 different mutations in the gene encoding SOD1 all cause amyotrophic lateral sclerosis (ALS). Available studies have been primarily focused on the mechanisms underlying mutant SOD1 cytotoxicity. How cells defend against the cytotoxicity remains largely unknown. Here, we show that misfolding of ALS-linked SOD1 mutants and wild-type (wt) SOD1 exposes a normally buried nuclear export signal (NES)-like sequence. The nuclear export carrier protein CRM1 recognizes this NES-like sequence and exports misfolded SOD1 to the cytoplasm. Antibodies against the NES-like sequence recognize misfolded SOD1, but not native wt SOD1 both in vitro and in vivo. Disruption of the NES consensus sequence relocalizes mutant SOD1 to the nucleus, resulting in higher toxicity in cells, and severer impairments in locomotion, egg-laying, and survival in Caenorhabditis elegans. Our data suggest that SOD1 mutants are removed from the nucleus by CRM1 as a defense mechanism against proteotoxicity of misfolded SOD1 in the nucleus.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Peixin Yang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, United States
| | - Brian M Hagen
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Teepu Siddique
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Bruce E Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Han-Xiang Deng
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
220
|
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 2017; 10:499-502. [PMID: 28468935 PMCID: PMC5451177 DOI: 10.1242/dmm.030205] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a feature of many debilitating, incurable diseases that are rapidly rising in prevalence, such as Parkinson's disease. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases. Models - from cell-based systems, to unicellular organisms, to complex animals - have proven to be a useful tool to help the research community shed light on the mechanisms underlying neurodegenerative diseases, and these advances have now begun to provide promising therapeutic avenues. In this themed issue of Disease Models & Mechanisms, a special collection of articles focused on neurodegenerative diseases is introduced. The collection includes original research articles that provide new insights into the complex pathophysiology of such diseases, revealing candidate biomarkers or therapeutic targets. Some of the articles describe a new disease model that enables deeper exploration of key mechanisms. We also present a series of reviews that highlight some of the recent translational advances made in studies of neurodegenerative diseases. In this Editorial, we summarize the articles featured in this collection, emphasizing the impact that model-based studies have made in this exciting area of research.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94404, USA
| | - Paraminder Dhillon
- Reviews Editor, Disease Models & Mechanisms, The Company of Biologists, Cambridge CB24 9LF, UK
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
221
|
Kim JE, Hong YH, Kim JY, Jeon GS, Jung JH, Yoon BN, Son SY, Lee KW, Kim JI, Sung JJ. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PLoS One 2017; 12:e0176462. [PMID: 28453527 PMCID: PMC5409181 DOI: 10.1371/journal.pone.0176462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Aberrant nucleocytoplasmic localization of proteins has been implicated in many neurodegenerative diseases. Evidence suggests that cytoplasmic mislocalization of nuclear proteins such as transactive response DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) may be associated with neurotoxicity in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. This study investigated the changes in nucleocytoplasmic distributions of the proteome and transcriptome in an in vitro model of ALS. After subcellular fractionation of motor neuron-like cell lines expressing wild-type or G93A mutant hSOD1, quantitative mass spectrometry and next-generation RNA sequencing (RNA-seq) were performed for the nuclear and cytoplasmic compartments. A subset of the results was validated via immunoblotting. A total of 1,925 proteins were identified in either the nuclear or cytoplasmic fractions, and 32% of these proteins were quantified in both fractions. The nucleocytoplasmic distribution of 37 proteins was significantly changed in mutant cells with nuclear and cytoplasmic shifts in 13 and 24 proteins, respectively (p<0.05). The proteins shifted towards the nucleus were enriched regarding pathways of RNA transport and processing (Dhx9, Fmr1, Srsf3, Srsf6, Tra2b), whereas protein folding (Cct5, Cct7, Cct8), aminoacyl-tRNA biosynthesis (Farsb, Nars, Txnrd1), synaptic vesicle cycle (Cltc, Nsf), Wnt signalling (Cltc, Plcb3, Plec, Psmd3, Ruvbl1) and Hippo signalling (Camk2d, Plcb3, Ruvbl1) pathways were over-represented in the proteins shifted to the cytoplasm. A weak correlation between the changes in protein and mRNA levels was found only in the nucleus, where mRNA was relatively abundant in mutant cells. This study provides a comprehensive dataset of the nucleocytoplasmic distribution of the proteome and transcriptome in an in vitro model of ALS. An integrated analysis of the nucleocytoplasmic distribution of the proteome and transcriptome demonstrated multiple candidate pathways including RNA processing/transport and protein synthesis and folding that may be relevant to the pathomechanism of ALS.
Collapse
Affiliation(s)
- Jee-Eun Kim
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Yoon Ho Hong
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Daejun, Korea
- * E-mail: (JYK); (JIK); (JJS)
| | - Gye Sun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | | | - Byung-Nam Yoon
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Sung-Yeon Son
- Department of Neurology, Eulji University Hospital, Daejun, Korea
| | - Kwang-Woo Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (JYK); (JIK); (JJS)
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- * E-mail: (JYK); (JIK); (JJS)
| |
Collapse
|
222
|
Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities. CURRENT GENETIC MEDICINE REPORTS 2017; 5:108-114. [PMID: 29057168 DOI: 10.1007/s40142-017-0123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. RECENT FINDINGS Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients' muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. SUMMARY These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics.
Collapse
|
223
|
CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8:365-378. [PMID: 28401346 PMCID: PMC5413600 DOI: 10.1007/s13238-017-0397-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Collapse
|
224
|
Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown-Vialetto disease that is partially rescued by riboflavin. Sci Rep 2017; 7:46271. [PMID: 28382968 PMCID: PMC5382781 DOI: 10.1038/srep46271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.
Collapse
|
225
|
Rinaldi F, Motti D, Ferraiuolo L, Kaspar BK. High content analysis in amyotrophic lateral sclerosis. Mol Cell Neurosci 2017; 80:180-191. [PMID: 27965018 PMCID: PMC5393940 DOI: 10.1016/j.mcn.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.
Collapse
Affiliation(s)
- Federica Rinaldi
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dario Motti
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Ferraiuolo
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, Sheffield Institute of Translational Neuroscience, University of Sheffield, UK
| | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
226
|
Production of Human Cu,Zn SOD with Higher Activity and Lower Toxicity in E. coli via Mutation of Free Cysteine Residues. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4817376. [PMID: 28299326 PMCID: PMC5337334 DOI: 10.1155/2017/4817376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/13/2016] [Accepted: 01/24/2017] [Indexed: 11/17/2022]
Abstract
Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1) can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1) and three mutant SOD1s (mhSOD1s), in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S) increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S) decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.
Collapse
|
227
|
Anzai I, Tokuda E, Mukaiyama A, Akiyama S, Endo F, Yamanaka K, Misawa H, Furukawa Y. A misfolded dimer of Cu/Zn-superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Protein Sci 2017; 26:484-496. [PMID: 27977888 DOI: 10.1002/pro.3094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) is a pathological hallmark in a familial form of amyotrophic lateral sclerosis. Pathogenic mutations have been proposed to monomerize SOD1 normally adopting a homodimeric configuration and then trigger abnormal oligomerization of SOD1 proteins. Despite this, a misfolded conformation of SOD1 leading to the oligomerization at physiological conditions still remains ambiguous. Here, we show that, around the body temperature (∼37°C), mutant SOD1 maintains a dimeric configuration but lacks most of its secondary structures. Also, such an abnormal SOD1 dimer with significant structural disorder was prone to irreversibly forming the oligomers crosslinked via disulfide bonds. The disulfide-crosslinked oligomers of SOD1 were detected in the spinal cords of the diseased mice expressing mutant SOD1. We hence propose an alternative pathway of mutant SOD1 misfolding that is responsible for oligomerization in the pathologies of the disease.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | | |
Collapse
|
228
|
Affiliation(s)
- Jessica M. Mc Donald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-4296; ,
| | - Dimitri Krainc
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-4296; ,
| |
Collapse
|
229
|
Ji AL, Zhang X, Chen WW, Huang WJ. Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J Med Genet 2017; 54:145-154. [DOI: 10.1136/jmedgenet-2016-104271] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
|
230
|
Tefera TW, Borges K. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci 2017; 10:611. [PMID: 28119559 PMCID: PMC5222822 DOI: 10.3389/fnins.2016.00611] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.
Collapse
Affiliation(s)
| | - Karin Borges
- Laboratory for Neurological Disorders and Metabolism, School of Biomedical Sciences, Department of Pharmacology, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
231
|
Tokuda E, Anzai I, Nomura T, Toichi K, Watanabe M, Ohara S, Watanabe S, Yamanaka K, Morisaki Y, Misawa H, Furukawa Y. Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:2. [PMID: 28057013 PMCID: PMC5216565 DOI: 10.1186/s13024-016-0145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Background Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS) with accumulation of misfolded SOD1 proteins as intracellular inclusions in spinal motor neurons. Oligomerization of SOD1 via abnormal disulfide crosslinks has been proposed as one of the misfolding pathways occurring in mutant SOD1; however, the pathological relevance of such oligomerization in the SOD1-ALS cases still remains obscure. Methods We prepared antibodies exclusively recognizing the SOD1 oligomers cross-linked via disulfide bonds in vitro. By using those antibodies, immunohistochemical examination and ELISA were mainly performed on the tissue samples of transgenic mice expressing mutant SOD1 proteins and also of human SOD1-ALS cases. Results We showed the recognition specificity of our antibodies exclusively toward the disulfide-crosslinked SOD1 oligomers by ELISA using various forms of purified SOD1 proteins in conformationally distinct states in vitro. Furthermore, the epitope of those antibodies was buried and inaccessible in the natively folded structure of SOD1. The antibodies were then found to specifically detect the pathological SOD1 species in the spinal motor neurons of the SOD1-ALS patients as well as the transgenic model mice. Conclusions Our findings here suggest that the SOD1 oligomerization through the disulfide-crosslinking associates with exposure of the SOD1 structural interior and is a pathological process occurring in the SOD1-ALS cases. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0145-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Itsuki Anzai
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Takao Nomura
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keisuke Toichi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
232
|
Nizzardo M, Rizzuti M. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases. Methods Mol Biol 2017; 1565:229-239. [PMID: 28364247 DOI: 10.1007/978-1-4939-6817-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.
Collapse
Affiliation(s)
- M Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| | - M Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| |
Collapse
|
233
|
Lee JM, Tan V, Lovejoy D, Braidy N, Rowe DB, Brew BJ, Guillemin GJ. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology 2017; 112:346-364. [DOI: 10.1016/j.neuropharm.2016.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
234
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
235
|
M. Fetherolf M, Boyd SD, Winkler DD, Winge DR. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics 2017; 9:1047-1059. [DOI: 10.1039/c6mt00298f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper zinc superoxide dismutase (Sod1) is a critical enzyme in limiting reactive oxygen species in both the cytosol and the mitochondrial intermembrane space.
Collapse
Affiliation(s)
| | - Stefanie D. Boyd
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Duane D. Winkler
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | | |
Collapse
|
236
|
Rauskolb S, Dombert B, Sendtner M. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol Dis 2017; 97:103-113. [DOI: 10.1016/j.nbd.2016.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
|
237
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
238
|
Enge TG, Ecroyd H, Jolley DF, Yerbury JJ, Dosseto A. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis. Metallomics 2017; 9:161-174. [DOI: 10.1039/c6mt00270f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
239
|
Tahir W, Zafar S, Llorens F, Arora AS, Thüne K, Schmitz M, Gotzmann N, Kruse N, Mollenhauer B, Torres JM, Andréoletti O, Ferrer I, Zerr I. Molecular Alterations in the Cerebellum of Sporadic Creutzfeldt-Jakob Disease Subtypes with DJ-1 as a Key Regulator of Oxidative Stress. Mol Neurobiol 2016; 55:517-537. [PMID: 27975168 DOI: 10.1007/s12035-016-0294-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Cerebellar damage and granular and Purkinje cell loss in sporadic Creutzfeldt-Jakob disease (sCJD) highlight a critical involvement of the cerebellum during symptomatic progression of the disease. In this project, global proteomic alterations in the cerebellum of brain from the two most prevalent subtypes (MM1 and VV2) of sCJD were studied. Two-dimensional gel electrophoresis (2DE) coupled mass spectrometric identification revealed 40 proteins in MM1 and 43 proteins in VV2 subtype to be differentially expressed. Of those, 12 proteins showed common differential expression in their expression between two subtypes. Differentially expressed proteins mainly belonged to (i) cell cycle, gene expression and cell death; (ii) cellular stress response/oxidative stress (OS) and (iii) signal transduction and synaptic functions, related molecular functions. We verified 10 differentially expressed proteins at transcriptional and translational level as well. Interestingly, protein deglycase DJ-1 (an antioxidative protein) showed an increase in its messenger RNA (mRNA) expression in both MM1 and VV2 subtypes but protein expression only in VV2 subtype in cerebellum of sCJD patients. Nuclear translocalization of DJ-1 confirmed its expressional alteration due to OS in sCJD. Downstream experiments showed the activation of nuclear factor erythroid-2 related factor 2 (Nrf2)/antioxidative response element (ARE) pathway. DJ-1 protein concentration was significantly increased during the clinical phase in cerebrospinal fluid of sCJD patients and also at presymptomatic and symptomatic stages in cerebellum of humanized PrP transgenic mice inoculated with sCJD (MM1 and VV2) brain. These results suggest the implication of oxidative stress during the pathophysiology of sCJD.
Collapse
Affiliation(s)
- Waqas Tahir
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany.
| | - Franc Llorens
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Amandeep Singh Arora
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Nadine Gotzmann
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Niels Kruse
- Institute of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Brit Mollenhauer
- Institute of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Juan Maria Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de Algete a El Casar Km. 8,1 S/N, 28130, Valdeolmos, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Isidre Ferrer
- Institute of Neuropathology, Hospitalet de Llobregat, IDIBELL-University Hospital Bellvitge, University of Barcelona, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Ministry of Health, Institute Carlos III, Madrid, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| |
Collapse
|
240
|
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539:197-206. [PMID: 27830784 DOI: 10.1038/nature20413] [Citation(s) in RCA: 1460] [Impact Index Per Article: 162.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.
Collapse
Affiliation(s)
- J Paul Taylor
- Howard Hughes Medical Institute and the Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
241
|
Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. Eur J Nucl Med Mol Imaging 2016; 44:533-547. [PMID: 27933416 DOI: 10.1007/s00259-016-3587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
|
242
|
Xu S, Stern M, McNew JA. Beneficial effects of rapamycin in a Drosophila model for hereditary spastic paraplegia. J Cell Sci 2016; 130:453-465. [PMID: 27909242 DOI: 10.1242/jcs.196741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
The locomotor deficits in the group of diseases referred to as hereditary spastic paraplegia (HSP) reflect degeneration of upper motor neurons, but the mechanisms underlying this neurodegeneration are unknown. We established a Drosophila model for HSP, atlastin (atl), which encodes an ER fusion protein. Here, we show that neuronal atl loss causes degeneration of specific thoracic muscles that is preceded by other pathologies, including accumulation of aggregates containing polyubiquitin, increased generation of reactive oxygen species and activation of the JNK-Foxo stress response pathway. We show that inhibiting the Tor kinase, either genetically or by administering rapamycin, at least partially reversed many of these pathologies. atl loss from muscle also triggered muscle degeneration and rapamycin-sensitive locomotor deficits, as well as polyubiquitin aggregate accumulation. These results indicate that atl loss triggers muscle degeneration both cell autonomously and nonautonomously.
Collapse
Affiliation(s)
- Shiyu Xu
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - James A McNew
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
243
|
Ayers JI, McMahon B, Gill S, Lelie HL, Fromholt S, Brown H, Valentine JS, Whitelegge JP, Borchelt DR. Relationship between mutant Cu/Zn superoxide dismutase 1 maturation and inclusion formation in cell models. J Neurochem 2016; 140:140-150. [PMID: 27727458 DOI: 10.1111/jnc.13864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023]
Abstract
A common property of Cu/Zn superoxide dismutase 1 (SOD1), harboring mutations associated with amyotrophic lateral sclerosis, is a high propensity to misfold and form abnormal aggregates. The aggregation of mutant SOD1 has been demonstrated in vitro, with purified proteins, in mouse models, in human tissues, and in cultured cell models. In vitro translation studies have determined that SOD1 with amyotrophic lateral sclerosis mutations is slower to mature, and thus perhaps vulnerable to off-pathway folding that could generate aggregates. The aggregation of mutant SOD1 in living cells can be monitored by tagging the protein with fluorescent fluorophores. In this study, we have taken advantage of the Dendra2 fluorophore technology in which excitation can be used to switch the output color from green to red, thereby clearly creating a time stamp that distinguishes pre-existing and newly made proteins. In cells that transiently over-express the Ala 4 to Val variant of SOD1-Dendra2, we observed that newly made mutant SOD1 was rapidly captured by pathologic intracellular inclusions. In cell models of mutant SOD1 aggregation over-expressing untagged A4V-SOD1, we observed that immature forms of the protein, lacking a Cu co-factor and a normal intramolecular disulfide, persist for extended periods. Our findings fit with a model in which immature forms of mutant A4V-SOD1, including newly made protein, are prone to misfolding and aggregation.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Benjamin McMahon
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sabrina Gill
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Herman L Lelie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Hilda Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
244
|
Khan F, Oloketuyi SF. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol 2016; 122:306-320. [PMID: 27740729 DOI: 10.1111/jam.13327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are considered a serious life-threatening issue regardless of age. Resulting nerve damage progressively affects important activities, such as movement, coordination, balance, breathing, speech and the functioning of vital organs. Reports on the subject have concluded that neurodegenerative disease can be caused by mutations of susceptible genes, alcohol consumption, toxins, chemicals and other unknown environmental factors. Although several diagnostic techniques can be used to determine aetiologies, the process is difficult and often fails. Research shows that nasopharyngeal and gut microbiota play important roles in brain to spinal cord coordination. However, no conclusive epidemiologic evidence is available on the roles played by respiratory and gut microbiota in the development of neurodegenerative diseases. Thus, understanding the connection between respiratory and gut microbiota and the nervous system could provide information on causal links. The present review describes future perspectives on the role played by nasopharyngeal and gut microbiota in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| | - S F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| |
Collapse
|
245
|
Tefera TW, Tan KN, McDonald TS, Borges K. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis. Neurochem Res 2016; 42:1610-1620. [PMID: 27868154 DOI: 10.1007/s11064-016-2106-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.
Collapse
Affiliation(s)
- Tesfaye W Tefera
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Kah Ni Tan
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Tanya S McDonald
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
246
|
Banerjee V, Shani T, Katzman B, Vyazmensky M, Papo N, Israelson A, Engel S. Superoxide Dismutase 1 (SOD1)-Derived Peptide Inhibits Amyloid Aggregation of Familial Amyotrophic Lateral Sclerosis SOD1 Mutants. ACS Chem Neurosci 2016; 7:1595-1606. [PMID: 27540759 DOI: 10.1021/acschemneuro.6b00227] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the death of the upper and lower motor neurons. Superoxide dismutase 1 (SOD1) is an ALS pathogenic protein, whose misfolding results in the formation of amyloid aggregates. The mechanism underlying SOD1 pathogenesis in ALS remains obscure, but one possible mechanism involves gain-of-interaction, in which the misfolded soluble SOD1 forms abnormal protein-protein interactions (PPIs) with various cellular proteins, including with other SOD1 molecules, thereby interfering with their function. The structural basis of this gain-of-interaction mechanism is unknown. Here, we characterized the backbone dynamics landscape of misfolded SOD1 to pinpoint surface areas predisposed to aberrant PPIs. This analysis enabled us to formulate a working hypothesis for the mechanism of the gain-of-function of misfolded SOD1, according to which an abnormal PPI potential results from the increased mobility of the SOD1 surface backbone. Guided by the backbone dynamics landscape, we have identified a SOD1-derived peptide that can bind SOD1 proteins and divert the typical amyloid aggregation of ALS-related SOD1 mutants toward a potentially less toxic amorphous aggregation pathway.
Collapse
Affiliation(s)
- Victor Banerjee
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tom Shani
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Bella Katzman
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Maria Vyazmensky
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Adrian Israelson
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Stanislav Engel
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
247
|
Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, Hayward LJ, Kasarskis EJ, Zhu H. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol 2016; 132:563-76. [PMID: 27481264 PMCID: PMC5023729 DOI: 10.1007/s00401-016-1601-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.
Collapse
|
248
|
Vintilescu CR, Afreen S, Rubino AE, Ferreira A. The Neurotoxic TAU 45-230 Fragment Accumulates in Upper and Lower Motor Neurons in Amyotrophic Lateral Sclerosis Subjects. Mol Med 2016; 22:477-486. [PMID: 27496042 PMCID: PMC5072411 DOI: 10.2119/molmed.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative disease characterized by the loss of upper and lower motor neurons leading to muscle paralysis in affected individuals. Numerous mechanisms have been implicated in the death of these neurons. However, the pathobiology of this disease has not been completely elucidated. In the present study, we investigated to what extent tau cleavage and the generation of the neurotoxic tau45-230 fragment is associated with ALS. Quantitative Western blot analysis indicated that high levels of tau45-230 accumulated in lumbar and cervical spinal cord specimens obtained from ALS subjects. This neurotoxic tau fragment was also detected in ALS upper motor neurons located in the precentral gyrus. Our results also showed that tau45-230 aggregates were present in the spinal cord of ALS patients. On the other hand, this neurotoxic fragment was not generated in a mouse model of a familial form of this disease. Together, these results suggest a potential role for this neurotoxic tau fragment in the mechanisms leading to the degeneration of motor neurons in the context of sporadic ALS.
Collapse
Affiliation(s)
- Claudia R Vintilescu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Ashlee E Rubino
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| |
Collapse
|
249
|
Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends Mol Med 2016; 22:769-783. [DOI: 10.1016/j.molmed.2016.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
|
250
|
Kotan D, Iskender C, Özoğuz Erimiş A, Başak AN. A Turkish Family with a Familial ALS-positive UBQLN2-S340I Mutation. Noro Psikiyatr Ars 2016; 53:283-285. [PMID: 28373810 DOI: 10.5152/npa.2016.12371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ceren Iskender
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| | - Aslıhan Özoğuz Erimiş
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| | - A Nazlı Başak
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| |
Collapse
|