201
|
Du D, van Veen HW, Luisi BF. Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol 2015; 23:311-9. [PMID: 25728476 DOI: 10.1016/j.tim.2015.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Microorganisms encode several classes of transmembrane pumps that can expel an enormous range of toxic substances, thereby improving their fitness in harsh environments and contributing to resistance against antimicrobial agents. In Gram-negative bacteria these pumps can take the form of tripartite assemblies that actively efflux drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the transport mechanisms of these intricate molecular machines.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
202
|
Uchiya KI, Takahashi H, Nakagawa T, Yagi T, Moriyama M, Inagaki T, Ichikawa K, Nikai T, Ogawa K. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One 2015; 10:e0117797. [PMID: 25671431 PMCID: PMC4324632 DOI: 10.1371/journal.pone.0117797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium's pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.
Collapse
Affiliation(s)
- Kei-ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| | - Hiroyasu Takahashi
- Department of Pharmacy, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Moriyama
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, National Hospital Organization, Toyohashi Medical Center, Toyohashi, Japan
| | - Takayuki Inagaki
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kazuya Ichikawa
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| |
Collapse
|
203
|
Mdluli K, Kaneko T, Upton A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 2015; 5:a021154. [PMID: 25635061 PMCID: PMC4448709 DOI: 10.1101/cshperspect.a021154] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal.
Collapse
Affiliation(s)
- Khisimuzi Mdluli
- Global Alliance for TB Drug Development, New York, New York 10005
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, New York 10005
| | - Anna Upton
- Global Alliance for TB Drug Development, New York, New York 10005
| |
Collapse
|
204
|
Shaheen A, Ismat F, Iqbal M, Haque A, De Zorzi R, Mirza O, Walz T, Rahman M. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi. J Infect Chemother 2015; 21:357-62. [PMID: 25724589 DOI: 10.1016/j.jiac.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 01/11/2023]
Abstract
Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fouzia Ismat
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Abdul Haque
- The University of Faisalabad, Faisalabad, Pakistan
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Moazur Rahman
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
205
|
Thai KM, Do TN, Nguyen TVP, Nguyen DKT, Tran TD. QSAR Studies on Bacterial Efflux Pump Inhibitors. ACTA ACUST UNITED AC 2015. [DOI: 10.4018/978-1-4666-8136-1.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.
Collapse
Affiliation(s)
| | - Trong-Nhat Do
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | | | | | |
Collapse
|
206
|
Demitto FDO, do Amaral RCR, Maltempe FG, Siqueira VLD, Scodro RBDL, Lopes MA, Caleffi-Ferracioli KR, Canezin PH, Cardoso RF. In vitro activity of rifampicin and verapamil combination in multidrug-resistant mycobacterium tuberculosis. PLoS One 2015; 10:e0116545. [PMID: 25689777 PMCID: PMC4331551 DOI: 10.1371/journal.pone.0116545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to evaluate the effect of the combination of rifampicin (RIF) and verapamil (VP) against the Mycobacterium tuberculosis H37Rv reference strain and six multidrug-resistant (MDR) M. tuberculosis clinical isolates by determining Time-Kill Curves and the ability to efflux drug by fluorometry. The RIF+VP combination showed synergism in one MDR clinical isolate. For the other five MDR clinical isolates, the drug combination showed no interaction. The MDR clinical isolate had lower ethidium bromide (EtBr) accumulation when exposed to the RIF+VP combination, compared with RIF and VP exposure alone. The other MDR clinical isolates showed no significant difference in EtBr accumulation. These results suggest greater efflux action in one of the MDR clinical isolates compared with the M. tuberculosis H37Rv reference strain. The other five MDR isolates may have additional mechanisms of drug resistance to RIF. The use of the RIF+VP combination made one MDR bacillus more susceptible to RIF probably by inhibiting efflux pumps, and this combination therapy, in some cases, may contribute to a reduction of resistance to RIF in M. tuberculosis.
Collapse
Affiliation(s)
- Fernanda de Oliveira Demitto
- Postgraduation in Health Sciences, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Renata Claro Ribeiro do Amaral
- Postgraduation in Bioscience and Pathophysiology, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Flaviane Granero Maltempe
- Postgraduation in Bioscience and Pathophysiology, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Vera Lúcia Dias Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Regiane Bertin de Lima Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Mariana Aparecida Lopes
- Postgraduation in Bioscience and Pathophysiology, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Katiany R. Caleffi-Ferracioli
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Pedro Henrique Canezin
- Postgraduation in Health Sciences, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
| | - Rosilene Fressatti Cardoso
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Avenida Colombo, 5790, Maringa, Parana, 87020–900, Brazil
- * E-mail:
| |
Collapse
|
207
|
Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Ufuk Over-Hasdemir M, Aki-Yalcin E, Yalcin I. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:853-871. [PMID: 26559566 DOI: 10.1080/1062936x.2015.1106581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The resistance-nodulation-division (RND) family efflux pumps are important in the antibiotic resistance of Gram-negative bacteria. However, although a number of bacterial RND efflux pump inhibitors have been developed, there has been no clinically available RND efflux pump inhibitor to date. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combinations with ciprofloxacin (CIP) against the AcrAB-TolC overexpressor Escherichia coli AG102 clinical strain. The results indicated that the BSN compounds did not show intrinsic antimicrobial activity when tested alone. However, when used in combinations with CIP, a reversal in the antibacterial activity of CIP with up to 10-fold better MIC values was observed. In order to describe the binding site features of these BSN compounds with AcrB, docking studies were performed using the CDocker method. The performed docking poses and the calculated binding energy scores revealed that the tested compounds BSN-006, BSN-023, and BSN-004 showed significant binding interactions with the phenylalanine-rich region in the distal binding site of the AcrB binding monomer. Moreover, the tested compounds BSN-006 and BSN-023 possessed stronger binding energies than CIP, verifying that BSN compounds are acting as the putative substrates of AcrB.
Collapse
Affiliation(s)
- S Yilmaz
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - G Altinkanat-Gelmez
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - K Bolelli
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - D Guneser-Merdan
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - M Ufuk Over-Hasdemir
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - E Aki-Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - I Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| |
Collapse
|
208
|
Harris KK, Fay A, Yan HG, Kunwar P, Socci ND, Pottabathini N, Juventhala RR, Djaballah H, Glickman MS. Novel imidazoline antimicrobial scaffold that inhibits DNA replication with activity against mycobacteria and drug resistant Gram-positive cocci. ACS Chem Biol 2014; 9:2572-83. [PMID: 25222597 PMCID: PMC4245167 DOI: 10.1021/cb500573z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Bacterial
antimicrobial resistance is an escalating public health
threat, yet the current antimicrobial pipeline remains alarmingly
depleted, making the development of new antimicrobials an urgent need.
Here, we identify a novel, potent, imidazoline antimicrobial compound,
SKI-356313, with bactericidal activity against Mycobacterium
tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine
models of Streptococcus pneumoniae and MRSA infection
and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole
genome sequencing, and a novel target ID approach using real time
imaging of core macromolecular biosynthesis, we show that SKI-356313
inhibits DNA replication and displaces the replisome from the bacterial
nucleoid. These results identify a new antimicrobial scaffold with
a novel mechanism of action and potential therapeutic utility against
nonreplicating M. tuberculosis and antibiotic resistant
Gram-positive cocci.
Collapse
Affiliation(s)
- Kendra K. Harris
- Program
in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York 10021, United States
- Weill Cornell,
Rockefeller, Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, United States
| | | | | | - Pratima Kunwar
- Viral
Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | | | - Narender Pottabathini
- Discovery
Services Division, GVK Biosciences Pvt. Ltd, Plot 28A, IDA Nacharam, Hyderabad 500076, India
| | - Ramakrishna R. Juventhala
- Discovery
Services Division, GVK Biosciences Pvt. Ltd, Plot 28A, IDA Nacharam, Hyderabad 500076, India
| | | | - Michael S. Glickman
- Program
in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York 10021, United States
| |
Collapse
|
209
|
Suriyanarayanan B, Sarojini Santhosh R. Docking analysis insights quercetin can be a non-antibiotic adjuvant by inhibiting Mmr drug efflux pump in Mycobacterium sp. and its homologue EmrE in Escherichia coli. J Biomol Struct Dyn 2014; 33:1819-34. [PMID: 25297690 DOI: 10.1080/07391102.2014.974211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug efflux pumps (EP) like Mmr in Mycobacterium transported drugs out of cell, a main reason for drug resistance developing in Mycobacterium tuberculosis. In this in silico study, mainly analysed EP inhibitory potential of a plant-derived flavonoid, quercetin, through docking analysis. Mmr present in Mycobacterium smegmatis and M. tuberculosis, and its homologue EmrE of Escherichia coli was used. Initially, homology modelling of EP monomers and dimers constructed from M. smegmatis, M. tuberculosis and E. coli; the stabilities of models were analysed from Ramachandran plots prepared in PROCHECK. Docking analysis of quercetin with EP protein showed that in all three organisms, the residues for function and stability are important and quercetin had best interactions comparing to compounds such as, verapamil, reserpine, chlorpromazine, Carbonyl Cyanide m- Chloro Phenylhydrazone. Molecular dynamics and simulation studies showed that during the entire course of simulation quercetin-Mmr complex were stable. It insights quercetin can act as a non-antibiotic adjuvant for treatment of tuberculosis by bring down the efflux of drug from bacteria.
Collapse
Affiliation(s)
- Balasubramanian Suriyanarayanan
- a Centre for Research on Infectious Diseases , School of Chemical and Biotechnology, SASTRA University , Thanjavur 613401 , India
| | | |
Collapse
|
210
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
211
|
Jia H, Fan Y, Feng X, Li C. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2014; 2:44. [PMID: 25368869 PMCID: PMC4202804 DOI: 10.3389/fbioe.2014.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022] Open
Abstract
Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution, and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.
Collapse
Affiliation(s)
- Haiyang Jia
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yanshuang Fan
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Xudong Feng
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Chun Li
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|
212
|
Gholipour A, Soleimani N, Shokri D, Mobasherizadeh S, Kardi M, Baradaran A. Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase Produced by Escherichia coli, and Klebsiella pneumoniae Isolates in an Educational Hospital. Jundishapur J Microbiol 2014; 7:e11758. [PMID: 25632322 PMCID: PMC4295312 DOI: 10.5812/jjm.11758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/04/2013] [Accepted: 09/08/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Extended-spectrum beta-lactamases (ESBLs) are a group of enzymes that hydrolyze antibiotics, including those containing new cephalosporins, and they are found in a significant percentage of Escherichia coli and Klebsiellapneumoniae strains. With the widespread use of antibiotics, difficulties with infection therapy caused by drug resistant organisms, especially those that have acquired resistance to beta-lactams, such as broad-spectrum cephalosporins, have amplified the above-mentioned organisms. Objectives: This study was conducted to characterize ESBLs among E. coli and K. pneumonia isolates by molecular and phenotypic methods. Materials and Methods: Different strains of E. coli and K. pneumonia were collected from patients with urinary tract infections. The ESBL phenotype was determined by a double disk diffusion test (DDDT). In addition, polymerase chain reaction (PCR) analysis specific for β-lactamase genes of the TEM and SHV family was carried out. The PCR products were run on agarose and examined for DNA bands. Results: A total of 245 E. coli and 55 K. pneumonia strains were isolated from different samples. In total, 128 of the 300 isolates were confirmed as potential ESBLs producers as follows: 107 (43.67%) E. coli and 21 (38.18%) K. pneumonia. ESBLs genes were found in 24 isolates (18.75%): 21 E. coli and 3 K. pneumonia isolates. The TEM gene was present in 13 (12.14%) E. coli strains, but it was not detected in K. pneumonia. In addition, the SHV gene was present in 8 (7.47%) E. coli and 3 (14.28%) K. pneumonia isolates. Five (4.67%) of the E. coli isolates harbored both TEM and SHV genes. All isolates (100%) were susceptible to imipenem. The lowest rates of resistance to other antibiotics were observed for; piperacillin-tazobactam (6.25%), amikacin (12.5%) and gentamicin (14.84%). The rates of resistance to other antibiotics were as follow: nitrofurantoin (16.4%), nalidixic acid (23.43), co-trimoxazole (25%), cefepime (32%), ciprofloxacin (55.46%), ampicillin (69.53%), ceftazidime (100%), and cefotaxime (100%). Conclusions: The results of this study indicate the widespread prevalence of ESBLs and multiple antibiotic resistance in E. coli and K. pneumoniae. Therefore, beta-lactam antibiotics and beta-lactamase inhibitors or carbapenems should be prescribed based on an antibacterial susceptibility test.
Collapse
Affiliation(s)
- Abolfazl Gholipour
- Department of Microbiology and Immunology, Cellular and Molecular Research center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Neda Soleimani
- Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Dariush Shokri
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Sina Mobasherizadeh
- Department of Microbiology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Mohammad Kardi
- Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Azar Baradaran
- Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Corresponding author: Azar Baradaran, Department of Pathology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, IR Iran. Tel: +98-3116691565, Fax: +98-3116684510, E-mail:
| |
Collapse
|
213
|
The in vitro interaction of CmeA with CmeC. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
214
|
Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance. Appl Environ Microbiol 2014; 80:6091-103. [PMID: 25063661 DOI: 10.1128/aem.01619-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
Collapse
|
215
|
Hosen MJ, Zubaer A, Thapa S, Khadka B, De Paepe A, Vanakker OM. Molecular docking simulations provide insights in the substrate binding sites and possible substrates of the ABCC6 transporter. PLoS One 2014; 9:e102779. [PMID: 25062064 PMCID: PMC4111409 DOI: 10.1371/journal.pone.0102779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/24/2014] [Indexed: 02/02/2023] Open
Abstract
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abdullah Zubaer
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Simrika Thapa
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Bijendra Khadka
- Swapnojaatra Bioresearch Laboratory, DataSoft Systems, Dhaka, Bangladesh
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
216
|
Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Muñoz MDC, Gálvez A, Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 2014; 44:249-57. [PMID: 25084670 DOI: 10.1016/j.fm.2014.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/15/2014] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
Abstract
Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics.
Collapse
Affiliation(s)
- Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Antonio Sánchez Valenzuela
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - María del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| |
Collapse
|
217
|
Abstract
Current tuberculosis (TB) therapies take too long and the regimens are complex and subject to adverse effects and drug-drug interactions with concomitant medications. The emergence of drug-resistant TB strains exacerbates the situation. Drug discovery for TB has resurged in recent years, generating compounds (hits) with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review proposes strategies for generating improved hits and leads that could help achieve this goal.
Collapse
|
218
|
Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 2014; 453:254-67. [PMID: 24878531 DOI: 10.1016/j.bbrc.2014.05.090] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention.
Collapse
Affiliation(s)
- Jingjing Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Ziqing Deng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|
219
|
Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D. Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus. FEMS Microbiol Lett 2014; 355:61-70. [PMID: 24766488 DOI: 10.1111/1574-6968.12449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
Efflux pumps are membrane proteins involved in the active extrusion of a wide range of structurally dissimilar substrates from cells. A multidrug efflux pump named TetA belonging to the major facilitator superfamily (MFS) of transporters was identified in the Streptococcus thermophilus DSM 20617(T) genome. The tetA-like gene was found in the genomes of a number of S. thermophilus strains sequenced to date and in Streptococcus macedonicus ACA-DC 198, suggesting a possible horizontal gene transfer event between these two Streptococcus species, which are both adapted to the milk environment. Flow cytometry (single-cell) analysis revealed bistable TetA activity in the S. thermophilus population, and tetA-like gene over-expression resulted in a reduced susceptibility to ethidium bromide, tetracycline, and other toxic compounds even when the efflux pump was over-expressed in a strain naturally lacking tetA-like gene.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Filipic B, Nikolic K, Filipic S, Jovcic B, Agbaba D, Antic Stankovic J, Kojic M, Golic N. Identifying the CmbT substrates specificity by using a quantitative structure–activity relationship (QSAR) study. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
221
|
Regulation of expression of abcA and its response to environmental conditions. J Bacteriol 2014; 196:1532-9. [PMID: 24509312 DOI: 10.1128/jb.01406-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA.
Collapse
|
222
|
Mardanova AM, Bogomol’naya LM, Romanova YD, Sharipova MR. Efflux systems in Serratia marcescens. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
223
|
SmeOP-TolCSm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2014; 58:2405-8. [PMID: 24395237 DOI: 10.1128/aac.01974-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A five-gene cluster, tolCSm-pcm-smeRo-smeO-smeP, of Stenotrophomonas maltophilia was characterized. The presence of smeOP and smeRo-pcm-tolCSm operons was verified by reverse transcription (RT)-PCR. Both operons were negatively regulated by the TetR-type transcriptional regulator SmeRo, as demonstrated by quantitative RT-PCR and a promoter-fusion assay. SmeO and SmeP were associated with TolCSm (the TolC protein of S. maltophilia) for the assembly of a resistance-nodulation-cell-division (RND)-type pump. The compounds extruded by SmeOP-TolCSm mainly included nalidixic acid, doxycycline, amikacin, gentamicin, erythromycin, leucomycin, carbonyl cyanide 3-chlorophenylhydrazone, crystal violet, sodium dodecyl sulfate, and tetrachlorosalicylanilide.
Collapse
|
224
|
Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 808:1-13. [PMID: 24595606 DOI: 10.1007/978-81-322-1774-9_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine.
Collapse
|
225
|
Fernández-Fuentes MA, Abriouel H, Ortega Morente E, Pérez Pulido R, Gálvez A. Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Int J Food Microbiol 2013; 172:49-56. [PMID: 24361832 DOI: 10.1016/j.ijfoodmicro.2013.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 11/29/2022]
Abstract
Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac(6_)1e-aph(2_)-Ia in Staphylococcus (20%), Enterococcus (8%) and Bacillus (one isolate). Chloramphenicol resistance cat gene was detected in Enterococcus (8%) and Staphylococcus (20%), and blaZ only in Staphylococcus (20%). All other antibiotic or biocide resistance genes investigated were not detected in any isolate. Isolates carrying multiple biocide and antibiotic determinants were frequent among Bacillus (36.36%) and Staphylococcus (50%), but not Enterococcus. These results suggest that biocide and antibiotic determinants may be co-selected.
Collapse
Affiliation(s)
- Miguel Angel Fernández-Fuentes
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Elena Ortega Morente
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| |
Collapse
|
226
|
Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U. Identification of novel leads applyingin silicostudies for Mycobacterium multidrug resistant (MMR) protein. J Biomol Struct Dyn 2013; 32:1889-906. [DOI: 10.1080/07391102.2013.842185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
227
|
|
228
|
Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35). J Bacteriol 2013; 195:5343-51. [PMID: 24078610 DOI: 10.1128/jb.00818-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the proline-rich antimicrobial peptide Bac7(1-35) as a substrate. Circular dichroism and affinity chromatography studies were used to investigate the ability of SbmA to bind the peptide, and a whole-cell transport assay with fluorescently labeled peptide allowed the determination of transport kinetic parameters with a calculated Km value of 6.95 ± 0.89 μM peptide and a Vmax of 53.91 ± 3.17 nmol/min/mg SbmA. Use of a bacterial two-hybrid system coupled to SEC-MALLS (size exclusion chromatography coupled with multiangle laser light scattering) analyses established that SbmA is a homodimer in the membrane, and treatment of the cells with arsenate or ionophores indicated that the peptide transport mediated by SbmA is driven by the electrochemical gradient. Overall, these results shed light on the SbmA-mediated internalization of peptide substrates and suggest that the transport of an unknown substrate(s) represents the function of this protein.
Collapse
|
229
|
Schindler BD, Jacinto P, Kaatz GW. Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. Future Microbiol 2013; 8:491-507. [PMID: 23534361 DOI: 10.2217/fmb.13.16] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The emergence of multidrug-resistant Staphylococcus aureus coupled with a declining output of new antibiotic treatment options from the pharmaceutical industry is a growing worldwide healthcare problem. Multidrug efflux pumps are known to play a role in antibiotic and biocide resistance in S. aureus. These membrane transporters are capable of extruding drugs and other structurally unrelated compounds, hence decreasing intracellular concentration and increasing survival. Coadministration of efflux pump inhibitors (EPIs) with antibiotics that are pump substrates could increase intracellular drug levels, thus bringing renewed efficacy to existing antistaphylococcal agents. Numerous EPIs have been identified or synthesized over the past two decades; these include existing pharmacologic drugs, naturally occurring compounds, and synthetic derivatives thereof. This review describes the current progress in EPI development for use against S. aureus.
Collapse
Affiliation(s)
- Bryan D Schindler
- John D Dingell Veterans Affairs Medical Center, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
230
|
Matsuo T, Nakamura K, Kodama T, Mikami T, Hiyoshi H, Tsuchiya T, Ogawa W, Kuroda T. Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Microbiologyopen 2013; 2:725-42. [PMID: 23894076 PMCID: PMC3831635 DOI: 10.1002/mbo3.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/13/2023] Open
Abstract
Resistance nodulation cell division (RND)-type efflux transporters play the main role in intrinsic resistance to various antimicrobial agents in many gram-negative bacteria. Here, we estimated 12 RND-type efflux transporter genes in Vibrio parahaemolyticus. Because VmeAB has already been characterized, we cloned the other 11 RND-type efflux transporter genes and characterized them in Escherichia coli KAM33 cells, a drug hypersusceptible strain. KAM33 expressing either VmeCD, VmeEF, or VmeYZ showed increased minimum inhibitory concentrations (MICs) for several antimicrobial agents. Additional four RND-type transporters were functional as efflux pumps only when co-expressed with VpoC, an outer membrane component in V. parahaemolyticus. Furthermore, VmeCD, VmeEF, and VmeYZ co-expressed with VpoC exhibited a broader substrate specificity and conferred higher resistance than that with TolC of E. coli. Deletion mutants of these transporter genes were constructed in V. parahaemolyticus. TM32 (ΔvmeAB and ΔvmeCD) had significantly decreased MICs for many antimicrobial agents and the number of viable cells after exposure to deoxycholate were markedly reduced. Strains in which 12 operons were all disrupted had very low MICs and much lower fluid accumulation in rabbit ileal loops. These results indicate that resistance nodulation cell division-type efflux transporters contribute not only to intrinsic resistance but also to exerting the virulence of V. parahaemolyticus.
Collapse
Affiliation(s)
- Taira Matsuo
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Koji Nakamura
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Toshio Kodama
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka UniversityOsaka, Japan
| | - Taro Mikami
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka UniversityOsaka, Japan
| | - Tomofusa Tsuchiya
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Wakano Ogawa
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| |
Collapse
|
231
|
KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449-62. [PMID: 23836167 DOI: 10.1128/aac.02284-12] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae has been frequently associated with nosocomial infections. Efflux systems are ubiquitous transporters that also function in drug resistance. Genome analysis of K. pneumoniae strain NTUH-K2044 revealed the presence of ∼15 putative drug efflux systems. We discuss here for the first time the characterization of a putative SMR-type efflux pump, an ebrAB homolog (denoted here as kpnEF) with respect to Klebsiella physiology and the multidrug-resistant phenotype. Analysis of hypermucoviscosity revealed direct involvement of kpnEF in capsule synthesis. The ΔkpnEF mutant displayed higher sensitivity to hyperosmotic (∼2.8-fold) and high bile (∼4.0-fold) concentrations. Mutation in kpnEF resulted in increased susceptibility to cefepime, ceftriaxone, colistin, erythromycin, rifampin, tetracycline, and streptomycin; mutated strains changed from being resistant to being susceptible, and the resistance was restored upon complementation. The ΔkpnEF mutant displayed enhanced sensitivity toward structurally related compounds such as sodium dodecyl sulfate, deoxycholate, and dyes, including clinically relevant disinfectants such as benzalkonium chloride, chlorhexidine, and triclosan. The prevalence of kpnEF in clinical strains broadens the diversity of antibiotic resistance in K. pneumoniae. Experimental evidence of CpxR binding to the efflux pump promoter and quantification of its expression in a cpxAR mutant background demonstrated kpnEF to be a member of the Cpx regulon. This study helps to elucidate the unprecedented biological functions of the SMR-type efflux pump in Klebsiella spp.
Collapse
|
232
|
Kang S, Lee S, Choi S. Distribution of Multidrug Efflux Pump Genes in Enterococci spp. Isolated from Bovine Milk Samples and Their Antibiotic Resistance Patterns. ACTA ACUST UNITED AC 2013. [DOI: 10.7845/kjm.2013.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
233
|
Marks LR, Clementi EA, Hakansson AP. Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET. PLoS One 2013; 8:e63158. [PMID: 23650551 PMCID: PMC3641093 DOI: 10.1371/journal.pone.0063158] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/29/2013] [Indexed: 11/24/2022] Open
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus.
Collapse
Affiliation(s)
- Laura R. Marks
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Emily A. Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Anders P. Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences. University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
234
|
Seo JS, Keum YS, Li QX. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates. Biodegradation 2013; 24:795-811. [PMID: 23463356 DOI: 10.1007/s10532-013-9629-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.
Collapse
Affiliation(s)
- Jong-Su Seo
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | | | | |
Collapse
|
235
|
Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Intelligent, self-powered, drug delivery systems. NANOSCALE 2013; 5:1273-83. [PMID: 23166050 DOI: 10.1039/c2nr32600k] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-propelled nano/micromotors and pumps are considered to be next generation drug delivery systems since the carriers can either propel themselves ("motor"-based drug delivery) or be delivered ("pump"-based drug delivery) to the target in response to specific biomarkers. Recently, there has been significant advancement towards developing nano/microtransporters into proof-of-concept tools for biomedical applications. This review encompasses the progress made to date on the design of synthetic nano/micromotors and pumps with respect to transportation and delivery of cargo at specific locations. Looking ahead, it is possible to imagine a day when intelligent machines navigate through the human body and perform challenging tasks.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
236
|
Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus. Antibiotics (Basel) 2013; 2:28-45. [PMID: 27029290 PMCID: PMC4790296 DOI: 10.3390/antibiotics2010028] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/17/2022] Open
Abstract
The paper focuses on recent achievements in the search for new chemical compounds able to inhibit multidrug resistance (MDR) mechanisms in Gram-positive pathogens. An analysis of the results of the search for new efflux pump inhibitors (EPIs) for Gram-positive bacteria, which have been performed over the last decade, indicates that almost all efforts are focused on the NorA (MFS) efflux pump in S. aureus. Considering the chemical structures of the NorA EPIs that have been identified, it can be observed that the most active agents belong to the families of compounds possessing conjugated double bonds, e.g., chalcones, piperine-like compounds, N-cinnamoylphenalkylamides or citral amide derivatives. Indole-, dihydronaphthyl-, 2-chloro-5-bromo-phenyl- or piperidine moieties seem to be profitable for the EPI properties, as well. These results, together with an increasing knowledge about a variety of efflux pumps that are involved in MDR of Gram-positive pathogens underline that further search for new EPIs should pay more attention to develop MDR efflux protein targets, including SMR, MATE, ABC or other members of the MFS family.
Collapse
|
237
|
Alam M, Zubair S, Farazuddin M, Ahmad E, Khan A, Zia Q, Malik A, Mohammad O. Development, characterization and efficacy of niosomal diallyl disulfide in treatment of disseminated murine candidiasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:247-56. [DOI: 10.1016/j.nano.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
238
|
Biocide tolerance in bacteria. Int J Food Microbiol 2013; 162:13-25. [PMID: 23340387 DOI: 10.1016/j.ijfoodmicro.2012.12.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/24/2012] [Accepted: 12/15/2012] [Indexed: 02/07/2023]
Abstract
Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.
Collapse
|
239
|
Koch DC, Raunest M, Harder T, Kandt C. Unilateral access regulation: ground state dynamics of the Pseudomonas aeruginosa outer membrane efflux duct OprM. Biochemistry 2012; 52:178-87. [PMID: 23234291 DOI: 10.1021/bi3014714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acting as an efflux duct in the MexA-MexB-OprM multidrug efflux pump, OprM plays a major role in the antibiotic resistance capability of Pseudomonas aeruginosa, trafficking substrates through the outer cell membrane. Whereas the available crystal structures showed restricted OprM access on both ends, the underlying gating mechanism is not yet fully understood. To gain insight into the functional mechanism of OprM access regulation, we conducted a series of five independent, unbiased molecular dynamics simulations, computing 200 ns dynamics samples of the wild-type protein in a phospholipid membrane/150 mM NaCl water environment. On the extracellular side, OprM opens and closes freely under the simulated conditions, suggesting the absence of a gating mechanism on this side of the isolated protein. On the periplasmic side, we observe an opening of the tip regions at Val408 and to a lesser degree Asp416 located 1.5 nm further into the channel, leading to OprM end conformations being up to 3 and 1.4 times, respectively, more open than the asymmetric crystal structure. If our simulations are correct, our findings imply that periplasmic gating involves only the Asp416 region and that in vivo additional components, absent in our simulation, might be required for periplasmic gating if the observed opening trend near Asp416 is not negligible. In addition to that ,we identified in each monomer a previously unreported sodium binding site in the channel interior coordinated by Asp171 and Asp230 whose functional role remains to be investigated.
Collapse
Affiliation(s)
- Dennis C Koch
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences (LIMES) Institute, University of Bonn, Dahlmannstrasse 2, 53113 Bonn, Germany
| | | | | | | |
Collapse
|
240
|
Hu RM, Liao ST, Huang CC, Huang YW, Yang TC. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One 2012; 7:e51053. [PMID: 23236431 PMCID: PMC3517613 DOI: 10.1371/journal.pone.0051053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fusaric acid (5-butylpicolinic acid), a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. METHODOLOGY A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. RESULTS The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. SIGNIFICANCE A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump.
Collapse
Affiliation(s)
- Rouh-Mei Hu
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Sih-Ting Liao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiang-Ching Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yi-Wei Huang
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
241
|
Guimarães G, França CAD, Krug FDS, Peixoto RDM, Krewer CDC, Lazzari AM, Costa MMD. Caracterização fenotípica, produção de biofilme e resistência aos antimicrobianos em isolados de Staphylococcus spp. obtidos de casos de mastite em bovinos e bubalinos. PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012001200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
No presente estudo, objetivou-se avaliar a sussuscetibilidade aos principais antimicrobianos e realizar uma caracterização fenotípica e genotípica de isolados de Staphylococcus spp. obtidos de casos de mastite em vacas (n=30) e búfalas (n=30). A suscetibilidade foi avaliada pela técnica de disco-difusão e a presença de bomba de efluxo foi avaliada utilizando-se Ágar Mueller Hinton (MH) adicionado de brometo de etídeo e pesquisa do gene msrA. Pela técnica da Reação em Cadeia da Polimerase (PCR) ainda foram identificados os genes mecA, blaZ e ermA, B e C, que posteriormente foram associados com os métodos fenotípicos para a identificação de resistência a antimicrobianos. A caracterização da formação de biofilme foi realizada utilizandose os métodos Ágar Vermelho Congo (CRA), Aderência em Placa e a identificação do gene icaD. Pelo método de discodifusão, os Staphylococcus spp. apresentaram alta sensibilidade aos antimicrobianos. O índice de resistência múltipla aos antimicrobianos (IRMA) apresentou variação de 0 a 0,5. Na pesquisa de bomba de efluxo, 26,7% das amostras foram positivas ao método fenotípico e 6,7% ao método genotípico (gene msrA). Os genes erm, mecA e blaZ foram detectados, respectivamente, em 1,7%, 6,7% e 11,7% das amostras de Staphylococcus spp. Na produção de biofilme, 23,3% dos isolados foram considerados positivos no CRA, 50,0% na Aderência em Placas e 8,3% na PCR pela detecção do gene icaD. Observou-se que os isolados obtidos de amostras bovinas apresentaram uma menor sensibilidade aos antimicrobianos no teste de disco-difusão quando comparados com as amostras bubalinas. A caracterização destes isolados é importante para orientar uma antibioticoterapia bem planejada. A presença de biofilme nos isolados pode estar associada a outros fatores que não a resistência às drogas antimicrobianas.
Collapse
|
242
|
Bacci C, Boni E, Alpigiani I, Lanzoni E, Bonardi S, Brindani F. Phenotypic and genotypic features of antibiotic resistance in Salmonella enterica isolated from chicken meat and chicken and quail carcasses. Int J Food Microbiol 2012; 160:16-23. [PMID: 23141641 DOI: 10.1016/j.ijfoodmicro.2012.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022]
Abstract
One hundred and twenty-three Salmonella enterica isolated in Italy from chicken meat and carcasses and from quail carcasses were analyzed to determine their levels of antibiotic resistance using antibiograms (phenotypic method) and PCR amplification of antimicrobial resistance-associated genes (genotypic method). The isolates were screened for the ability to grow in the presence of antibiotics (ampicillin, gentamicin, sulfamethoxazole and tetracycline) and for the presence of the following genes: pse-1, ant (3")-Ia, qacEΔI and sul-1, tetA, tetB and tetG. The most frequently isolated serotypes in the sample set were S. Virchow (24.4%), S. Enteritidis (17.1%) and S. Typhimurium (15.4%). Of the isolates from chicken carcasses, 86.1% were resistant to tetracycline, while 30.5% of the identified isolates exhibited phenotypic multi-drug resistance to ampicillin, sulfamethoxazole and tetracycline; the multi-resistance pattern ant (3")-Ia/sul-1/tetA+tetB was detected in 11.1% of the isolates. Of the isolates from quail carcasses, 89.2% exhibited resistance to sulfamethoxazole, and 24.3% displayed phenotypic multi-drug resistance to ampicillin, gentamicin, sulfamethoxazole and tetracycline; a complete genotypic profile (pse-1, ant (3")-Ia, qacEΔI and sul-1, tetA, tetB and tetG) was obtained for 27.0% of the isolates. Among these isolates, S. Typhimurium exhibited the genotypes pse-1/ant(3")-Ia/sul-1/tetG and pse-1/ant(3")-Ia/sul-1/tetA+tetG. Of the isolates from chicken meat, 60.0% were resistant to tetracycline, and 36.0% exhibited a multi-drug resistance to ampicillin, sulfamethoxazole and tetracycline; only one isolate, S. Enteritidis, contained the complete genotypic pattern pse-1/ant(3")-Ia/sul-1/tetG. The majority of the isolates displaying multi-drug resistance to the three antibiotics were isolated from chicken meat (40.0%).
Collapse
Affiliation(s)
- Cristina Bacci
- Animal Health Department, Section of Food Hygiene, Faculty of Veterinary Medicine, University of Parma, Via del Taglio 10, 43126 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
243
|
The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. Res Microbiol 2012; 164:46-54. [PMID: 22985829 DOI: 10.1016/j.resmic.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 11/20/2022]
Abstract
Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.
Collapse
|
244
|
Characterization of plasmids in a human clinical strain of Lactococcus garvieae. PLoS One 2012; 7:e40119. [PMID: 22768237 PMCID: PMC3387028 DOI: 10.1371/journal.pone.0040119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/01/2012] [Indexed: 02/04/2023] Open
Abstract
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.
Collapse
|
245
|
Hayashi-Nishino M, Fukushima A, Nishino K. Impact of hfq on the intrinsic drug resistance of salmonella enterica serovar typhimurium. Front Microbiol 2012; 3:205. [PMID: 22675323 PMCID: PMC3366549 DOI: 10.3389/fmicb.2012.00205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/18/2012] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica is an important enteric pathogen, and its various serovars cause both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella, leading to increased morbidity and mortality, has further complicated its management. Hfq is an RNA chaperon that mediates the binding of small RNAs to mRNA and assists in post-transcriptional gene regulation in bacteria. Although Hfq is related to important phenotypes including virulence in Salmonella, its role in the drug resistance of this organism is unknown. The aim of this study was to investigate the role of Hfq in intrinsic drug resistance of S. enterica serovar Typhimurium. hfq Mutant was susceptible to acriflavine. Although there is a relationship between the production of the AcrB multidrug efflux pump and Hfq in Escherichia coli, the deletion of the drug efflux acrB did not impair the effect of hfq deletion on Salmonella susceptibility. In contrast, the deletion of another drug efflux gene, smvA, impaired the effect of hfq deletion on acriflavine susceptibility. These results indicate that Hfq regulates the intrinsic drug resistance, and it may influence drug susceptibility by regulating SmvA in Salmonella.
Collapse
Affiliation(s)
- Mitsuko Hayashi-Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka, Japan
| | | | | |
Collapse
|
246
|
Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. A Review of Hop Resistance in Beer Spoilage Lactic Acid Bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2006.tb00247.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
247
|
Wenzel M, Lang K, Günther T, Bhandari A, Weiss A, Lulchev P, Szentgyörgyi E, Kranzusch B, Göttfert M. Characterization of the flavonoid-responsive regulator FrrA and its binding sites. J Bacteriol 2012; 194:2363-70. [PMID: 22389485 PMCID: PMC3347051 DOI: 10.1128/jb.06567-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/23/2012] [Indexed: 11/20/2022] Open
Abstract
Previous microarray analyses revealed that in Bradyrhizobium japonicum, about 100 genes are induced by genistein, an isoflavonoid secreted by soybean. This includes the three genes freC, freA, and freB (systematic designations bll4319, bll4320, and bll4321), which are likely to form a genistein-, daidzein-, and coumestrol-inducible operon and to encode a multidrug efflux system. Upstream of freCAB and in the opposite orientation, FrrA (systematic designation Blr4322), which has similarity to TetR-type regulators, is encoded. A deletion of frrA leads to increased expression of freB in the absence of an inducer. We identified the correct translational start codon of frrA and showed that the gene is inducible by genistein and daidzein. The protein, which was heterologously expressed and purified from Escherichia coli, binds to two palindrome-like DNA elements (operator A and operator B), which are located in the intergenic region between freC and frrA. The replacement of several nucleotides or the insertion of additional spacer nucleotides prevented binding. Binding of FrrA was also affected by the addition of genistein. By mapping the transcription start sites, we found that operator A covers the transcriptional start site of freC and operator B is probably located between the -35 regions of the two divergently oriented genes. Operator A seems to be conserved in a few similar gene constellations in other proteobacteria. Our data indicate that in B. japonicum, besides NodD1 (the LysR family) and NodVW (a two-component response regulator), a third regulator type (a TetR family member) which responds to the plant signal molecules genistein and daidzein exists.
Collapse
Affiliation(s)
- Mandy Wenzel
- Institute of Genetics, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Rodríguez-Beltrán J, Rodríguez-Rojas A, Guelfo JR, Couce A, Blázquez J. The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One 2012; 7:e34791. [PMID: 22523558 PMCID: PMC3327717 DOI: 10.1371/journal.pone.0034791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 03/09/2012] [Indexed: 12/21/2022] Open
Abstract
DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS), such as superoxide radical (O2−), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE) family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H2O2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF.
Collapse
Affiliation(s)
| | | | | | | | - Jesús Blázquez
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
249
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|
250
|
Xu Y, Moeller A, Jun SY, Le M, Yoon BY, Kim JS, Lee K, Ha NC. Assembly and channel opening of outer membrane protein in tripartite drug efflux pumps of Gram-negative bacteria. J Biol Chem 2012; 287:11740-50. [PMID: 22308040 PMCID: PMC3320922 DOI: 10.1074/jbc.m111.329375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Yongbin Xu
- From the Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea
| | - Arne Moeller
- the National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California 92037, and
| | - So-Young Jun
- From the Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea
| | - Minho Le
- the School of Biological Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Bo-Young Yoon
- From the Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea
| | - Jin-Sik Kim
- From the Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea
| | - Kangseok Lee
- the School of Biological Sciences, Chung-Ang University, Seoul 156-756, Korea, To whom correspondence may be addressed. Tel.: 82-2-822-5241; Fax: 82-2-825-5026; E-mail:
| | - Nam-Chul Ha
- From the Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea, , To whom correspondence may be addressed. Tel.: 82-51-510-2528; Fax: 82-51-513-6754; E-mail:
| |
Collapse
|