201
|
Lin X, Yu ACS, Chan TF. Efforts and Challenges in Engineering the Genetic Code. Life (Basel) 2017; 7:life7010012. [PMID: 28335420 PMCID: PMC5370412 DOI: 10.3390/life7010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.
Collapse
Affiliation(s)
- Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Allen Chi Shing Yu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| |
Collapse
|
202
|
Englert M, Vargas-Rodriguez O, Reynolds NM, Wang YS, Söll D, Umehara T. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNA His pair. Biochim Biophys Acta Gen Subj 2017; 1861:3009-3015. [PMID: 28288813 DOI: 10.1016/j.bbagen.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNAHis recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNAHis pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. METHODS E. coli was genetically engineered to use a C. crescentus HisRS•tRNAHis pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. RESULTS A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNAHis pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNAHis pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNAHisCUA elevated its suppression efficiency by 2-fold. CONCLUSIONS The C. crescentus HisRS•tRNAHis pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNAHis is orthogonal in MEOV1 cells. E. coli tRNAHisCUA is an efficient amber suppressor in MEOV1. GENERAL SIGNIFICANCE We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| | - Takuya Umehara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
203
|
|
204
|
Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CP, Springer M, Sander C, Marks DS. Mutation effects predicted from sequence co-variation. Nat Biotechnol 2017; 35:128-135. [PMID: 28092658 PMCID: PMC5383098 DOI: 10.1038/nbt.3769] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
Many high-throughput experimental technologies have been developed to assess the effects of large numbers of mutations (variation) on phenotypes. However, designing functional assays for these methods is challenging, and systematic testing of all combinations is impossible, so robust methods to predict the effects of genetic variation are needed. Most prediction methods exploit evolutionary sequence conservation but do not consider the interdependencies of residues or bases. We present EVmutation, an unsupervised statistical method for predicting the effects of mutations that explicitly captures residue dependencies between positions. We validate EVmutation by comparing its predictions with outcomes of high-throughput mutagenesis experiments and measurements of human disease mutations and show that it outperforms methods that do not account for epistasis. EVmutation can be used to assess the quantitative effects of mutations in genes of any organism. We provide pre-computed predictions for ∼7,000 human proteins at http://evmutation.org/.
Collapse
Affiliation(s)
- Thomas A. Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Informatics, Technische Universität München, Garching, Germany
| | - John B. Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Charlotta P.I. Schärfe
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
205
|
Moore JA, Nemat-Gorgani M, Madison AC, Sandahl MA, Punnamaraju S, Eckhardt AE, Pollack MG, Vigneault F, Church GM, Fair RB, Horowitz MA, Griffin PB. Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads. BIOMICROFLUIDICS 2017; 11:014110. [PMID: 28191268 PMCID: PMC5291792 DOI: 10.1063/1.4975391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/20/2017] [Indexed: 05/06/2023]
Abstract
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.
Collapse
Affiliation(s)
- J A Moore
- Stanford Genome Technology Center , 3165 Porter Drive, Palo Alto, California 94304, USA
| | - M Nemat-Gorgani
- Stanford Genome Technology Center , 3165 Porter Drive, Palo Alto, California 94304, USA
| | - A C Madison
- Department of Electrical Engineering, Duke University , Durham, North Carolina 27560, USA
| | - M A Sandahl
- Advanced Liquid Logic , 615 Davis Drive #800, Morrisville, North Carolina 27560, USA
| | - S Punnamaraju
- Advanced Liquid Logic , 615 Davis Drive #800, Morrisville, North Carolina 27560, USA
| | - A E Eckhardt
- Advanced Liquid Logic , 615 Davis Drive #800, Morrisville, North Carolina 27560, USA
| | - M G Pollack
- Advanced Liquid Logic , 615 Davis Drive #800, Morrisville, North Carolina 27560, USA
| | - F Vigneault
- Wyss Institute, Harvard University , Boston, Massachusetts 02115, USA
| | - G M Church
- Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - R B Fair
- Department of Electrical Engineering, Duke University , Durham, North Carolina 27560, USA
| | - M A Horowitz
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, USA
| | - P B Griffin
- Stanford Genome Technology Center , 3165 Porter Drive, Palo Alto, California 94304, USA
| |
Collapse
|
206
|
Messerschmidt SJ, Schindler D, Zumkeller CM, Kemter FS, Schallopp N, Waldminghaus T. Optimization and Characterization of the Synthetic Secondary Chromosome synVicII in Escherichia coli. Front Bioeng Biotechnol 2016; 4:96. [PMID: 28066763 PMCID: PMC5179572 DOI: 10.3389/fbioe.2016.00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022] Open
Abstract
Learning by building is one of the core ideas of synthetic biology research. Consequently, building synthetic chromosomes is the way to fully understand chromosome characteristics. The last years have seen exciting synthetic chromosome studies. We had previously introduced the synthetic secondary chromosome synVicII in Escherichia coli. It is based on the replication mechanism of the secondary chromosome in Vibrio cholerae. Here, we present a detailed analysis of its genetic characteristics and a selection approach to optimize replicon stability. We probe the origin diversity of secondary chromosomes from Vibrionaceae by construction of several new respective replicons. Finally, we present a synVicII version 2.0 with several innovations including its full compatibility with the popular modular cloning (MoClo) assembly system.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Daniel Schindler
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Celine M Zumkeller
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Franziska S Kemter
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| |
Collapse
|
207
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
208
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
209
|
Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 2016; 60:337-346. [DOI: 10.1042/ebc20160024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Microbial diversity and complexity pose challenges in understanding the voluminous genetic information produced from whole-genome sequences, bioinformatics and high-throughput ‘-omics’ research. These challenges can be overcome by a core blueprint of a genome drawn with a minimal gene set, which is essential for life. Systems biology and large-scale gene inactivation studies have estimated the number of essential genes to be ∼300–500 in many microbial genomes. On the basis of the essential gene set information, minimal-genome strains have been generated using sophisticated genome engineering techniques, such as genome reduction and chemical genome synthesis. Current size-reduced genomes are not perfect minimal genomes, but chemically synthesized genomes have just been constructed. Some minimal genomes provide various desirable functions for bioindustry, such as improved genome stability, increased transformation efficacy and improved production of biomaterials. The minimal genome as a chassis genome for synthetic biology can be used to construct custom-designed genomes for various practical and industrial applications.
Collapse
|
210
|
Oron-Gottesman A, Sauert M, Moll I, Engelberg-Kulka H. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli. mBio 2016; 7:e01855-16. [PMID: 27935840 PMCID: PMC5111409 DOI: 10.1128/mbio.01855-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA) system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM), composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF)-like element in ribosomal protein bS1 (bacterial S1), apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. IMPORTANCE The genetic code is a universal characteristic of all living organisms. It defines the set of rules by which nucleotide triplets specify which amino acid will be incorporated into a protein. Our results represent the first existing report on a stress-induced bias in the reading of the genetic code. We found that in E. coli, under stress, the amino acid threonine is encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. This is because under stress, MazF generates a stress-induced translation machinery (STM) in which MazF cleaves in-frame ACA sites of the processed mRNAs.
Collapse
Affiliation(s)
- Adi Oron-Gottesman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Martina Sauert
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
211
|
Defining synonymous codon compression schemes by genome recoding. Nature 2016; 539:59-64. [PMID: 27776354 DOI: 10.1038/nature20124] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
Synthetic recoding of genomes, to remove targeted sense codons, may facilitate the encoded cellular synthesis of unnatural polymers by orthogonal translation systems. However, our limited understanding of allowed synonymous codon substitutions, and the absence of methods that enable the stepwise replacement of the Escherichia coli genome with long synthetic DNA and provide feedback on allowed and disallowed design features in synthetic genomes, have restricted progress towards this goal. Here we endow E. coli with a system for efficient, programmable replacement of genomic DNA with long (>100-kb) synthetic DNA, through the in vivo excision of double-stranded DNA from an episomal replicon by CRISPR/Cas9, coupled to lambda-red-mediated recombination and simultaneous positive and negative selection. We iterate the approach, providing a basis for stepwise whole-genome replacement. We attempt systematic recoding in an essential operon using eight synonymous recoding schemes. Each scheme systematically replaces target codons with defined synonyms and is compatible with codon reassignment. Our results define allowed and disallowed synonymous recoding schemes, and enable the identification and repair of recoding at idiosyncratic positions in the genome.
Collapse
|
212
|
Wang Y, Tsao ML. Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in Escherichia coli. Chembiochem 2016; 17:2234-2239. [PMID: 27647777 DOI: 10.1002/cbic.201600448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/06/2022]
Abstract
A new method has been developed to reassign the rare codon AGA in Escherichia coli by engineering an orthogonal tRNA/aminoacyl-tRNA synthetase pair derived from Methanocaldococcus jannaschii. The tRNA mutant was introduced with a UCU anticodon, and the synthetase was evolved to correctly recognize the modified tRNA anticodon loop and to selectively charge a target noncanonical amino acid (NAA) onto the tRNA. In order to maximize the efficiency of AGA codon reassignment, while avoiding the lethal effects caused by global codon reassignment in cellular proteins, an inducible promoter (araBAD) was utilized to provide temporal controls for overexpression of the aminoacyl-tRNA synthetase and switch on codon reassignment. Using this system, we were able to efficiently incorporate p-acetylphenylalanine, O-methyl-tyrosine, and p-iodophenylalanine into proteins in response to AGA codons. Also, we found that E. coli strain GM10 was optimal in achieving the highest AGA reassignment rates. The successful reassignment of AGA codons reported here provides a new avenue to further expand the genetic code.
Collapse
Affiliation(s)
- Yiyan Wang
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
| | - Meng-Lin Tsao
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
| |
Collapse
|
213
|
‘Radically rewritten’ bacterial genome unveiled. Nature 2016. [DOI: 10.1038/nature.2016.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|