201
|
Perrotta AT, Wadkins TS, Been MD. Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:1282-91. [PMID: 16690998 PMCID: PMC1484427 DOI: 10.1261/rna.14106] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst.
Collapse
Affiliation(s)
- Anne T Perrotta
- Department of Biochemistry, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
202
|
Wilson TJ, Ouellet J, Zhao ZY, Harusawa S, Araki L, Kurihara T, Lilley DMJ. Nucleobase catalysis in the hairpin ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:980-7. [PMID: 16601203 PMCID: PMC1464849 DOI: 10.1261/rna.11706] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 02/14/2006] [Indexed: 05/04/2023]
Abstract
RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage. The rates of both reactions exhibit bell-shaped dependence on pH, with pK(a) values of 5.7 +/- 0.1 and 7.7 +/- 0.1 for cleavage and 6.1 +/- 0.3 and 6.9 +/- 0.3 for ligation. The data provide good evidence for general acid-base catalysis by the nucleobases.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee
| | | | | | | | | | | | | |
Collapse
|
203
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
204
|
Krasovska MV, Sefcikova J, Réblová K, Schneider B, Walter NG, Sponer J. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme. Biophys J 2006; 91:626-38. [PMID: 16617077 PMCID: PMC1483112 DOI: 10.1529/biophysj.105.079368] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.
Collapse
Affiliation(s)
- Maryna V Krasovska
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
205
|
Roth A, Nahvi A, Lee M, Jona I, Breaker RR. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA (NEW YORK, N.Y.) 2006; 12:607-19. [PMID: 16484375 PMCID: PMC1421096 DOI: 10.1261/rna.2266506] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.
Collapse
Affiliation(s)
- Adam Roth
- Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, P. O. Box 208103, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
206
|
Park H, Lee S. Role of Solvent Dynamics in Stabilizing the Transition State of RNA Hydrolysis by Hairpin Ribozyme. J Chem Theory Comput 2006; 2:858-62. [DOI: 10.1021/ct0503015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul 143-747, Korea, and Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Sangyoub Lee
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul 143-747, Korea, and Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
207
|
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Ligand requirements for glmS ribozyme self-cleavage. ACTA ACUST UNITED AC 2006; 12:1221-6. [PMID: 16298301 DOI: 10.1016/j.chembiol.2005.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/08/2005] [Accepted: 09/09/2005] [Indexed: 01/23/2023]
Abstract
Natural RNA catalysts (ribozymes) perform essential reactions in biological RNA processing and protein synthesis, whereby catalysis is intrinsic to RNA structure alone or in combination with metal ion cofactors. The recently discovered glmS ribozyme is unique in that it functions as a glucosamine-6-phosphate (GlcN6P)-dependent catalyst believed to enable "riboswitch" regulation of amino-sugar biosynthesis in certain prokaryotes. However, it is unclear whether GlcN6P functions as an effector or coenzyme to promote ribozyme self-cleavage. Herein, we demonstrate that ligand is absolutely requisite for glmS ribozyme self-cleavage activity. Furthermore, catalysis both requires and is dependent upon the acid dissociation constant (pKa) of the amine functionality of GlcN6P and related compounds. The data demonstrate that ligand is integral to catalysis, consistent with a coenzyme role for GlcN6P and illustrating an expanded capacity for biological RNA catalysis.
Collapse
Affiliation(s)
- Tom J McCarthy
- Department of Chemistry, Creighton University, Omaha, Nebraska, 68178, USA
| | | | | | | | | | | |
Collapse
|
208
|
Łęgiewicz M, Wichłacz A, Brzezicha B, Ciesiołka J. Antigenomic delta ribozyme variants with mutations in the catalytic core obtained by the in vitro selection method. Nucleic Acids Res 2006; 34:1270-80. [PMID: 16513845 PMCID: PMC1388270 DOI: 10.1093/nar/gkl018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used the in vitro selection method to search for catalytically active variants of the antigenomic delta ribozyme with mutations in the regions that constitute the ribozyme active site: L3, J1/4 and J4/2. In the initial combinatorial library 16 nt positions were randomized and the library contained a full representation of all possible sequences. Following ten cycles of selection-amplification several catalytically active ribozyme variants were identified. It turned out that one-third of the variants contained only single mutation G80U and their activity was similar to that of the wild-type ribozyme. Unexpectedly, in the next one-third of the variants the C76 residue, which was proposed to play a crucial role in the ribozyme cleavage mechanism, was mutated. In these variants, however, a cytosine residue was present in a neighboring position to the polynucleotide chain. It shows that the ribozyme catalytic core possesses substantial 'structural plasticity' and the capacity of functional adaptation. Four selected ribozyme variants were subjected to more detailed analysis. It turned out that the variants differed in their relative preferences towards Mg2+, Ca2+ and Mn2+ ions. Thus, the functional properties of the variants were dependent on both the structure of their catalytic sites and divalent metal ions performing catalysis.
Collapse
Affiliation(s)
| | | | | | - Jerzy Ciesiołka
- To whom correspondence should be addressed. Tel: +48 61 8528503, Fax: +48 61 8520532;
| |
Collapse
|
209
|
Taylor MS, Jacobsen EN. Asymmetrische Katalyse durch chirale Wasserstoffbrückendonoren. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503132] [Citation(s) in RCA: 539] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
210
|
Barman J, Acharya S, Zhou C, Chatterjee S, Engström A, Chattopadhyaya J. Non-identical electronic characters of the internucleotidic phosphates in RNA modulate the chemical reactivity of the phosphodiester bonds. Org Biomol Chem 2006; 4:928-41. [PMID: 16493477 DOI: 10.1039/b516733g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We here show that the electronic properties and the chemical reactivities of the internucleotidic phosphates in the heptameric ssRNAs are dissimilar in a sequence-specific manner because of their non-identical microenvironments, in contrast with the corresponding isosequential ssDNAs. This has been evidenced by monitoring the delta H8(G) shifts upon pH-dependent ionization (pK(a1)) of the central 9-guaninyl (G) to the 9-guanylate ion (G-), and its electrostatic effect on each of the internucleotidic phosphate anions, as measured from the resultant delta 31P shifts (pKa2) in the isosequential heptameric ssRNAs vis-à-vis ssDNAs: [d/r(5'-Cp1Ap2Q1p3Gp4Q2p5Ap6C-3'): Q1 = Q2 = A (5a/5b) or C (8a/8b), Q(1) = A, Q(2) = C (6a/6b), Q1 = C, Q2 = A (7a/7b)]. These oligos with single ionizable G in the centre are chosen because of the fact that the pseudoaromatic character of G can be easily modulated in a pH-dependent manner by its transformation to G- (the 2'-OH to 2-O- ionization effect is not detectable below pH 11.6 as evident from the N(1-Me)-G analog), thereby modulating/titrating the nature of the electrostatic interactions of G to G- with the phosphates, which therefore constitute simple models to interrogate how the variable pseudoaromatic characters of nucleobases under different sequence context (J. Am. Chem. Soc., 2004, 126, 8674-8681) can actually influence the reactivity of the internucleotide phosphates as a result of modulation of sequence context-specific electrostatic interactions. In order to better understand the impact of the electrostatic effect of the G to G- on the tunability of the electronic character of internucleotidic phosphates in the heptameric ssRNAs 5b, 6b, 7b and 8b, we have also performed their alkaline hydrolysis at pH 12.5 at 20 degrees C, and have identified the preferences of the cleavage sites at various phosphates, which are p2, p3 and p4 (Fig.3). The results of these alkaline hydrolysis studies have been compared with the hydrolysis of analogous N(1-Me)-G heptameric ssRNA sequences 5c, 7c and 8c under identical conditions in order to establish the role of the electrostatic effect of the 9-guanylate ion (and the 2'-OH to 2-O- ionization) on the internucleotidic phosphate. It turned out that the relative alkaline hydrolysis rate at those particular phosphates (p2, p3 and p4) in the N(1-Me)-G heptamers was reduced from 16-78% compared to those in the native counterparts [Fig. 4, and ESI 2 (Fig. S11)]. Thus, these physico-chemical studies have shown that those p2, p3 and p4 phosphates in the native heptameric RNAs, which show pKa2 as well as more deshielding (owing to weaker 31P screening) in the alkaline pH compared to those at the neutral pH, are more prone to the alkaline hydrolysis because of their relatively enhanced electrophilic character resulting from weaker 31P screening. This screening effect originates as a result of the systematic charge repulsion effect between the electron cloud in the outermost orbitals of phosphorus and the central guanylate ion, leading to delocalization of the phosphorus p(pi) charge into its dpi orbitals. It is thus likely that, just as in the non-enzymatic hydrolysis, the enzymatic hydrolysis of a specific phosphate in RNA by general base-catalysis in RNA-cleaving proteins (RNase A, RNA phosphodiesterase or nuclease) can potentially be electrostatically influenced by tuning the transient charge on the nucleobase in the steric proximity or as a result of specific sequence context owing to nearest-neighbor interactions.
Collapse
Affiliation(s)
- Jharna Barman
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
211
|
Feldman AR, Leung EKY, Bennet AJ, Sen D. The RNA-Cleaving Bipartite DNAzyme Is a Distinctive Metalloenzyme. Chembiochem 2005; 7:98-105. [PMID: 16345112 DOI: 10.1002/cbic.200500264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much interest has focused on the mechanisms of the five naturally occurring self-cleaving ribozymes, which, in spite of catalyzing the same reaction, adopt divergent strategies. These ribozymes, with the exception of the recently described glmS ribozyme, do not absolutely require divalent metal ions for their catalytic chemistries in vitro. A mechanistic investigation of an in vitro-selected, RNA-cleaving DNA enzyme, the bipartite, which catalyzes the same chemistry as the five natural self-cleaving ribozymes, found a mechanism of significant complexity. The DNAzyme showed a bell-shaped pH profile. A dissection of metal usage indicated the involvement of two catalytically relevant magnesium ions for optimal activity. The DNAzyme was able to utilize manganese(II) as well as magnesium; however, with manganese it appeared to function complexed to either one or two of those cations. Titration with hexaamminecobalt(III) chloride inhibited the activity of the bipartite; this suggests that it is a metalloenzyme that utilizes metal hydroxide as a general base for activation of its nucleophile. Overall, the bipartite DNAzyme appeared to be kinetically distinct not only from the self-cleaving ribozymes but also from other in vitro-selected, RNA-cleaving deoxyribozymes, such as the 8-17, 10-23, and 614.
Collapse
Affiliation(s)
- Anat R Feldman
- Department of Molecular Biology and Biochemistry 1 and Department of Chemistry 2 Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
212
|
Galabov B, Atanasov Y, Ilieva S, Schaefer HF. Mechanism of the Aminolysis of Methyl Benzoate: A Computational Study†. J Phys Chem A 2005; 109:11470-4. [PMID: 16354037 DOI: 10.1021/jp0536403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional and ab initio methods were applied in examining the possible mechanistic pathways for the reaction of methyl benzoate with ammonia. Transition state structures and energies were determined for concerted and neutral stepwise mechanisms. The theoretical results show that the two possible pathways have similar activation energies. The general base catalysis of the process was also examined. The predictions reveal that the catalytic process results in considerable energy savings and the most favorable pathway of the reaction is through a general-base-catalyzed neutral stepwise mechanism. The structure and transition vectors of the transition states indicate that the catalytic role of ammonia is realized by facilitating the proton-transfer processes. Comparison of the energetics of the aminolysis for methyl benzoate and methyl formate shows the more favorable process to be that for the aliphatic ester. The differing reactivity of the two esters is explained in terms of the electrostatic potential values at the atoms of the ester functionality.
Collapse
Affiliation(s)
- Boris Galabov
- Department of Chemistry, University of Sofia, Sofia 1164, Bulgaria
| | | | | | | |
Collapse
|
213
|
Horie S, Ikawa Y, Inoue T. Structural and biochemical characterization of DSL ribozyme. Biochem Biophys Res Commun 2005; 339:115-21. [PMID: 16298344 DOI: 10.1016/j.bbrc.2005.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 11/02/2005] [Indexed: 11/26/2022]
Abstract
We recently reported on the molecular design and synthesis of a new RNA ligase ribozyme (DSL), whose active site was selected from a sequence library consisting of 30 random nucleotides set on a defined 3D structure of a designed RNA scaffold. In this study, we report on the structural and biochemical analyses of DSL. Structural analysis indicates that the active site, which consists of the selected sequence, attaches to the folded scaffold as designed. To see whether DSL resembles known ribozymes, a biochemical assay was performed. Metal-dependent kinetic studies suggest that the ligase requires Mg2+ ions. The replacement of Mg2+ with Co(NH3)6(3+) prohibits the reaction, indicating that DSL requires innersphere coordination of Mg2+ for a ligation reaction. The results show that DSL has requirements similar to those of previously reported catalytic RNAs.
Collapse
Affiliation(s)
- Souta Horie
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
214
|
Peracchi A, Bonaccio M, Clerici M. A mutational analysis of the 8-17 deoxyribozyme core. J Mol Biol 2005; 352:783-94. [PMID: 16125199 DOI: 10.1016/j.jmb.2005.07.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/24/2022]
Abstract
The 8-17 deoxyribozyme is a small RNA-cleaving DNA enzyme of significant applicative interest. We measured the kinetics of over 60 variants of 8-17, mutated within the "core" region. The data were analyzed according to a conceptual framework in which deleterious substitutions can either decrease the stability of the reaction's transition state, or favor unreactive ground-state conformations. In agreement with earlier in vitro evolution studies, the most severe functional effects were observed upon mutating four conserved residues, whose role was further explored by replacing them with non-standard nucleotides. Removal or modification of individual functional groups on the A6 and G7 bases suggested that these residues are involved in a close-contact interaction and form a network of functionally important hydrogen bonds. Mutagenesis of residues C13 and G14 was less revealing, but argued strongly against a role of C13 as a general acid/base catalyst. The use of non-standard nucleotides also led to the identification of one deoxyribozyme variant that, under some ionic conditions, is substantially more active than the wild-type construct. Finally, the effects of mutations in the intramolecular "core stem" correlated only in part with changes in helical stability, suggesting that a stable stem is required but not sufficient for optimal activity.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | | | |
Collapse
|
215
|
Das SR, Fong R, Piccirilli JA. Nucleotide analogues to investigate RNA structure and function. Curr Opin Chem Biol 2005; 9:585-93. [PMID: 16242990 DOI: 10.1016/j.cbpa.2005.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
RNA plays an essential cellular role in nearly every aspect of the transmission and expression of genetic information, including regulatory roles that have significance for cellular development. Access to RNA bearing synthetic modifications has allowed biological chemists to probe deep into the inner workings of cellular processes. Here, we describe recent advances in harnessing the power of nucleotide analogues to obtain mechanistic and biological insights into RNA structure, function and dynamics.
Collapse
Affiliation(s)
- Subha R Das
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
216
|
Krasovska MV, Sefcikova J, Spacková N, Sponer J, Walter NG. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. J Mol Biol 2005; 351:731-48. [PMID: 16045932 DOI: 10.1016/j.jmb.2005.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/22/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (approximately 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H+ has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H+(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20.G25 base-pair, to facilitate a conformational switch induced by a protonated C75H+. L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents.
Collapse
Affiliation(s)
- Maryna V Krasovska
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
217
|
Lilley DMJ. Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 2005; 15:313-23. [PMID: 15919196 DOI: 10.1016/j.sbi.2005.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 02/08/2005] [Accepted: 05/04/2005] [Indexed: 01/20/2023]
Abstract
The past two years have seen exciting developments in RNA catalysis. A completely new ribozyme (possibly two) has come along and several new structures have been determined, including three different group I intron species. Although the origins of catalysis remain incompletely understood, a significant convergence of views has happened in the past year, together with the discovery of new super-fast ribozymes. There is persuasive evidence of general acid-base chemistry in nucleolytic ribozymes, whereas catalysis of peptidyl transfer in the ribosome seems to result largely from orientation and proximity effects. Lastly, important new folding-enhancing elements have been discovered.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
218
|
Abstract
The natural RNA enzymes catalyse phosphate-group transfer and peptide-bond formation. Initially, metal ions were proposed to supply the chemical versatility that nucleotides lack. In the ensuing decades, structural and mechanistic studies have substantially altered this initial viewpoint. Whereas self-splicing ribozymes clearly rely on essential metal-ion cofactors, self-cleaving ribozymes seem to use nucleotide bases for their catalytic chemistry. Despite the overall differences in chemical features, both RNA and protein enzymes use similar catalytic strategies.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
219
|
Doudna JA, Lorsch JR. Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 2005; 12:395-402. [PMID: 15870731 DOI: 10.1038/nsmb932] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/05/2005] [Indexed: 01/24/2023]
Abstract
Evolution has resoundingly favored protein enzymes over RNA-based catalysts, yet ribozymes occupy important niches in modern cell biology that include the starring role in catalysis of protein synthesis on the ribosome. Recent results from structural and biochemical studies show that natural ribozymes use an impressive range of catalytic mechanisms, beyond metalloenzyme chemistry and analogous to more chemically diverse protein enzymes. These findings make it increasingly possible to compare details of RNA- and protein-based catalysis.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
220
|
|
221
|
Bevilacqua PC, Brown TS, Chadalavada D, Lecomte J, Moody E, Nakano SI. Linkage between proton binding and folding in RNA: implications for RNA catalysis. Biochem Soc Trans 2005; 33:466-70. [PMID: 15916542 DOI: 10.1042/bst0330466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Small ribozymes use their nucleobases to catalyse phosphodiester bond cleavage. The hepatitis delta virus ribozyme employs C75 as a general acid to protonate the 5′-bridging oxygen leaving group, and to accomplish this task efficiently, it shifts its pKa towards neutrality. Simulations and thermodynamic experiments implicate linkage between folding and protonation in nucleobase pKa shifting. Even small oligonucleotides are shown to fold in a highly co-operative manner, although they do so in a context-specific fashion. Linkage between protonation and co-operativity of folding may drive pKa shifting and provide for enhanced function in RNA.
Collapse
Affiliation(s)
- P C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
222
|
Zhao ZY, McLeod A, Harusawa S, Araki L, Yamaguchi M, Kurihara T, Lilley DMJ. Nucleobase participation in ribozyme catalysis. J Am Chem Soc 2005; 127:5026-7. [PMID: 15810830 DOI: 10.1021/ja0502775] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We constructed a modified form of the VS ribozyme containing an imidazole ring in place of adenine at position 756. The novel ribozyme is active in both cleavage and ligation reactions. The reaction is efficient, although relatively slow. The results are consistent with a role for nucleobase catalysis in the catalytic mechanism of this ribozyme.
Collapse
Affiliation(s)
- Zheng-Yun Zhao
- CR-UK Nucleic Acid Structure Research Group, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | |
Collapse
|
223
|
Das SR, Piccirilli JA. General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol 2005; 1:45-52. [PMID: 16407993 DOI: 10.1038/nchembio703] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/16/2005] [Indexed: 11/08/2022]
Abstract
Recent crystallographic and functional analyses of RNA enzymes have raised the possibility that the purine and pyrimidine nucleobases may function as general acid-base catalysts. However, this mode of nucleobase-mediated catalysis has been difficult to establish unambiguously. Here, we used a hyperactivated RNA substrate bearing a 5'-phosphorothiolate to investigate the role of a critical cytosine residue in the hepatitis delta virus ribozyme. The hyperactivated substrate specifically suppressed the deleterious effects of cytosine mutations and pH changes, thereby linking the protonation of the nucleobase to leaving-group stabilization. We conclude that the active-site cytosine provides general acid catalysis, mediating proton transfer to the leaving group through a protonated N3-imino nitrogen. These results establish a specific role for a nucleobase in a ribozyme reaction and support the proposal that RNA nucleobases may function in a manner analogous to that of catalytic histidine residues in protein enzymes.
Collapse
Affiliation(s)
- Subha R Das
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, University of Chicago, 5841 S. Maryland Avenue, MC1028, Chicago, Illinois 60637, USA
| | | |
Collapse
|
224
|
Virtanen N, Polari L, Välilä M, Mikkola S. Kinetic solvent deuterium isotope effect in transesterification of RNA models. J PHYS ORG CHEM 2005. [DOI: 10.1002/poc.883] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
225
|
Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. Role of an active site adenine in hairpin ribozyme catalysis. J Mol Biol 2005; 349:989-1010. [PMID: 15907933 DOI: 10.1016/j.jmb.2005.04.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/25/2005] [Accepted: 04/05/2005] [Indexed: 11/23/2022]
Abstract
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.
Collapse
Affiliation(s)
- Yaroslav I Kuzmin
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
226
|
Copley SD, Smith E, Morowitz HJ. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci U S A 2005; 102:4442-7. [PMID: 15764708 PMCID: PMC555468 DOI: 10.1073/pnas.0501049102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 11/18/2022] Open
Abstract
The genetic code has certain regularities that have resisted mechanistic interpretation. These include strong correlations between the first base of codons and the precursor from which the encoded amino acid is synthesized and between the second base of codons and the hydrophobicity of the encoded amino acid. These regularities are even more striking in a projection of the modern code onto a simpler code consisting of doublet codons encoding a set of simple amino acids. These regularities can be explained if, before the emergence of macromolecules, simple amino acids were synthesized in covalent complexes of dinucleotides with alpha-keto acids originating from the reductive tricarboxylic acid cycle or reductive acetate pathway. The bases and phosphates of the dinucleotide are proposed to have enhanced the rates of synthetic reactions leading to amino acids in a small-molecule reaction network that preceded the RNA translation apparatus but created an association between amino acids and the first two bases of their codons that was retained when translation emerged later in evolution.
Collapse
Affiliation(s)
- Shelley D Copley
- Cooperative Institute for Research in Environmental Sciences, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
227
|
Moody EM, Lecomte JTJ, Bevilacqua PC. Linkage between proton binding and folding in RNA: a thermodynamic framework and its experimental application for investigating pKa shifting. RNA (NEW YORK, N.Y.) 2005; 11:157-72. [PMID: 15659356 PMCID: PMC1370705 DOI: 10.1261/rna.7177505] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/17/2004] [Indexed: 05/21/2023]
Abstract
Perturbation of pKa values can change the favored protonation states of the nucleobases at biological pH and thereby modulate the function of RNA and DNA molecules. In an effort to understand the driving forces for pKa shifting specific to nucleic acids, we developed a thermodynamic framework that relates proton binding to the nucleobases and the helix-coil transition. Key features that emerge from the treatment are a comprehensive description of all the actions of proton binding on RNA folding: acid and alkaline denaturation of the helix and pKa shifting in the folded state. Practical experimental approaches for measuring pKas from thermal denaturation experiments are developed. Microscopic pka values (where ka is the acid dissociation constant) for the unfolded state were determined directly by experiments on unstructured oligonucleotides, which led to a macroscopic pKa for the ensemble of unfolded states shifted toward neutrality. The formalism was then applied to pH-dependent UV melting data for model DNA oligonucleotides. Folded-state pka) values were in good agreement with the outcome of pH titrations, and the acid and alkaline denaturation regions were well described. The formalism developed here is similar to that of Draper and coworkers for Mg2+ binding to RNA, except that the unfolded state is described explicitly owing to the presence of specific proton-binding sites on the bases. A principal conclusion is that it should be possible to attain large pKa shifts by designing RNA molecules that fold cooperatively.
Collapse
Affiliation(s)
- Ellen M Moody
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
228
|
Maxwell C, Neverov AA, Brown RS. Solvent deuterium kinetic isotope effects for the methanolyses of neutral CO, PO and PS esters catalyzed by a triazacyclododecane : Zn2+-methoxide complex. Org Biomol Chem 2005; 3:4329-36. [PMID: 16327893 DOI: 10.1039/b512378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methanolyses of several organophosphate/phosphonate/phosphorothioate esters (O,O-diethyl O-(4-nitrophenyl) phosphate, paraoxon, ; O,O-diethyl S-(3,5-dichlorophenyl) phosphorothioate, ; O-ethyl O-(2-nitro-4-chlorophenyl) methylphosphonate, ; O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion, ; O-ethyl S-(3,5-dichlorophenyl) methylphosphonothioate ) and a carboxylate ester (p-nitrophenyl acetate, ) catalyzed by methoxide and the Zn(2+)((-)OCH(3)) complex of 1,5,9-triazacyclododecane ( : Zn(2+)((-)OCH(3))) were studied in methanol and d(1)-methanol at 25 degrees C. In the case of the methoxide reactions inverse skie's were observed for the series with values ranging from 2 to 1.1, except for where the k(D)/k(H) = 0.90 +/- 0.02. The inverse k(D)/k(H) values are consistent with a direct nucleophilic methoxide attack involving desolvation of the nucleophile with varying extents of resolvation of the TS. With the : Zn(2+)((-)OCH(3)) complex all the skie values are k(D)/k(H) = 1.0 +/- 0.1 except for where the value is 0.79 +/- 0.06. Arguments are presented that the fractionation factors associated with complex : Zn(2+)((-)OCH(3)) are indistinguishable from unity. The skie's for all the complex-catalyzed methanolyses are interpreted as being consistent with an intramolecular nucleophilic attack of the Zn(2+)-coordinated methoxide within a pre-equilibrium metal : substrate complex.
Collapse
Affiliation(s)
- Chris Maxwell
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | |
Collapse
|
229
|
Shallop AJ, Gaffney BL, Jones RA. Use of both direct and indirect 13C tags for probing nitrogen interactions in hairpin ribozyme models by 15N NMR. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 23:273-80. [PMID: 15043153 DOI: 10.1081/ncn-120027834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have used the synthesis and 15N NMR study of separate loop A and loop B domains of the hairpin ribozyme to demonstrate that multiple 15N atoms can be incorporated into an RNA strand and be unambiguously distinguished through a combination of direct and indirect tagging by 13C atoms. Absence of 15N chemical shift changes shows that the G8N1 in loop A does not become deprotonated up to pH 8, and that the G21N7 of loop B does not bind to Mg2+.
Collapse
Affiliation(s)
- Anthony J Shallop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
230
|
Acharya S, Barman J, Cheruku P, Chatterjee S, Acharya P, Isaksson J, Chattopadhyaya J. Significant pKa perturbation of nucleobases is an intrinsic property of the sequence context in DNA and RNA. J Am Chem Soc 2004; 126:8674-81. [PMID: 15250719 DOI: 10.1021/ja048484c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pH titration and NMR studies (pH 6.6-12.5) in the heptameric isosequential ssDNA and ssRNA molecules, [d/r(5'-CAQ1GQ2AC-3', with variable Q1/Q2)], show that the pKa of the central G residue within the heptameric ssDNAs (DeltapKa = 0.67 +/- 0.03) and ssRNAs (DeltapKa = 0.49 +/- 0.02) is sequence-dependent. This variable pKa of the G clearly shows that its pseudoaromatic character, hence, its chemical reactivity, is strongly modulated and tuned by its sequence context. In contradistinction to the ssDNAs, the electrostatic transmission of the pKa of the G moiety to the neighboring A or C residues in the heptameric ssRNAs (as observed by the response of the aromatic marker protons of As or Cs) is found to be uniquely dependent upon the sequence composition. This demonstrates that the neighboring As or Cs in ssRNAs have variable electrostatic efficiency to interact with the central G/G-, which is owing to the variable pseudoaromatic characters (giving variable chemical reactivities) of the flanking As or Cs compared to those of the isosequential ssDNAs. The sequence-dependent variation of pKa of the central G and the modulation of its pKa transmission through the nearest-neighbors by variable electrostatic interaction is owing to the electronically coupled nature of the constituent nucleobases across the single strand, which demonstrates the unique chemical basis of the sequence context specificity of DNA or RNA in dictating the biological interaction, recognition, and function with any specific ligand.
Collapse
Affiliation(s)
- Sandipta Acharya
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
231
|
Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 2004; 11:1101-6. [PMID: 15475967 DOI: 10.1038/nsmb841] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/22/2004] [Indexed: 11/08/2022]
Abstract
The ribosome accelerates the rate of peptide bond formation by at least 10(7)-fold, but the catalytic mechanism remains controversial. Here we report evidence that a functional group on one of the tRNA substrates plays an essential catalytic role in the reaction. Substitution of the P-site tRNA A76 2' OH with 2' H or 2' F results in at least a 10(6)-fold reduction in the rate of peptide bond formation, but does not affect binding of the modified substrates. Such substrate-assisted catalysis is relatively uncommon among modern protein enzymes, but it is a property predicted to be essential for the evolution of enzymatic function. These results suggest that substrate assistance has been retained as a catalytic strategy during the evolution of the prebiotic peptidyl transferase center into the modern ribosome.
Collapse
Affiliation(s)
- Joshua S Weinger
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
232
|
Brown TS, Chadalavada DM, Bevilacqua PC. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength. J Mol Biol 2004; 341:695-712. [PMID: 15288780 DOI: 10.1016/j.jmb.2004.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/18/2004] [Accepted: 05/21/2004] [Indexed: 11/23/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA that resides in the HDV genome and regulates its replication. The native fold of the ribozyme is complex, having two pseudoknots. Earlier work implicated four non-native pairings in slowing pseudoknot formation: Alt 1, Alt 2, Alt 3, and Alt P1. The goal of the present work was design of a kinetically simplified and maximally reactive construct for in vitro mechanistic and structural studies. The initial approach chosen was site-directed mutagenesis in which known alternative pairings were destabilized while leaving the catalytic core intact. Based on prior studies, the G11C/U27Delta double mutant was prepared. However, biphasic kinetics and antisense oligonucleotide response trends opposite those of the well-studied G11C mutant were observed suggesting that new alternative pairings with multiple registers, termed Alt X and Alt Y, had been created. Enzymatic structure mapping of oligonucleotide models supported this notion. This led to a model wherein Alt 2 and the phylogenetically conserved Alt 3 act as "folding guides", facilitating folding of the major population of the RNA molecules by hindering formation of the Alt X and Alt Y registers. Attempts to eliminate the strongest of the Alt X pairings by rational design of a quadruple mutant only resulted in more complex kinetic behavior. In an effort to simultaneously destabilize multiple alternative pairings, studies were carried out on G11C/U27Delta in the presence of urea or increased monovalent ion concentration. Inclusion of physiological ionic strength allowed the goal of monophasic, fast-folding (kobs approximately 60 min(-1)) kinetics to be realized. To account for this, a model is developed wherein Na+, which destabilizes secondary and tertiary structures in the presence of Mg2+, facilitates native folding by destabilizing the multiple alternative secondary structures with a higher-order dependence.
Collapse
Affiliation(s)
- Trevor S Brown
- The Huck Institutes of the Life, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
233
|
Harris DA, Tinsley RA, Walter NG. Terbium-mediated Footprinting Probes a Catalytic Conformational Switch in the Antigenomic Hepatitis Delta Virus Ribozyme. J Mol Biol 2004; 341:389-403. [PMID: 15276831 DOI: 10.1016/j.jmb.2004.05.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 12/20/2022]
Abstract
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.
Collapse
Affiliation(s)
- Dinari A Harris
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
234
|
Kuzmin YI, Da Costa CP, Fedor MJ. Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue. J Mol Biol 2004; 340:233-51. [PMID: 15201049 DOI: 10.1016/j.jmb.2004.04.067] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 04/23/2004] [Accepted: 04/23/2004] [Indexed: 11/18/2022]
Abstract
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.
Collapse
Affiliation(s)
- Yaroslav I Kuzmin
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB35, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
235
|
Ouellet J, Perreault JP. Cross-linking experiments reveal the presence of novel structural features between a hepatitis delta virus ribozyme and its substrate. RNA (NEW YORK, N.Y.) 2004; 10:1059-1072. [PMID: 15208442 PMCID: PMC1370597 DOI: 10.1261/rna.7230604] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/29/2004] [Indexed: 05/24/2023]
Abstract
The kinetic pathway of a trans-acting delta ribozyme includes an essential structural rearrangement involving the P1 stem, a stem that is formed between the substrate and the ribozyme. We performed cross-linking experiments to determine the substrate position within the catalytic center of an antigenomic, trans-acting, delta ribozyme. Substrates that included a 4-thiouridine either in position -1, +4, or +8 (i.e., adjacent to the cleavage site, or located either in the middle of or at the 3'-end of the P1 stem, respectively) were synthesized and shown to be efficiently cleaved. Examination of the cross-linking conditions, the use of various mutated ribozymes, as well as the probing and characterization of the resulting ribozyme-substrate complexes, revealed several new features of the molecular mechanism: (1) the close proximity of several bases between nucleotides of the substrate and ribozyme; (2) the active ribozyme-substrate complex folds in a manner that docks the middle of the P1 stem on the P3 stem, while concomitantly the scissile phosphate is in close proximity to the catalytic cytosine; and, (3) some complexes appear to be compatible with being active intermediates along the folding pathway, while others seem to correspond to misfolded structures. To provide a model representation of these data, a three-dimensional structure of the delta ribozyme was developed using several RNA bioinformatic software packages.
Collapse
Affiliation(s)
- Jonathan Ouellet
- RNA group/groupe ARN, Département de biochimie, Faculté de médecine, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
236
|
Versées W, Loverix S, Vandemeulebroucke A, Geerlings P, Steyaert J. Leaving group activation by aromatic stacking: an alternative to general acid catalysis. J Mol Biol 2004; 338:1-6. [PMID: 15050818 DOI: 10.1016/j.jmb.2004.02.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/18/2004] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. For example, hydrolysis/phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides commonly involves the protonation of the leaving nucleobase concomitant with nucleophilic attack. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid. This enzyme binds the purine base of the substrate between the aromatic side-chains of Trp83 and Trp260. Here, we show via quantum chemical calculations that face-to-face stacking can raise the pKa of a heterocyclic aromatic compound by several units. Site-directed mutagenesis combined with substrate engineering demonstrates that Trp260 catalyzes the cleavage of the glycosidic bond by promoting the protonation of the purine base at N-7, hence functioning as an alternative to general acid catalysis.
Collapse
Affiliation(s)
- Wim Versées
- Laboratorium voor Ultrastructuur, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel and Vlaams Interuniversitair instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
237
|
Ke A, Zhou K, Ding F, Cate JHD, Doudna JA. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 2004; 429:201-5. [PMID: 15141216 DOI: 10.1038/nature02522] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/23/2004] [Indexed: 11/09/2022]
Abstract
Ribozymes enhance chemical reaction rates using many of the same catalytic strategies as protein enzymes. In the hepatitis delta virus (HDV) ribozyme, site-specific self-cleavage of the viral RNA phosphodiester backbone requires both divalent cations and a cytidine nucleotide. General acid-base catalysis, substrate destabilization and global and local conformational changes have all been proposed to contribute to the ribozyme catalytic mechanism. Here we report ten crystal structures of the HDV ribozyme in its pre-cleaved state, showing that cytidine is positioned to activate the 2'-OH nucleophile in the precursor structure. This observation supports its proposed role as a general base in the reaction mechanism. Comparison of crystal structures of the ribozyme in the pre- and post-cleavage states reveals a significant conformational change in the RNA after cleavage and that a catalytically critical divalent metal ion from the active site is ejected. The HDV ribozyme has remarkable chemical similarity to protein ribonucleases and to zymogens for which conformational dynamics are integral to biological activity. This finding implies that RNA structural rearrangements control the reactivity of ribozymes and ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Ailong Ke
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94705, USA
| | | | | | | | | |
Collapse
|
238
|
Dorner S, Panuschka C, Schmid W, Barta A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2'-OH to activity. Nucleic Acids Res 2004; 31:6536-42. [PMID: 14602912 PMCID: PMC275539 DOI: 10.1093/nar/gkg842] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chemical synthesis of various acylaminoacylated mononucleotides is described and their activities as donor substrates for the ribosomal peptide synthesis were investigated using PhetRNA(Phe) as an acceptor. This minimal reaction was characterized in detail and was shown to be stimulated by CMP, cytidine and cytosine. By using several cytidine and cytosine analogs evidence is provided that this enhancement is rather caused by base pairing to rRNA, followed by a structural change, than by a base mediated general acid/base catalysis. Only derivatives of AMP proved active as P-site substrates. Further, a significant contribution of the 2'-OH to activity was indicated by the finding that AcLeu-dAMP was inactive as donor substrate, although it is a good inhibitor of peptide bond formation and thus, is presumably bound to the P-site. However, Di(AcLeu)-2'-OCH(3)-Ade and DiAcLeu-AMP were moderately active in this assay suggesting that the reactivity of the 3'-acylaminoacid ester is stimulated by the presence of the 2'-oxygen group. A model is discussed how further interactions of the 2'-OH in the transition state might influence peptidyl transferase activity.
Collapse
Affiliation(s)
- Silke Dorner
- Max F. Perutz Laboratories, University Department at the Vienna Biocenter, Institut für Med. Biochemie, Universität Wien, Dr. Bohrgasse 9/3, A-1030 Wien, Austria
| | | | | | | |
Collapse
|
239
|
Sidorov AV, Grasby JA, Williams DM. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res 2004; 32:1591-601. [PMID: 15004246 PMCID: PMC390309 DOI: 10.1093/nar/gkh326] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 02/13/2004] [Indexed: 12/23/2022] Open
Abstract
Two modified 2'-deoxynucleoside 5'-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 10(5) compared with the uncatalysed hydrolysis of RNA.
Collapse
Affiliation(s)
- Alexander V Sidorov
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | |
Collapse
|
240
|
Affiliation(s)
- Patrizia Farci
- Department of Medical Sciences, University of Cagliari, SS 554, Bivio Sestu, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
241
|
Abstract
In vitro selection has allowed the isolation of many new ribozymes that are able to catalyze an ever-widening array of chemical transformations. Mechanistic studies on these selected ribozymes have provided valuable insight into the methods that RNA can invoke to overcome different catalytic tasks. We focus on the methods employed in these mechanistic studies using the acyl-transferase family of selected ribozymes as well-studied reference systems. Chemical and biochemical techniques have been used in tandem in order to draw conclusions on the various modes of catalysis employed by the different family members. In turn, this type of mechanistic information may provide a means for the redesign and optimization of existing ribozymes or the basis for new selection systems for more powerful RNA catalysts.
Collapse
Affiliation(s)
- David R W Hodgson
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
242
|
Cassano AG, Anderson VE, Harris ME. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers 2004; 73:110-29. [PMID: 14691944 DOI: 10.1002/bip.10517] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleotides of DNA and RNA are joined by phosphodiester linkages whose synthesis and hydrolysis are catalyzed by numerous essential enzymes. Two prominent mechanisms have been proposed for RNA and protein enzyme catalyzed cleavage of phosphodiester bonds in RNA: (a) intramolecular nucleophilic attack by the 2'-hydroxyl group adjacent to the reactive phosphate; and (b) intermolecular nucleophilic attack by hydroxide, or other oxyanion. The general features of these two mechanisms have been established by physical organic chemical analyses; however, a more detailed understanding of the transition states of these reactions is emerging from recent kinetic isotope effect (KIE) studies. The recent data show interesting differences between the chemical mechanisms and transition state structures of the inter- and intramolecular reactions, as well as provide information on the impact of metal ion, acid, and base catalysis on these mechanisms. Importantly, recent nonenzymatic model studies show that interactions with divalent metal ions, an important feature of many phosphodiesterase active sites, can influence both the mechanism and transition state structure of nonenzymatic phosphodiester cleavage. Such detailed investigations are important because they mimic catalytic strategies employed by both RNA and protein phosphodiesterases, and so set the stage for explorations of enzyme-catalyzed transition states. Application of KIE analyses for this class of enzymes is just beginning, and several important technical challenges remain to be overcome. Nonetheless, such studies hold great promise since they will provide novel insights into the role of metal ions and other active site interactions.
Collapse
Affiliation(s)
- Adam G Cassano
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | | | | |
Collapse
|
243
|
Tinsley RA, Harris DA, Walter NG. Significant kinetic solvent isotope effects in folding of the catalytic RNA from the hepatitis delta virus. J Am Chem Soc 2004; 125:13972-3. [PMID: 14611229 DOI: 10.1021/ja037870b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exchange of deuterium for hydrogen in water often produces solvent kinetic isotope effects (KSIEs) on the rate constants associated with enzyme reactions, including those catalyzed by RNA. Recently, KSIEs have been used to show that proton transfer occurs in the rate-limiting step of cleavage by the hepatitis delta virus (HDV) ribozyme and other catalytic RNAs. To test the underlying assumption that KSIEs are related to the chemistry step of ribozyme-mediated cleavage reactions, we developed fluorescence resonance energy transfer assays to measure KSIEs on the rate constants of conformational changes associated with substrate binding and dissociation by a trans-acting HDV ribozyme. We observe comparable KSIEs ( approximately 2-2.5-fold) of rate constants of conformational change and cleavage, while proton inventory experiments are consistent with a shift in the ensemble of transition states upon increase of D2O in the solvent. Taken together, these results challenge the common assumption that pL profiles of RNA-catalyzed reactions yielding a pKa and KSIE necessarily provide evidence for an ionization (chemistry) step to be rate-limiting. They also suggest that an unusual proton inventory may provide a signature for a conformational change contributing to the rate-limiting step.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
244
|
Abstract
The VS ribozyme is the largest nucleolytic ribozyme, for which there is no crystal structure to date. The ribozyme consists of five helical sections, organized by two three-way junctions. The global structure has been determined by solution methods, particularly FRET. The substrate stem-loop binds into a cleft formed between two helices, while making a loop-loop contact with another section of the ribozyme. The scissile phosphate makes a close contact with an internal loop (the A730 loop), the probable active site of the ribozyme. This loop contains a particularly critical nucleotide A756. Most changes to this nucleotide lead to three-orders of magnitude slower cleavage, and the Watson-Crick edge is especially important. NAIM experiments indicate that a protonated base is required at this position for the ligation reaction. A756 is thus a strong candidate for nucleobase participation in the catalytic chemistry.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
245
|
Abstract
The discovery of RNA catalysis provided a paradigm shift in biology, insight into the evolution of life on the planet and a challenge to understand its mechanistic origins. RNA has limited catalytic resources that must be used to maximal effect. Consequently, RNA catalysis tends to be multifactorial, with several processes contributing to an overall significant enhancement of reaction rate. These include general acid-base catalysis, electrostatic effects, and substrate orientation and proximity. The main players are the RNA nucleobases and bound metal ions. Although most ribozymes carry out phosphoryl transfer, the same considerations appear to apply to peptidyl transfer in the ribosome.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, School of Life Sciences, MSI/WTB Complex, The University of Dundee, Dundee, UK, DD1 5EH.
| |
Collapse
|
246
|
Bergeron LJ, Ouellet J, Perreault JP. Ribozyme-based gene-inactivation systems require a fine comprehension of their substrate specificities; the case of delta ribozyme. Curr Med Chem 2003; 10:2589-97. [PMID: 14529473 PMCID: PMC2902527 DOI: 10.2174/0929867033456486] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability of ribozymes (i.e. RNA enzymes) to specifically recognize and subsequently catalyze the cleavage of an RNA substrate makes them attractive for the development of therapeutic tools for the inactivation of both viral RNAs and mRNAs associated with various diseases. Several applicable ribozyme models have been tested both in vitro and in a cellular environment, and have shown significant promise. However, several hurdles remain to be surpassed before we generate a useful gene-inactivation system based on a ribozyme. Among the most important requirements for further progress are a better understanding of the features that contribute to defining the substrate specificity for cleavage by a ribozyme, and the identification of the potential cleavage sites in a given target RNA. The goal of this review is to illustrate the importance of both of these factors at the RNA level in the development of any type of ribozyme based gene-therapy. This is achieved by reviewing the recent progress in both the structure-function relationships and the development of a gene-inactivation system of a model ribozyme, specifically delta ribozyme.
Collapse
Affiliation(s)
| | | | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, JIH 5N4, Canada
| |
Collapse
|
247
|
Abstract
The hairpin ribozyme is a naturally occurring RNA that catalyzes sequence-specific cleavage and ligation of RNA. It has been the subject of extensive biochemical and structural studies, perhaps the most detailed for any catalytic RNA to date. Comparison of the structures of its constituent domains free and fully assembled demonstrates that the RNA undergoes extensive structural rearrangement. This rearrangement results in a distortion of the substrate RNA that primes it for cleavage. This ribozyme is known to achieve catalysis employing exclusively RNA functional groups. Metal ions or other catalytic cofactors are not used. Current experimental evidence points to a combination of at least four mechanistic strategies by this RNA: (1) precise substrate orientation, (2) preferential transition state binding, (3) electrostatic catalysis, and (4) general acid base catalysis.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| |
Collapse
|
248
|
Abstract
The speed at which RNA molecules decompose is a critical determinant of many biological processes, including those directly involved in the storage and expression of genetic information. One mechanism for RNA cleavage involves internal phosphoester transfer, wherein the 2'-oxygen atom carries out an SN2-like nucleophilic attack on the adjacent phosphorus center (transesterification). In this article, we discuss fundamental principles of RNA transesterification and define a conceptual framework that can be used to assess the catalytic power of enzymes that cleave RNA. We deduce that certain ribozymes and deoxyribozymes, like their protein enzyme counterparts, can bring about enormous rate enhancements.
Collapse
Affiliation(s)
- Gail Mitchell Emilsson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
249
|
Abstract
The idea that the ancestors of modern cells were RNA cells (ribocytes) can be investigated by asking whether all essential cellular functions might be performed by RNAs. This requires isolating suitable molecules by selection-amplification when the predicted molecules are presently extinct. In fact, RNAs with many properties required during a period in which RNA was the major macromolecular agent in cells (an RNA world) have been selected in modern experiments. There is, accordingly, reason to inquire how such a ribocyte might appear, based on the properties of the RNAs that composed it. Combining the intrinsic qualities of RNA with the fundamental characteristics of selection from randomized sequence pools, one predicts ribocytes with a cell cycle measured (roughly) in weeks. Such cells likely had a rapidly varying genome, composed of many small genetic and catalytic elements made of tens of ribonucleotides. There are substantial arguments that, at the mid-RNA era, a subset of these nucleotides are reproducibly available and resemble the modern four. Such cells are predicted to evolve rapidly. Instead of modifying preexisting genes, ribocytes frequently draw new functions from an internal pool containing zeptomoles (<1 attomole) of predominantly inactive random sequences.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| |
Collapse
|
250
|
Abstract
Introns are removed from precursor messenger RNAs in the cell nucleus by a large ribonucleoprotein complex called the spliceosome. The spliceosome contains five subcomplexes called snRNPs, each with one RNA and several protein components. Interactions of the snRNPs with each other and the intron are highly dynamic, changing in an ordered progression throughout the splicing process. This allosteric cascade of interactions is programmed into the RNA and protein components of the spliceosome, and is driven by a family of DExD/H-box RNA-dependent ATPases. The dependence of cascade progression on multiple intron-recognition events likely serves to enforce the accuracy of splicing. Here, the progression of the allosteric cascade from the first recognition event to the first catalytic step of splicing is reviewed.
Collapse
Affiliation(s)
- David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA.
| |
Collapse
|