201
|
|
202
|
Abstract
In recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle.
Collapse
Affiliation(s)
- Brendan Evano
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | |
Collapse
|
203
|
Magiera MM, Gueydon E, Schwob E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. ACTA ACUST UNITED AC 2014; 204:165-75. [PMID: 24421333 PMCID: PMC3897190 DOI: 10.1083/jcb.201306023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin-Cdk1 complex.
Collapse
Affiliation(s)
- Maria M Magiera
- Institute of Molecular Genetics, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535 and University of Montpellier, 34293 Montpellier, France
| | | | | |
Collapse
|
204
|
Dalmasso MC, Carmona SJ, Angel SO, Agüero F. Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions. BMC Genomics 2014; 15:21. [PMID: 24417889 PMCID: PMC4008256 DOI: 10.1186/1471-2164-15-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii. RESULTS An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∼ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∼ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density. CONCLUSIONS We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.
Collapse
Affiliation(s)
| | | | - Sergio O Angel
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, UNSAM - CONICET, Sede Chascomús, Av, Intendente Marino Km 8, 2 CC 164, B 7130 IWA, Chascomús, Argentina.
| | | |
Collapse
|
205
|
Müller CA, Hawkins M, Retkute R, Malla S, Wilson R, Blythe MJ, Nakato R, Komata M, Shirahige K, de Moura AP, Nieduszynski CA. The dynamics of genome replication using deep sequencing. Nucleic Acids Res 2014; 42:e3. [PMID: 24089142 PMCID: PMC3874191 DOI: 10.1093/nar/gkt878] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.
Collapse
Affiliation(s)
- Carolin A. Müller
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Michelle Hawkins
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Renata Retkute
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Sunir Malla
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Ray Wilson
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Martin J. Blythe
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Ryuichiro Nakato
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Makiko Komata
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Katsuhiko Shirahige
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Alessandro P.S. de Moura
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Conrad A. Nieduszynski
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| |
Collapse
|
206
|
Abstract
Eukaryotic DNA replication exhibits at once extraordinary fidelity and substantial plasticity. The importance of the apparent presence of a replication temporal program on a population level has been the subject of intense debate of late. Such debate has been, to a great extent, facilitated by methods that permit the description and analysis of replication dynamics in various model organisms, both globally and at a single-molecule level. Each of these methods provides a unique view of the replication process, and also presents challenges and questions in the interpretation of experimental observations. Thus, wider applications of these methods in different genetic backgrounds and in different organisms would doubtless enable us to better understand the execution and regulation of chromosomal DNA synthesis as well as its impact on genome maintenance.
Collapse
|
207
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
208
|
Abstract
In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.
Collapse
|
209
|
Tanaka TU, Clayton L, Natsume T. Three wise centromere functions: see no error, hear no break, speak no delay. EMBO Rep 2013; 14:1073-83. [PMID: 24232185 PMCID: PMC3849490 DOI: 10.1038/embor.2013.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The main function of the centromere is to promote kinetochore assembly for spindle microtubule attachment. Two additional functions of the centromere, however, are becoming increasingly clear: facilitation of robust sister-chromatid cohesion at pericentromeres and advancement of replication of centromeric regions. The combination of these three centromere functions ensures correct chromosome segregation during mitosis. Here, we review the mechanisms of the kinetochore-microtubule interaction, focusing on sister-kinetochore bi-orientation (or chromosome bi-orientation). We also discuss the biological importance of robust pericentromeric cohesion and early centromere replication, as well as the mechanisms orchestrating these two functions at the microtubule attachment site.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
210
|
A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:1955-63. [PMID: 24022751 PMCID: PMC3815058 DOI: 10.1534/g3.113.008250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.
Collapse
|
211
|
Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res 2013; 41:9705-18. [PMID: 23963700 PMCID: PMC3834809 DOI: 10.1093/nar/gkt728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/21/2023] Open
Abstract
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts-Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe-also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10(-8), which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.
Collapse
Affiliation(s)
- Timothy J. Newman
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mohammed A. Mamun
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Conrad A. Nieduszynski
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - J. Julian Blow
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
212
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
213
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Saner N, Karschau J, Natsume T, Gierliński M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 2013; 202:1001-12. [PMID: 24062338 PMCID: PMC3787376 DOI: 10.1083/jcb.201306143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
Inside the nucleus, DNA replication is organized at discrete sites called replication factories, consisting of DNA polymerases and other replication proteins. Replication factories play important roles in coordinating replication and in responding to replication stress. However, it remains unknown how replicons are organized for processing at each replication factory. Here we address this question using budding yeast. We analyze how individual replicons dynamically organized a replication factory using live-cell imaging and investigate how replication factories were structured using super-resolution microscopy. Surprisingly, we show that the grouping of replicons within factories is highly variable from cell to cell. Once associated, however, replicons stay together relatively stably to maintain replication factories. We derive a coherent genome-wide mathematical model showing how neighboring replicons became associated stochastically to form replication factories, which was validated by independent microscopy-based analyses. This study not only reveals the fundamental principles promoting replication factory organization in budding yeast, but also provides insight into general mechanisms by which chromosomes organize sub-nuclear structures.
Collapse
Affiliation(s)
- Nazan Saner
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Karschau
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Toyoaki Natsume
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Renata Retkute
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Michelle Hawkins
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alessandro P.S. de Moura
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
215
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier cedex 5, France; Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
216
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
217
|
Duch A, de Nadal E, Posas F. Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 2013; 425:4745-55. [PMID: 24021813 DOI: 10.1016/j.jmb.2013.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Transcription during S phase needs to be spatially and temporally regulated to prevent collisions between the transcription and replication machineries. Cells have evolved a number of mechanisms to make both processes compatible under normal growth conditions. When conflict management fails, the head-on encounter between RNA and DNA polymerases results in genomic instability unless conflict resolution mechanisms are activated. Nevertheless, there are specific situations in which cells need to dramatically change their transcriptional landscape to adapt to environmental challenges. Signal transduction pathways, such as stress-activated protein kinases (SAPKs), serve to regulate gene expression in response to environmental insults. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. In response to stress, p38/Hog1 SAPKs control transcription and also regulate cell cycle progression. When yeast cells are stressed during S phase, Hog1 promotes gene induction and, remarkably, also delays replication by directly affecting early origin firing and fork progression. Therefore, by delaying replication, Hog1 plays a key role in preventing conflicts between RNA and DNA polymerases. In this review, we focus on the genomic determinants and mechanisms that make compatible transcription with replication during S phase to prevent genomic instability, especially in response to environmental changes.
Collapse
Affiliation(s)
- Alba Duch
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | |
Collapse
|
218
|
Abstract
DNA topology changes dynamically during DNA replication. Supercoiling, precatenation, catenation and knotting interplay throughout the process that is finely regulated by DNA topoisomerases. In the present article, we provide an overview of theoretical and experimental approaches to understand the interplay between various manifestations of topological constraints acting on replicating DNA molecules. Data discussed reveal that DNA entanglements (supercoils and catenanes) play an active role in preventing the formation of deleterious knots.
Collapse
|
219
|
Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3-GENES GENOMES GENETICS 2013; 3:1453-65. [PMID: 23821616 PMCID: PMC3755907 DOI: 10.1534/g3.113.006429] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.
Collapse
|
220
|
Fritz A, Sinha S, Marella N, Berezney R. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells. J Cell Biochem 2013; 114:1074-83. [PMID: 23161755 DOI: 10.1002/jcb.24447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/13/2023]
Abstract
The replication timing of nine genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1, and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN, and cMYC) show significant differences (P < 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51, and cMYC) showed significant changes in gene expression (≥2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer-related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells.
Collapse
Affiliation(s)
- Andrew Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
221
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
222
|
Kumaran R, Yang SY, Leu JY. Characterization of chromosome stability in diploid, polyploid and hybrid yeast cells. PLoS One 2013; 8:e68094. [PMID: 23874507 PMCID: PMC3707968 DOI: 10.1371/journal.pone.0068094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).
Collapse
Affiliation(s)
- Rajaraman Kumaran
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Yow Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
223
|
Supady A, Klipp E, Barberis M. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 2013; 168:174-84. [PMID: 23850861 DOI: 10.1016/j.jbiotec.2013.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.
Collapse
Affiliation(s)
- Adriana Supady
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
224
|
Dionne I, Larose S, Dandjinou AT, Abou Elela S, Wellinger RJ. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2013; 19:992-1002. [PMID: 23690630 PMCID: PMC3683933 DOI: 10.1261/rna.037663.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.
Collapse
|
225
|
Zhong Y, Nellimoottil T, Peace JM, Knott SRV, Villwock SK, Yee JM, Jancuska JM, Rege S, Tecklenburg M, Sclafani RA, Tavaré S, Aparicio OM. The level of origin firing inversely affects the rate of replication fork progression. ACTA ACUST UNITED AC 2013; 201:373-83. [PMID: 23629964 PMCID: PMC3639389 DOI: 10.1083/jcb.201208060] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells with reduced origin firing have an increased rate of replication fork progression, whereas fork progression is slowed in cells with excess origins. DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.
Collapse
Affiliation(s)
- Yuan Zhong
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Natsume T, Müller C, Katou Y, Retkute R, Gierliński M, Araki H, Blow J, Shirahige K, Nieduszynski C, Tanaka T. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell 2013; 50:661-74. [PMID: 23746350 PMCID: PMC3679449 DOI: 10.1016/j.molcel.2013.05.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/26/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022]
Abstract
Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Carolin A. Müller
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yuki Katou
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Renata Retkute
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima 411-8540, Japan
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
227
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
228
|
McGuffee SR, Smith DJ, Whitehouse I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell 2013; 50:123-35. [PMID: 23562327 DOI: 10.1016/j.molcel.2013.03.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 03/01/2013] [Indexed: 01/26/2023]
Abstract
Many fundamental aspects of DNA replication, such as the exact locations where DNA synthesis is initiated and terminated, how frequently origins are used, and how fork progression is influenced by transcription, are poorly understood. Via the deep sequencing of Okazaki fragments, we comprehensively document replication fork directionality throughout the S. cerevisiae genome, which permits the systematic analysis of initiation, origin efficiency, fork progression, and termination. We show that leading-strand initiation preferentially occurs within a nucleosome-free region at replication origins. Using a strain in which late origins can be induced to fire early, we show that replication termination is a largely passive phenomenon that does not rely on cis-acting sequences or replication fork pausing. The replication profile is predominantly determined by the kinetics of origin firing, allowing us to reconstruct chromosome-wide timing profiles from an asynchronous culture.
Collapse
Affiliation(s)
- Sean R McGuffee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
229
|
Shang WH, Hori T, Martins N, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, Kimura H, Earnshaw W, Fukagawa T. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 2013; 24:635-48. [PMID: 23499358 PMCID: PMC3925796 DOI: 10.1016/j.devcel.2013.02.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/21/2013] [Accepted: 02/15/2013] [Indexed: 01/04/2023]
Abstract
Centromeres are specified by sequence-independent epigenetic mechanisms in most organisms. Rarely, centromere repositioning results in neocentromere formation at ectopic sites. However, the mechanisms governing how and where neocentromeres form are unknown. Here, we established a chromosome-engineering system in chicken DT40 cells that allowed us to efficiently isolate neocentromere-containing chromosomes. Neocentromeres appear to be structurally and functionally equivalent to native centromeres. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis with 18 neocentromeres revealed that the centromere-specific histone H3 variant CENP-A occupies an ∼40 kb region at each neocentromere, which has no preference for specific DNA sequence motifs. Furthermore, we found that neocentromeres were not associated with histone modifications H3K9me3, H3K4me2, and H3K36me3 or with early replication timing. Importantly, low but significant levels of CENP-A are detected around endogenous centromeres, which are capable of seeding neocentromere assembly if the centromere core is removed. In summary, our experimental system provides valuable insights for understanding how neocentromeres form.
Collapse
Affiliation(s)
- Wei-Hao Shang
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Nuno M.C. Martins
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Sadahiko Misu
- Cell Innovation Project, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Norikazu Monma
- Cell Innovation Project, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Ichiro Hiratani
- Laboratory of Biological Macromolecules, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Laboratory of Biological Macromolecules, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Kazuho Ikeo
- Cell Innovation Project, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
- National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
230
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
231
|
Jossen R, Bermejo R. The DNA damage checkpoint response to replication stress: A Game of Forks. Front Genet 2013; 4:26. [PMID: 23493417 PMCID: PMC3595514 DOI: 10.3389/fgene.2013.00026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems, and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.
Collapse
Affiliation(s)
- Rachel Jossen
- Instituto de Biología Funcional y Genómica, CSIC/USAL Salamanca, Spain
| | | |
Collapse
|
232
|
Aparicio OM. Location, location, location: it's all in the timing for replication origins. Genes Dev 2013; 27:117-28. [PMID: 23348837 DOI: 10.1101/gad.209999.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The differential replication timing of eukaryotic replication origins has long been linked with epigenetic regulation of gene expression and more recently with genome stability and mutation rates; however, the mechanism has remained obscure. Recent studies have shed new light by identifying novel factors that determine origin timing in yeasts and mammalian cells and implicate the spatial organization of origins within nuclear territories in the mechanism. These new insights, along with recent findings that several initiation factors are limiting relative to licensed origins, support and shape an emerging model for replication timing control. The mechanisms that control the spatial organization of replication origins have potential impacts for genome regulation beyond replication.
Collapse
Affiliation(s)
- Oscar M Aparicio
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
233
|
Rodriguez J, Tsukiyama T. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress. Genes Dev 2013; 27:74-86. [PMID: 23307868 DOI: 10.1101/gad.202978.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109, USA
| | | |
Collapse
|
234
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
235
|
Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 2013; 20:396-403. [PMID: 23416947 PMCID: PMC3594045 DOI: 10.1038/nsmb.2517] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/17/2013] [Indexed: 12/26/2022]
Abstract
Transcription has the capacity to modify mechanically DNA topology, DNA structure, and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn, may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitt lymphoma cells using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kb upstream of the start sites of active genes. Low and high output promoters handle this torsional stress differently as shown using inhibitors of transcription and topoisomerases, and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.
Collapse
|
236
|
Nakao S, Zhang S, Vaara M, Syväoja JE, Lee MY, Tsurimoto T, Karran P, Oda S. Efficient long DNA gap-filling in a mammalian cell-free system: a potential new in vitro DNA replication assay. Biochimie 2013; 95:320-8. [PMID: 23063694 DOI: 10.1016/j.biochi.2012.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/27/2012] [Indexed: 11/22/2022]
Abstract
In vitro assay of mammalian DNA replication has been variously approached. Using gapped circular duplex substrates containing a 500-base single-stranded DNA region, we have constructed a mammalian cell-free system in which physiological DNA replication may be reproduced. Reaction of the gapped plasmid substrate with crude extracts of human HeLaS3 cells induces efficient DNA synthesis in vitro. The induced synthesis was strongly inhibited by aphidicolin and completely depended on dNTP added to the system. In cell extracts in which PCNA was depleted step-wise by immunoprecipitation, DNA synthesis was accordingly reduced. These data suggest that replicative DNA polymerases, particularly pol delta, may chiefly function in this system. Furthermore, DNA synthesis is made quantifiable in this system, which enables us to evaluate the efficiency of DNA replication induced. Our system sensitively and quantitatively detected the reduction of the DNA replication efficiency in the DNA substrates damaged by oxidation or UV cross-linking and in the presence of a potent chain terminator, ara-CTP. The quantitative assessment of mammalian DNA replication may provide various advantages not only in basic research but also in drug development.
Collapse
Affiliation(s)
- Seiki Nakao
- Cancer Genetics Laboratory, Clinical Research Institute, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
238
|
Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Genetics 2013; 193:751-70. [PMID: 23307893 DOI: 10.1534/genetics.112.146910] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity.
Collapse
|
239
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
240
|
Abstract
Although distinct chromatin types have been long known to replicate at different timepoints of S phase, fine replication control has only recently become considered as an epigenetic phenomenon. It is now clear that in course of differentiation significant changes in genome replication timing occur, and these changes are intimately linked with the changes in transcriptional activity and nuclear architecture. Temporally coordinate replication is organized spatially into discrete units having specific chromosomal organization and function. Even though the functional aspects of such tight control of replication timing remain to be explored, one can confidently consider the replication program as yet another fundamental feature characteristic of the given differentiation state. The present review touches upon the molecular mechanisms of spatial and temporal control of replication timing, involving individual replication origins as well as large chromatin domains.
Collapse
|
241
|
Agier N, Romano OM, Touzain F, Cosentino Lagomarsino M, Fischer G. The spatiotemporal program of replication in the genome of Lachancea kluyveri. Genome Biol Evol 2013; 5:370-88. [PMID: 23355306 PMCID: PMC3590768 DOI: 10.1093/gbe/evt014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 12/11/2022] Open
Abstract
We generated a genome-wide replication profile in the genome of Lachancea kluyveri and assessed the relationship between replication and base composition. This species diverged from Saccharomyces cerevisiae before the ancestral whole genome duplication. The genome comprises eight chromosomes among which a chromosomal arm of 1 Mb has a G + C-content much higher than the rest of the genome. We identified 252 active replication origins in L. kluyveri and found considerable divergence in origin location with S. cerevisiae and with Lachancea waltii. Although some global features of S. cerevisiae replication are conserved: Centromeres replicate early, whereas telomeres replicate late, we found that replication origins both in L. kluyveri and L. waltii do not behave as evolutionary fragile sites. In L. kluyveri, replication timing along chromosomes alternates between regions of early and late activating origins, except for the 1 Mb GC-rich chromosomal arm. This chromosomal arm contains an origin consensus motif different from other chromosomes and is replicated early during S-phase. We showed that precocious replication results from the specific absence of late firing origins in this chromosomal arm. In addition, we found a correlation between GC-content and distance from replication origins as well as a lack of replication-associated compositional skew between leading and lagging strands specifically in this GC-rich chromosomal arm. These findings suggest that the unusual base composition in the genome of L. kluyveri could be linked to replication.
Collapse
Affiliation(s)
- Nicolas Agier
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| | | | - Fabrice Touzain
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
- Present address: ANSES, Ploufragan/Plouzané Laboratory Viral Genomics and Biosecurity Unit (GVB), Ploufragan, France
| | - Marco Cosentino Lagomarsino
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| | - Gilles Fischer
- UPMC, UMR7238, Génomique des Microorganismes, Paris, France
- CNRS, UMR7238, Génomique des Microorganismes, Paris, France
| |
Collapse
|
242
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
243
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
244
|
Liachko I, Youngblood RA, Keich U, Dunham MJ. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Res 2012; 23:698-704. [PMID: 23241746 PMCID: PMC3613586 DOI: 10.1101/gr.144659.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
245
|
Lõoke M, Kristjuhan K, Värv S, Kristjuhan A. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep 2012; 14:191-8. [PMID: 23222539 PMCID: PMC3596130 DOI: 10.1038/embor.2012.196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022] Open
Abstract
To elucidate the role of the chromatin environment in the regulation of replication origin activation, autonomously replicating sequences were inserted into identical locations in the budding yeast genome and their activation times in S phase determined. Chromatin-dependent origins adopt to the firing time of the surrounding locus. In contrast, the origins containing two binding sites for Forkhead transcription factors are activated early in the S phase regardless of their location in the genome. Our results also show that genuinely late-replicating parts of the genome can be converted into early-replicating loci by insertion of a chromatin-independent early replication origin, ARS607, whereas insertion of two Forkhead-binding sites is not sufficient for conversion.
Collapse
Affiliation(s)
- Marko Lõoke
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
246
|
Chaudari A, Huberman JA. Identification of two telomere-proximal fission yeast DNA replication origins constrained by nearby cis-acting sequences to replicate in late S phase. F1000Res 2012; 1:58. [PMID: 24358832 PMCID: PMC3790605 DOI: 10.12688/f1000research.1-58.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Telomeres of the fission yeast, Schizosaccharomyces pombe, are known to replicate in late S phase, but the reasons for this late replication are not fully understood. We have identified two closely-spaced DNA replication origins, 5.5 to 8 kb upstream from the telomere itself. These are the most telomere-proximal of all the replication origins in the fission yeast genome. When located by themselves in circular plasmids, these origins fired in early S phase, but if flanking sequences closer to the telomere were included in the circular plasmid, then replication was restrained to late S phase - except in cells lacking the replication-checkpoint kinase, Cds1. We conclude that checkpoint-dependent late replication of telomere-associated sequences is dependent on nearby cis-acting sequences, not on proximity to the physical end of a linear chromosome.
Collapse
Affiliation(s)
- Amna Chaudari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Joel A Huberman
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| |
Collapse
|
247
|
Abstract
Neocentromeres are ectopic sites where new functional kinetochores assemble and permit chromosome segregation. Neocentromeres usually form following genomic alterations that remove or disrupt centromere function. The ability to form neocentromeres is conserved in eukaryotes ranging from fungi to mammals. Neocentromeres that rescue chromosome fragments in cells with gross chromosomal rearrangements are found in several types of human cancers, and in patients with developmental disabilities. In this review, we discuss the importance of neocentromeres to human health and evaluate recently developed model systems to study neocentromere formation, maintenance, and function in chromosome segregation. Additionally, studies of neocentromeres provide insight into native centromeres; analysis of neocentromeres found in human clinical samples and induced in model organisms distinguishes features of centromeres that are dependent on centromere DNA from features that are epigenetically inherited together with the formation of a functional kinetochore.
Collapse
|
248
|
Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, Song JH, Takahashi TS, Nakagawa T, Shirahige K, Masukata H. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev 2012; 26:2050-62. [PMID: 22987637 DOI: 10.1101/gad.194282.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.
Collapse
Affiliation(s)
- Atsutoshi Tazumi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Yadav MP, Padmanabhan S, Tripathi VP, Mishra RK, Dubey DD. Analysis of stress-induced duplex destabilization (SIDD) properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe. BMC Res Notes 2012; 5:643. [PMID: 23163955 PMCID: PMC3533806 DOI: 10.1186/1756-0500-5-643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD) for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs) and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
Collapse
Affiliation(s)
- Mukesh P Yadav
- Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh 222001, India
| | | | | | | | | |
Collapse
|
250
|
Petrakis TG, Vougas K, Gorgoulis VG. Cdc6: a multi-functional molecular switch with critical role in carcinogenesis. Transcription 2012; 3:124-9. [PMID: 22771947 DOI: 10.4161/trns.20301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Research in the last decade revealed an additional role for the Replication Licensing Factor Cdc6 in transcriptional regulation. This novel function has been linked to human cancer development. Here, we summarize all the findings arguing over a role of Cdc6 as a transcriptional repressor and shed light toward new research directions for this field.
Collapse
Affiliation(s)
- Thodoris G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | | |
Collapse
|