201
|
Remodeling of the ARID1A tumor suppressor. Cancer Lett 2020; 491:1-10. [PMID: 32738271 DOI: 10.1016/j.canlet.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, AT-rich interactive domain-containing protein 1A (ARID1A) has been widely accepted as a bona fide tumor suppressor due to its essential role in preventing tumorigenesis and tumor progression in both mouse and human contexts. ARID1A shows high mutation frequencies in both cancers and preneoplastic lesions. The loss of ARID1A expression in cancer cells leads to increases in cell proliferation, invasion and migration and reductions in cell apoptosis and chemosensitivity. The tumor-suppressive role of ARID1A is mainly attributed to its regulation of gene transcription, which can be induced either directly by chromatin remodeling or indirectly by affecting histone modifications. ARID1A also acts independently of its cardinal transcription-regulating mechanisms, which include interfering with protein-protein interactions. Interestingly, nonmutational mechanisms, such as regulation by DNA hypermethylation, microRNAs, and ubiquitinases/deubiquitinases, have provided another perspective on ARID1A inactivation in cancer. Since the critical tumor-suppressive role of ARID1A has been revealed, several studies have attempted to identify synthetic lethal targets with ARID1A mutation/inactivation as an alternative strategy for cancer treatment.
Collapse
|
202
|
Tong ZB, Ai HS, Li JB. The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage. Front Cell Dev Biol 2020; 8:560098. [PMID: 33102471 PMCID: PMC7545370 DOI: 10.3389/fcell.2020.560098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
DNA packs into highly condensed chromatin to organize the genome in eukaryotes but occludes many regulatory DNA elements. Access to DNA within nucleosomes is therefore required for a variety of biological processes in cells including transcription, replication, and DNA repair. To cope with this problem, cells employ a set of specialized ATP-dependent chromatin-remodeling protein complexes to enable dynamic access to packaged DNA. In the present review, we summarize the recent advances in the functional and mechanistic studies on a particular chromatin remodeler SMARCAD1Fun30 which has been demonstrated to play a key role in distinct cellular processes and gained much attention in recent years. Focus is given to how SMARCAD1Fun30 regulates various cellular processes through its chromatin remodeling activity, and especially the regulatory role of SMARCAD1Fun30 in gene expression control, maintenance and establishment of heterochromatin, and DNA damage repair. Moreover, we review the studies on the molecular mechanism of SMARCAD1Fun30 that promotes the DNA end-resection on double-strand break ends, including the mechanisms of recruitment, activity regulation and chromatin remodeling.
Collapse
Affiliation(s)
- Ze-Bin Tong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hua-Song Ai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
203
|
Tsunaka Y, Ohtomo H, Morikawa K, Nishimura Y. Partial Replacement of Nucleosomal DNA with Human FACT Induces Dynamic Exposure and Acetylation of Histone H3 N-Terminal Tails. iScience 2020; 23:101641. [PMID: 33103079 PMCID: PMC7569332 DOI: 10.1016/j.isci.2020.101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The FACT (facilitates chromatin transcription) complex, comprising SPT16 and SSRP1, conducts structural alterations during nucleosome unwrapping. Our previous cryoelectron microscopic (cryo-EM) analysis revealed the first intermediate structure of an unwrapped nucleosome with human FACT, in which 112-bp DNA and the phosphorylated intrinsically disordered (pAID) segment of SPT16 jointly wrapped around the histone core instead of 145-bp DNA. Using NMR, here we clarified that the histone H3 N-terminal tails, unobserved in the cryo-EM structure, adopt two different conformations reflecting their asymmetric locations at entry/exit sites: one corresponds to the original nucleosome site buried in two DNA gyres (DNA side), whereas the other, comprising pAID and DNA, is more exposed to the solvent (pAID side). NMR real-time monitoring showed that H3 acetylation is faster on the pAID side than on the DNA side. Our findings highlight that accessible conformations of H3 tails are created by the replacement of nucleosomal DNA with pAID. H3 N-tail, restricted to two DNA gyres of nucleosome, is protected from Gcn5 H3 N-tail is dynamically exposed by replacement of nucleosomal DNA with pAID of FACT Gcn5 efficiently acetylates accessible H3 N-tail of nucleosome with FACT FACT acts as a modulator for dynamic behavior of H3 tails in nucleosome
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
204
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
205
|
Skrajna A, Goldfarb D, Kedziora KM, Cousins E, Grant GD, Spangler CJ, Barbour EH, Yan X, Hathaway NA, Brown NG, Cook JG, Major MB, McGinty RK. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res 2020; 48:9415-9432. [PMID: 32658293 PMCID: PMC7515726 DOI: 10.1093/nar/gkaa544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/03/2023] Open
Abstract
Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily M Cousins
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily H Barbour
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaokang Yan
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
206
|
Loesch R, Chenane L, Colnot S. ARID2 Chromatin Remodeler in Hepatocellular Carcinoma. Cells 2020; 9:cells9102152. [PMID: 32977645 PMCID: PMC7598172 DOI: 10.3390/cells9102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Robin Loesch
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Linda Chenane
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
| | - Sabine Colnot
- INSERM, Centre de Recherche des Cordeliers (CRC), Sorbonne Université, Université de Paris, F-75006 Paris, France; (R.L.); (L.C.)
- Equipe labellisée “Ligue Nationale Contre le Cancer”, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
207
|
Chen G, Zhou H, Liu B, Wang Y, Zhao J, Giancotti FG, Long J. A heterotrimeric SMARCB1-SMARCC2 subcomplex is required for the assembly and tumor suppression function of the BAF chromatin-remodeling complex. Cell Discov 2020; 6:66. [PMID: 33024572 PMCID: PMC7506551 DOI: 10.1038/s41421-020-00196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guidong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yan Wang
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jianchun Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
208
|
Markert J, Luger K. Nucleosomes Meet Their Remodeler Match. Trends Biochem Sci 2020; 46:41-50. [PMID: 32917506 DOI: 10.1016/j.tibs.2020.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Over 85% of all genomic DNA in eukaryotes is organized in arrays of nucleosomes, the basic organizational principle of chromatin. The tight interaction of DNA with histones represents a significant barrier for all DNA-dependent machineries. This is in part overcome by enzymes, termed ATP-dependent remodelers, that are recruited to nucleosomes at defined locations and modulate their structure. There are several different classes of remodelers, and all use specific nucleosome features to bind to and alter nucleosomes. This review highlights and summarizes areas of interactions with the nucleosome that allow remodeling to occur.
Collapse
Affiliation(s)
- Jonathan Markert
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
209
|
McBride MJ, Mashtalir N, Winter EB, Dao HT, Filipovski M, D'Avino AR, Seo HS, Umbreit NT, St Pierre R, Valencia AM, Qian K, Zullow HJ, Jaffe JD, Dhe-Paganon S, Muir TW, Kadoch C. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat Struct Mol Biol 2020; 27:836-845. [PMID: 32747783 PMCID: PMC7714695 DOI: 10.1038/s41594-020-0466-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Interactions between chromatin-associated proteins and the histone landscape play major roles in dictating genome topology and gene expression. Cancer-specific fusion oncoproteins, which display unique chromatin localization patterns, often lack classical DNA-binding domains, presenting challenges in identifying mechanisms governing their site-specific chromatin targeting and function. Here we identify a minimal region of the human SS18-SSX fusion oncoprotein (the hallmark driver of synovial sarcoma) that mediates a direct interaction between the mSWI/SNF complex and the nucleosome acidic patch. This binding results in altered mSWI/SNF composition and nucleosome engagement, driving cancer-specific mSWI/SNF complex targeting and gene expression. Furthermore, the C-terminal region of SSX confers preferential affinity to repressed, H2AK119Ub-marked nucleosomes, underlying the selective targeting to polycomb-marked genomic regions and synovial sarcoma-specific dependency on PRC1 function. Together, our results describe a functional interplay between a key nucleosome binding hub and a histone modification that underlies the disease-specific recruitment of a major chromatin remodeling complex.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nazar Mashtalir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan B Winter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hai T Dao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Martin Filipovski
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R D'Avino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil T Umbreit
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Roodolph St Pierre
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kristin Qian
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Hayley J Zullow
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Jacob D Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
210
|
Harrod A, Lane KA, Downs JA. The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks. DNA Repair (Amst) 2020; 93:102919. [PMID: 33087260 DOI: 10.1016/j.dnarep.2020.102919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells possess multiple closely related SWI/SNF chromatin remodelling complexes. These complexes have been implicated in the cellular response to DNA double strand breaks (DSBs). Evidence suggests that SWI/SNF complexes contribute to successful repair via both the homologous recombination and non-homologous end joining pathways. In addition, repressing transcription near DSBs is dependent on SWI/SNF activity. Understanding these roles is important because SWI/SNF complexes are frequently dysregulated in cancer, and DNA DSB repair defects have the potential to be therapeutically exploited. In this graphical review, we summarise what is known about SWI/SNF contribution to DNA DSB responses in mammalian cells and provide an overview of the SWI/SNF-encoding gene alteration spectrum in human cancers.
Collapse
Affiliation(s)
- Alison Harrod
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Karen A Lane
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
211
|
Abstract
ATP-dependent chromatin remodelling enzymes are molecular machines that act to reconfigure the structure of nucleosomes. Until recently, little was known about the structure of these enzymes. Recent progress has revealed that their interaction with chromatin is dominated by ATPase domains that contact DNA at favoured locations on the nucleosome surface. Contacts with histones are limited but play important roles in modulating activity. The ATPase domains do not act in isolation but are flanked by diverse accessory domains and subunits. New structures indicate how these subunits are arranged in multi-subunit complexes providing a framework from which to understand how a common motor is applied to distinct functions.
Collapse
Affiliation(s)
- Ramasubramian Sundaramoorthy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
212
|
Sanchez JC, Zhang L, Evoli S, Schnicker NJ, Nunez-Hernandez M, Yu L, Wereszczynski J, Pufall MA, Musselman CA. The molecular basis of selective DNA binding by the BRG1 AT-hook and bromodomain. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194566. [PMID: 32376391 PMCID: PMC7350285 DOI: 10.1016/j.bbagrm.2020.194566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
The ATP-dependent BAF chromatin remodeling complex plays a critical role in gene regulation by modulating chromatin architecture, and is frequently mutated in cancer. Indeed, subunits of the BAF complex are found to be mutated in >20% of human tumors. The mechanism by which BAF properly navigates chromatin is not fully understood, but is thought to involve a multivalent network of histone and DNA contacts. We previously identified a composite domain in the BRG1 ATPase subunit that is capable of associating with both histones and DNA in a multivalent manner. Mapping the DNA binding pocket revealed that it contains several cancer mutations. Here, we utilize SELEX-seq to investigate the DNA specificity of this composite domain and NMR spectroscopy and molecular modelling to determine the structural basis of DNA binding. Finally, we demonstrate that cancer mutations in this domain alter the mode of DNA association.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Liyang Zhang
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Integrated DNA Technologies IDT, Coralville, IA 52241, United States
| | - Stefania Evoli
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, United States
| | - Nicholas J Schnicker
- Protein & Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Maria Nunez-Hernandez
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Liping Yu
- Department of Biochemistry, Carver College of Medicine NMR Core Facility, University of Iowa, Iowa City, IA 52242, United States; The Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, United States
| | - Jeff Wereszczynski
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, United States.
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
213
|
Blessing C, Knobloch G, Ladurner AG. Restraining and unleashing chromatin remodelers - structural information guides chromatin plasticity. Curr Opin Struct Biol 2020; 65:130-138. [PMID: 32693313 DOI: 10.1016/j.sbi.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Chromatin remodeling enzymes are large molecular machines that guard the genome by reorganizing chromatin structure. They can reposition, space and evict nucleosomes and thus control gene expression, DNA replication and repair. Recent cryo-electron microscopy (cryo-EM) analyses have captured snapshots of various chromatin remodelers as they interact with nucleosomes. In this review, we summarize and discuss the advances made in our understanding of the regulation of chromatin remodelers, the mode of DNA translocation, as well as the influence of associated protein domains and remodeler subunits on the specific functions of chromatin remodeling complexes. The emerging structural information will help our understanding of disease mechanisms and guide our knowledge toward innovative therapeutic interventions.
Collapse
Affiliation(s)
- Charlotte Blessing
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Gunnar Knobloch
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
214
|
Wang C, Guo Z, Zhan X, Yang F, Wu M, Zhang X. Structure of the yeast Swi/Snf complex in a nucleosome free state. Nat Commun 2020; 11:3398. [PMID: 32636384 PMCID: PMC7340788 DOI: 10.1038/s41467-020-17229-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
SWI/SNF remodelers play a key role in regulating chromatin architecture and gene expression. Here, we report the cryo-EM structure of the Saccharomyces cerevisiae Swi/Snf complex in a nucleosome-free state. The structure consists of a stable triangular base module and a flexible Arp module. The conserved subunits Swi1 and Swi3 form the backbone of the complex and closely interact with other components. Snf6, which is specific for yeast Swi/Snf complex, stabilizes the binding of the ATPase-containing subunit Snf2 to the base module. Comparison of the yeast Swi/Snf and RSC complexes reveals conserved structural features that govern the assembly and function of these two subfamilies of chromatin remodelers. Our findings complement those from recent structures of the yeast and human chromatin remodelers and provide further insights into the assembly and function of the SWI/SNF remodelers.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| | - Zhouyan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Mingxuan Wu
- School of Science, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
215
|
Hainer SJ, Kaplan CD. Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler. Bioessays 2020; 42:e2000002. [PMID: 32490565 PMCID: PMC7329613 DOI: 10.1002/bies.202000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Indexed: 01/16/2023]
Abstract
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
216
|
Marcum RD, Reyes AA, He Y. Structural Insights into the Evolutionarily Conserved BAF Chromatin Remodeling Complex. BIOLOGY 2020; 9:biology9070146. [PMID: 32629987 PMCID: PMC7408276 DOI: 10.3390/biology9070146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The switch/sucrose nonfermentable (SWI/SNF) family of proteins acts to regulate chromatin accessibility and plays an essential role in multiple cellular processes. A high frequency of mutations has been found in SWI/SNF family subunits by exome sequencing in human cancer, and multiple studies support its role in tumor suppression. Recent structural studies of yeast SWI/SNF and its human homolog, BAF (BRG1/BRM associated factor), have provided a model for their complex assembly and their interaction with nucleosomal substrates, revealing the molecular function of individual subunits as well as the potential impact of cancer-associated mutations on the remodeling function. Here we review the structural conservation between yeast SWI/SNF and BAF and examine the role of highly mutated subunits within the BAF complex.
Collapse
Affiliation(s)
- Ryan D. Marcum
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
| | - Alexis A. Reyes
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, 676 N. St. Clair, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
217
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
218
|
Wimalasena VK, Wang T, Sigua LH, Durbin AD, Qi J. Using Chemical Epigenetics to Target Cancer. Mol Cell 2020; 78:1086-1095. [PMID: 32407673 PMCID: PMC8033568 DOI: 10.1016/j.molcel.2020.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.
Collapse
Affiliation(s)
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
219
|
Zhou H, Chen G, Dong C, Zhao X, Shen Z, Chen F, Liu B, Long J. Snf5 and Swi3 subcomplex formation is required for SWI/SNF complex function in yeast. Biochem Biophys Res Commun 2020; 526:934-940. [PMID: 32284172 DOI: 10.1016/j.bbrc.2020.03.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 01/18/2023]
Abstract
The SWI/SNF chromatin remodeling complex, which alters nucleosome positions by either evicting histones or sliding nucleosomes on DNA, is highly conserved from yeast to humans, and 20% of all human cancers have mutations in various subunits of the SWI/SNF complex. Here, we reported the crystal structure of the yeast Snf5-Swi3 subcomplex at a resolution of 2.65 Å. Our results showed that the Snf5-Swi3 subcomplex assembles into a heterotrimer with one Snf5 molecule bound to two distinct Swi3 molecules. In addition, we demonstrated that Snf5-Swi3 subcomplex formation is required for SWI/SNF function in yeast. These findings shed light on the important role of the Snf5-Swi3 subcomplex in the assembly and functional integrity of the SWI/SNF complex.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Guidong Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunming Dong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaozhou Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongtian Shen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|