201
|
Evolutionary diversification of protein-protein interactions by interface add-ons. Proc Natl Acad Sci U S A 2017; 114:E8333-E8342. [PMID: 28923934 DOI: 10.1073/pnas.1707335114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.
Collapse
|
202
|
The role of the two-component systems Cpx and Arc in protein alterations upon gentamicin treatment in Escherichia coli. BMC Microbiol 2017; 17:197. [PMID: 28923010 PMCID: PMC5604497 DOI: 10.1186/s12866-017-1100-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Background The aminoglycoside antibiotic gentamicin was supposed to induce a crosstalk between the Cpx- and the Arc-two-component systems (TCS). Here, we investigated the physical interaction of the respective TCS components and compared the results with their respective gene expression and protein abundance. The findings were interpreted in relation to the global proteome profile upon gentamicin treatment. Results We observed specific interaction between CpxA and ArcA upon treatment with the aminoglycoside gentamicin using Membrane-Strep-tagged protein interaction experiments (mSPINE). This interaction was neither accompanied by detectable phosphorylation of ArcA nor by activation of the Arc system via CpxA. Furthermore, no changes in absolute amounts of the Cpx- and Arc-TCS could be determined with the sensitive single reaction monitoring (SRM) in presence of gentamicin. Nevertheless, upon applying shotgun mass spectrometry analysis after treatment with gentamicin, we observed a reduction of ArcA ~ P-dependent protein synthesis and a significant Cpx-dependent alteration in the global proteome profile of E. coli. Conclusions This study points to the importance of the Cpx-TCS within the complex regulatory network in the E. coli response to aminoglycoside-caused stress. Electronic supplementary material The online version of this article (10.1186/s12866-017-1100-9) contains supplementary material, which is available to authorized users.
Collapse
|
203
|
Information Theoretical Study of Cross-Talk Mediated Signal Transduction in MAPK Pathways. ENTROPY 2017. [DOI: 10.3390/e19090469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
204
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
205
|
Hausrath AC, Kingston RL. Conditionally disordered proteins: bringing the environment back into the fold. Cell Mol Life Sci 2017; 74:3149-3162. [PMID: 28597298 PMCID: PMC11107710 DOI: 10.1007/s00018-017-2558-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
For many proteins, biological function requires the folding of the polypeptide chain into a unique and persistent tertiary structure. This review concerns proteins that adopt a specific tertiary structure to function, but are otherwise partially or completely disordered. The biological cue for protein folding is environmental perturbation or minor post-translational modification. Hence, we term these proteins conditionally disordered. Many of these proteins recognize and bind other molecules, and conditional disorder has been hypothesized to allow for more nuanced control and regulation of binding processes. However, this remains largely unproven. The sequences of conditionally disordered proteins suggest their propensity to fold; yet, under the standard laboratory conditions, they do not do so, which may appear surprising. We argue that the surprise results from the failure to consider the role of the environment in protein structure formation and that conditional disorder arises as a natural consequence of the marginal stability of the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
206
|
The Histidine Residue of QseC Is Required for Canonical Signaling between QseB and PmrB in Uropathogenic Escherichia coli. J Bacteriol 2017; 199:JB.00060-17. [PMID: 28396353 DOI: 10.1128/jb.00060-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Two-component systems are prototypically comprised of a histidine kinase (sensor) and a response regulator (responder). The sensor kinases autophosphorylate at a conserved histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a cognate response regulator. In rare cases, the histidine residue is also essential for response regulator dephosphorylation via a reverse-phosphotransfer reaction. In this work, we present an example of a kinase that relies on reverse phosphotransfer to catalyze the dephosphorylation of its cognate partner. The QseC sensor kinase is conserved across several Gram-negative pathogens; its interaction with its cognate partner QseB is critical for maintaining pathogenic potential. Here, we demonstrate that QseC-mediated dephosphorylation of QseB occurs via reverse phosphotransfer. In previous studies, we demonstrated that, in uropathogenic Escherichia coli, exposure to high concentrations of ferric iron (Fe3+) stimulates the PmrB sensor kinase. This stimulation, in turn, activates the cognate partner, PmrA, and noncognate QseB to enhance tolerance to polymyxin B. We demonstrate that in the absence of signal, kinase-inactive QseC variants, in which the H246 residue was changed to alanine (A) aspartate (D) or leucine (L), rescued a ΔqseC deletion mutant, suggesting that QseC can control QseB activation via a mechanism that is independent of reverse phosphotransfer. However, in the presence of Fe3+, the same QseC variants were unable to mediate a wild-type stimulus response, indicating that QseC-mediated dephosphorylation is required for maintaining proper QseB-PmrB-PmrA interactions.IMPORTANCE Two-component signaling networks constitute one of the predominant methods by which bacteria sense and respond to their changing environments. Two-component systems allow bacteria to thrive and survive in a number of different environments, including within a human host. Uropathogenic Escherichia coli, the causative agent of urinary tract infections, rely on two interacting two-component systems, QseBC and PmrAB, to induce intrinsic resistance to the colistin antibiotic polymyxin B, which is a last line of defense drug. The presence of one sensor kinase, QseC, is required to regulate the interaction between the other sensor kinase, PmrB and the response regulators from both systems, QseB and PmrA, effectively creating a "four-component" system required for virulence. Understanding the important role of the sensor kinase QseC will provide insight into additional ways to therapeutically target uropathogens that harbor these signaling systems.
Collapse
|
207
|
Thomas EE, Pandey N, Knudsen S, Ball ZT, Silberg JJ. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid. ACS Synth Biol 2017; 6:1572-1583. [PMID: 28419802 PMCID: PMC6858787 DOI: 10.1021/acssynbio.7b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.
Collapse
Affiliation(s)
- Emily E. Thomas
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX 77005, USA
| | - Naresh Pandey
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sarah Knudsen
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
208
|
Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiol 2017; 65:36-43. [DOI: 10.1016/j.fm.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
|
209
|
Quiroz-Rocha E, Bonilla-Badía F, García-Aguilar V, López-Pliego L, Serrano-Román J, Cocotl-Yañez M, Guzmán J, Ahumada-Manuel CL, Muriel-Millán LF, Castañeda M, Espín G, Nuñez C. Two-component system CbrA/CbrB controls alginate production in Azotobacter vinelandii. MICROBIOLOGY-SGM 2017; 163:1105-1115. [PMID: 28699871 DOI: 10.1099/mic.0.000457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azotobacter vinelandii, belonging to the Pseudomonadaceae family, is a free-living bacterium that has been considered to be a good source for the production of bacterial polymers such as alginate. In A. vinelandii the synthesis of this polymer is regulated by the Gac/Rsm post-transcriptional regulatory system, in which the RsmA protein binds to the mRNA of the biosynthetic algD gene, inhibiting translation. In several Pseudomonas spp. the two-component system CbrA/CbrB has been described to control a variety of metabolic and behavioural traits needed for adaptation to changing environmental conditions. In this work, we show that the A. vinelandii CbrA/CbrB two-component system negatively affects alginate synthesis, a function that has not been described in Pseudomonas aeruginosa or any other Pseudomonas species. CbrA/CbrB was found to control the expression of some alginate biosynthetic genes, mainly algD translation. In agreement with this result, the CbrA/CbrB system was necessary for optimal rsmA expression levels. CbrA/CbrB was also required for maximum accumulation of the sigma factor RpoS. This last effect could explain the positive effect of CbrA/CbrB on rsmA expression, as we also showed that one of the promoters driving rsmA transcription was RpoS-dependent. However, although inactivation of rpoS increased alginate production by almost 100 %, a cbrA mutation increased the synthesis of this polymer by up to 500 %, implying the existence of additional CbrA/CbrB regulatory pathways for the control of alginate production. The control exerted by CbrA/CbrB on the expression of the RsmA protein indicates the central role of this system in regulating carbon metabolism in A. vinelandii.
Collapse
Affiliation(s)
- Elva Quiroz-Rocha
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Fernando Bonilla-Badía
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México.,Present address: Departamento de Medicina, Centro Interdisciplinario de Ciencias de la Salud-Unidad Milpa Alta, Instituto Politécnico Nacional, CICITEC, Ex-Hacienda del Mayorazgo, Km. 39.5 Carretera Xochimilco - Oaxtepec, Ciudad de México, CP 12000, México
| | - Valentina García-Aguilar
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Jade Serrano-Román
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México.,Present address: Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Carlos L Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Cinthia Nuñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| |
Collapse
|
210
|
Wang D, Chen W, Huang S, He Y, Liu X, Hu Q, Wei T, Sang H, Gan J, Chen H. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa. PLoS Pathog 2017; 13:e1006533. [PMID: 28732057 PMCID: PMC5540610 DOI: 10.1371/journal.ppat.1006533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/02/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1’ α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents. P. aeruginosa inhabits diverse environments and is one of the most prevalent opportunistic human pathogens of immunocompromised patients. The high antibiotic resistance is a major cause of therapeutic failure in the treatment of P. aeruginosa infections. The opportunistic pathogen P. aeruginosa co-regulates cross-resistance between Zn(II) and carbapenem antibiotics by the CzcR-CzcS signal transduction system. The extracellular Zn(II) stimulus is sensed by the HK CzcS and further triggers metal detoxification and antibiotic resistance through intracellular regulatory pathway. Here, we provide the three-dimensional structure of CzcS SD in complex with the Zn(II). Based on the structure, several key residues for Zn(II) sensing and regulation are identified, and the signal transduction is disclosed to be modulated by the dimerization of N-terminal α-helices in the sensor domain. Our research will provide potential guidance for the treatment of clinical issues caused by co-regulation between heavy metals and antibiotics in P. aeruginosa.
Collapse
Affiliation(s)
- Dan Wang
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Weizhong Chen
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Shanqing Huang
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Yafeng He
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Xichun Liu
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Qingyuan Hu
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Tianbiao Wei
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Hong Sang
- Jinling Hospital, Department of Dermatology, Medical School of Nanjing University, Nanjing University, Nanjing, P. R. China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Chen
- Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, P.R. China
- * E-mail:
| |
Collapse
|
211
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
212
|
Reprogramming cellular functions with engineered membrane proteins. Curr Opin Biotechnol 2017; 47:92-101. [PMID: 28709113 DOI: 10.1016/j.copbio.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
Abstract
Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions.
Collapse
|
213
|
Crosstalk and the evolvability of intracellular communication. Nat Commun 2017; 8:16009. [PMID: 28691706 PMCID: PMC5508131 DOI: 10.1038/ncomms16009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/18/2017] [Indexed: 11/08/2022] Open
Abstract
Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks. The evolutionary rationale behind the extensive crosstalk between Metazoan signalling pathways remains elusive. Here the authors provide evidence that crosstalk in the human signalling network evolves as a means to allow efficient diversification of cellular responses to the same signals between different cell types.
Collapse
|
214
|
Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays. Biophys J 2017; 112:643-654. [PMID: 28256224 DOI: 10.1016/j.bpj.2016.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation.
Collapse
|
215
|
Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochem Biophys Res Commun 2017; 489:70-75. [DOI: 10.1016/j.bbrc.2017.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/13/2017] [Indexed: 12/29/2022]
|
216
|
Fernández M, Matilla MA, Ortega Á, Krell T. Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range Chemoreceptor of Pseudomonas putida KT2440. Front Microbiol 2017; 8:990. [PMID: 28620365 PMCID: PMC5449446 DOI: 10.3389/fmicb.2017.00990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022] Open
Abstract
Bacteria have evolved a wide range of chemoreceptors with different ligand specificities. Typically, chemoreceptors bind ligands with elevated specificity and ligands serve as growth substrates. However, there is a chemoreceptor family that has a broad ligand specificity including many compounds that are not of metabolic value. To advance the understanding of this family, we have used the PcaY_PP (PP2643) chemoreceptor of Pseudomonas putida KT2440 as a model. Using Isothermal Titration Calorimetry we showed here that the recombinant ligand binding domain (LBD) of PcaY_PP recognizes 17 different C6-ring containing carboxylic acids with KD values between 3.7 and 138 μM and chemoeffector affinity correlated with the magnitude of the chemotactic response. Mutation of the pcaY_PP gene abolished chemotaxis to these compounds; phenotype that was restored following gene complementation. Growth experiments using PcaY_PP ligands as sole C-sources revealed functional relationships between their metabolic potential and affinity for the chemoreceptor. Thus, only 7 PcaY_PP ligands supported growth and their KD values correlated with the length of the bacterial lag phase. Furthermore, PcaY_PP ligands that did not support growth had significantly higher KD values than those that did. The receptor has thus binds preferentially compounds that serve as C-sources and amongst them those that rapidly promote growth. Tightest binding compounds were quinate, shikimate, 3-dehydroshikimate and protocatechuate, which are at the interception of the biosynthetic shikimate and catabolic quinate pathways. Analytical ultracentrifugation studies showed that ligand free PcaY_PP-LBD is present in a monomer-dimer equilibrium (KD = 57.5 μM). Ligand binding caused a complete shift to the dimeric state, which appears to be a general feature of four-helix bundle LBDs. This study indicates that the metabolic potential of compounds is an important parameter in the molecular recognition by broad ligand range chemoreceptors.
Collapse
Affiliation(s)
- Matilde Fernández
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas,Granada, Spain
| | - Miguel A Matilla
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas,Granada, Spain
| | - Álvaro Ortega
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas,Granada, Spain
| | - Tino Krell
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas,Granada, Spain
| |
Collapse
|
217
|
Abstract
Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo, which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression.IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.
Collapse
|
218
|
Selvamani V, Maruthamuthu MK, Arulsamy K, Eom GT, Hong SH. Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR two-component system from Methylobacterium organophilum XX. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Brown CW, Sridhara V, Boutz DR, Person MD, Marcotte EM, Barrick JE, Wilke CO. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics 2017; 18:301. [PMID: 28412930 PMCID: PMC5392934 DOI: 10.1186/s12864-017-3676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. Results We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for N-terminal N α acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we identify a possible relationship between N-terminal N α acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM. Conclusions Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification types and previously unobserved dynamic changes in modification across growth timepoints. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3676-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin W Brown
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Viswanadham Sridhara
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Maria D Person
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA. .,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA. .,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
220
|
Singh V, Nemenman I. Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor. PLoS Comput Biol 2017; 13:e1005490. [PMID: 28410433 PMCID: PMC5409536 DOI: 10.1371/journal.pcbi.1005490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/28/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022] Open
Abstract
Cells use surface receptors to estimate concentrations of external ligands. Limits on the accuracy of such estimations have been well studied for pairs of ligand and receptor species. However, the environment typically contains many ligands, which can bind to the same receptors with different affinities, resulting in cross-talk. In traditional rate models, such cross-talk prevents accurate inference of concentrations of individual ligands. In contrast, here we show that knowing the precise timing sequence of stochastic binding and unbinding events allows one receptor to provide information about multiple ligands simultaneously and with a high accuracy. We show that such high-accuracy estimation of multiple concentrations can be realized with simple structural modifications of the familiar kinetic proofreading biochemical network diagram. We give two specific examples of such modifications. We argue that structural and functional features of real cellular biochemical sensory networks in immune cells, such as feedforward and feedback loops or ligand antagonism, sometimes can be understood as solutions to the accurate multi-ligand estimation problem. Cells live in chemically complex environments with many different chemical ligands around them. Can cells estimate concentrations of more ligands than they have receptor types? In this paper, we show that, surprisingly, the answer is “yes”, and the estimation can be implemented with simple biochemical components already present in many cells. Therefore, cells may “know” a lot more about their environment and thus may be able to implement more complex and accurate response strategies than was previously thought.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
221
|
Genetic and Mechanistic Analyses of the Periplasmic Domain of the Enterohemorrhagic Escherichia coli QseC Histidine Sensor Kinase. J Bacteriol 2017; 199:JB.00861-16. [PMID: 28138098 DOI: 10.1128/jb.00861-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
The histidine sensor kinase (HK) QseC senses autoinducer 3 (AI-3) and the adrenergic hormones epinephrine and norepinephrine. Upon sensing these signals, QseC acts through three response regulators (RRs) to regulate the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). The QseB, QseF, and KdpE RRs that are phosphorylated by QseC constitute a tripartite signaling cascade having different and overlapping targets, including flagella and motility, the type three secretion system encoded by the locus of enterocyte effacement (LEE), and Shiga toxin. We modeled the tertiary structure of QseC's periplasmic sensing domain and aligned the sequences from 12 different species to identify the most conserved amino acids. We selected eight amino acids conserved in all of these QseC homologues. The corresponding QseC site-directed mutants were expressed and still able to autophosphorylate; however, four mutants demonstrated an increased basal level of phosphorylation. These mutants have differential flagellar, motility, LEE, and Shiga toxin expression phenotypes. We selected four mutants for more in-depth analyses and found that they differed in their ability to phosphorylate QseB, KdpE, and QseF. This suggests that these mutations in the periplasmic sensing domain affected the region downstream of the QseC signaling cascade and therefore can influence which pathway QseC regulates.IMPORTANCE In the foodborne pathogen EHEC, QseC senses AI-3, epinephrine, and norepinephrine, increases its autophosphorylation, and then transfers its phosphate to three RRs: QseB, QseF, and KdpE. QseB controls expression of flagella and motility, KdpE controls expression of the LEE region, and QseF controls the expression of Shiga toxin. This tripartite signaling pathway must be tightly controlled, given that flagella and the type three secretion system (T3SS) are energetically expensive appendages and Shiga toxin expression leads to bacterial cell lysis. Our data suggest that mutations in the periplasmic sensing loop of QseC differentially affect the expression of the three arms of this signaling cascade. This suggests that these point mutations may change QseC's phosphotransfer preferences for its RRs.
Collapse
|
222
|
VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System. J Bacteriol 2017; 199:JB.00828-16. [PMID: 28031278 DOI: 10.1128/jb.00828-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB, saeR, and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I (coa) and class II (hla) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureusIMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation.
Collapse
|
223
|
An ompR-envZ Two-Component System Ortholog Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in Acinetobacter baumannii Strain AB5075. J Bacteriol 2017; 199:JB.00705-16. [PMID: 27872182 DOI: 10.1128/jb.00705-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 11/20/2022] Open
Abstract
Recently, a novel phase-variable colony opacity phenotype was discovered in Acinetobacter baumannii strain AB5075, where colonies interconvert between opaque and translucent variants. Opaque colonies become mottled or sectored after 24 h of growth due to translucent variants arising within the colony. This easily distinguishable opaque-colony phenotype was used to screen for random transposon insertions that increased the frequency of sectoring at a time point when wild-type colonies were uniformly opaque. A colony was identified that contained multiple papillae of translucent variants, and the insertion in this mutant mapped to an ortholog of the two-component system response regulator ompR Subsequent investigation of in-frame deletions of ompR and the sensor kinase envZ (located adjacent to ompR) showed that the switching frequency from opaque to translucent was increased 401- and 281-fold, respectively. The ompR mutant also exhibited sensitivity to sodium chloride in growth medium, whereas the envZ mutation did not elicit sensitivity to sodium chloride. Mutation of either gene reduced motility in A. baumannii strain AB5075, but a mutation in both ompR and envZ produced a more profound effect. The ompR and envZ genes were cotranscribed but were not subject to autoregulation by OmpR. Both ompR and envZ mutant opaque variants were attenuated in virulence in the Galleria mellonella infection model, whereas mutation of ompR had no effect on the virulence of the translucent variant. IMPORTANCEAcinetobacter baumannii is a well-known antibiotic-resistant pathogen; many clinical isolates can only be treated by a very small number of antibiotics (including colistin), while some exhibit panresistance. The current antimicrobial arsenal is nearing futility in the treatment of Acinetobacter infections, and new avenues of treatment are profoundly needed. Since phase variation controls the transition between opaque (virulent) and translucent (avirulent) states in A. baumannii, this may represent an "Achilles' heel" that can be targeted via the development of small molecules that lock cells in the translucent state and allow the host immune system to clear the infection. A better understanding of how phase variation is regulated may allow for the development of methods to target this process. The ompR-envZ two-component system ortholog negatively regulates phase variation in A. baumannii, and perturbation of this system leads to the attenuation of virulence in an invertebrate infection model.
Collapse
|
224
|
Guckes KR, Breland EJ, Zhang EW, Hanks SC, Gill NK, Algood HMS, Schmitz JE, Stratton CW, Hadjifrangiskou M. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal 2017; 10:10/461/eaag1775. [PMID: 28074004 PMCID: PMC5677524 DOI: 10.1126/scisignal.aag1775] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria use two-component systems (TCSs) to react appropriately to environmental stimuli. Typical TCSs comprise a sensor histidine kinase that acts as a receptor coupled to a partner response regulator that coordinates changes in bacterial behavior, often through its activity as a transcriptional regulator. TCS interactions are typically confined to cognate pairs of histidine kinases and response regulators. We describe two distinct TCSs in uropathogenic Escherichia coli (UPEC) that interact to mediate a response to ferric iron. The PmrAB and QseBC TCSs were both required for proper transcriptional response to ferric iron. Ferric iron induced the histidine kinase PmrB to phosphotransfer to both its cognate response regulator PmrA and the noncognate response regulator QseB, leading to transcriptional responses coordinated by both regulators. Pretreatment of the UPEC strain UTI89 with ferric iron led to increased resistance to polymyxin B that required both PmrA and QseB. Similarly, pretreatment of several UPEC isolates with ferric iron increased tolerance to polymyxin B. This study defines physiologically relevant cross talk between TCSs in a bacterial pathogen and provides a potential mechanism for antibiotic resistance of some strains of UPEC.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J Breland
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ellisa W Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Holly M S Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. .,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
225
|
Kochanowski K, Gerosa L, Brunner SF, Christodoulou D, Nikolaev YV, Sauer U. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol Syst Biol 2017; 13:903. [PMID: 28049137 PMCID: PMC5293157 DOI: 10.15252/msb.20167402] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription networks consist of hundreds of transcription factors with thousands of often overlapping target genes. While we can reliably measure gene expression changes, we still understand relatively little why expression changes the way it does. How does a coordinated response emerge in such complex networks and how many input signals are necessary to achieve it? Here, we unravel the regulatory program of gene expression in Escherichia coli central carbon metabolism with more than 30 known transcription factors. Using a library of fluorescent transcriptional reporters, we comprehensively quantify the activity of central metabolic promoters in 26 environmental conditions. The expression patterns were dominated by growth rate‐dependent global regulation for most central metabolic promoters in concert with highly condition‐specific activation for only few promoters. Using an approximate mathematical description of promoter activity, we dissect the contribution of global and specific transcriptional regulation. About 70% of the total variance in promoter activity across conditions was explained by global transcriptional regulation. Correlating the remaining specific transcriptional regulation of each promoter with the cell's metabolome response across the same conditions identified potential regulatory metabolites. Remarkably, cyclic AMP, fructose‐1,6‐bisphosphate, and fructose‐1‐phosphate alone explained most of the specific transcriptional regulation through their interaction with the two major transcription factors Crp and Cra. Thus, a surprisingly simple regulatory program that relies on global transcriptional regulation and input from few intracellular metabolites appears to be sufficient to coordinate E. coli central metabolism and explain about 90% of the experimentally observed transcription changes in 100 genes.
Collapse
Affiliation(s)
- Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Luca Gerosa
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Simon F Brunner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Yaroslav V Nikolaev
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
226
|
Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog 2016; 12:e1006133. [PMID: 28036380 PMCID: PMC5231390 DOI: 10.1371/journal.ppat.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis. The biological function of iron is like a “double-edge sword” to all cellular life since iron starvation or iron excess leads to cell death. For animal and plant pathogens, they have to compete for iron with their hosts since iron-limitation generally is an immune response against microbial infection. However, how pathogens detect extracellular and intracellular iron concentrations remains unclear. Here we show that a plant bacterial pathogen employs a membrane-bound sensor histidine kinase, VgrS, to directly detect extracytoplasmic iron starvation and activate iron uptake accordingly. As a prerequisite, VgrS phosphorylates cognate VgrR to shut down the transcription of a downstream gene, tdvA, whose expression is harmful to absorb iron and bacterial virulence. However, as intracellular iron concentration increases, the ferrous iron binds to VgrR to release its repression on the tdvA transcription, which results in the block of continuous iron uptake to avoid toxic effect of the metal. Therefore, VgrS and VgrR detect extracytoplasmic and intracellular iron, respectively, and systematically modulate cellular homeostasis to promote bacterial survival in iron-depleted environments, such as in host plant.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Yuan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Yu Peng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
227
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
228
|
Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol 2016; 307:1-10. [PMID: 27989665 DOI: 10.1016/j.ijmm.2016.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022] Open
Abstract
The assembly of the bacterial cell wall requires synchronization of a multitude of biosynthetic machineries and regulatory networks. The eukaryotic-like serine/threonine kinase PknB has been implicated in coordinating cross-wall formation, autolysis and cell division in Staphylococcus aureus. However, the signal molecule sensed by this kinase remained elusive so far. Here, we provide compelling biochemical evidence that PknB interacts with the ultimate cell wall precursor lipid II, triggering kinase activity. Moreover, we observed crosstalk of PknB with the two component system WalKR and identified the early cell division protein FtsZ as another PknB phosphorylation substrate in S. aureus. In agreement with the implied role in regulation of cell envelope metabolism, we found PknB to preferentially localize to the septum of S. aureus and the PASTA domains to be crucial for recruitment to this site. The data provide a model for the contribution of PknB to control cell wall metabolism and cell division.
Collapse
Affiliation(s)
- Patrick Hardt
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Ina Engels
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Hannah Ulm
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Department for Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany; Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
229
|
Tian R, Heiden S, Osman WAM, Ardley JK, James EK, Gollagher MM, Tiwari R, Seshadri R, Kyrpides NC, Reeve WG. Evolution of a multi-step phosphorelay signal transduction system in Ensifer: recruitment of the sigma factor RpoN and a novel enhancer-binding protein triggers acid-activated gene expression. Mol Microbiol 2016; 103:829-844. [PMID: 27935141 DOI: 10.1111/mmi.13592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Most Ensifer strains are comparatively acid sensitive, compromising their persistence in low pH soils. In the acid-tolerant strain Ensifer medicae WSM419, the acid-activated expression of lpiA is essential for enhancing survival in lethal acidic conditions. Here we characterise a multi-step phosphorelay signal transduction pathway consisting of TcsA, TcrA, FsrR, RpoN and its cognate enhancer-binding protein EbpA, which is required for the induction of lpiA and the downstream acvB gene. The fsrR, tcrA, tcsA and rpoN genes were constitutively expressed, whereas lpiA and acvB were strongly acid-induced. RACE mapping revealed that lpiA/acvB were co-transcribed as an operon from an RpoN promoter. In most Ensifer species, lpiA/acvB is located on the chromosome and the sequence upstream of lpiA lacks an RpoN-binding site. Nearly all Ensifer meliloti strains completely lack ebpA, tcrA, tcsA and fsrR regulatory loci. In contrast, E. medicae strains have lpiA/acvB and ebpA/tcrA/tcsA/fsrR co-located on the pSymA megaplasmid, with lpiA/acvB expression coupled to an RpoN promoter. Here we provide a model for the expression of lpiA/acvB in E. medicae. This unique acid-activated regulatory system provides insights into an evolutionary process which may assist the adaptation of E. medicae to acidic environmental niches.
Collapse
Affiliation(s)
- Rui Tian
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Stephan Heiden
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Wan A M Osman
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Julie K Ardley
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Margaret M Gollagher
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Ravi Tiwari
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | | | | | - Wayne G Reeve
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
230
|
Programmable Potentials: Approximate N-body potentials from coarse-level logic. Sci Rep 2016; 6:33415. [PMID: 27671683 PMCID: PMC5037383 DOI: 10.1038/srep33415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.
Collapse
|
231
|
Foster CA, West AH. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems. Proteins 2016; 85:155-176. [PMID: 27802580 PMCID: PMC5242315 DOI: 10.1002/prot.25207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Two‐component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus‐dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well‐characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation‐induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155–176. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
232
|
Lin CS, Tsai YH, Chang CJ, Tseng SF, Wu TR, Lu CC, Wu TS, Lu JJ, Horng JT, Martel J, Ojcius DM, Lai HC, Young JD. An iron detection system determines bacterial swarming initiation and biofilm formation. Sci Rep 2016; 6:36747. [PMID: 27845335 PMCID: PMC5109203 DOI: 10.1038/srep36747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe3+) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe3+) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe3+, or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe3+ to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle.
Collapse
Affiliation(s)
- Chuan-Sheng Lin
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Yu-Huan Tsai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Shun-Fu Tseng
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen University, New Taipei City, Taiwan, Republic of China
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, United States of America
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, United States of America
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| |
Collapse
|
233
|
Lai Y, Xu Z, Yan A. A novel regulatory circuit to control indole biosynthesis protectsEscherichia colifrom nitrosative damages during the anaerobic respiration of nitrate. Environ Microbiol 2016; 19:598-610. [DOI: 10.1111/1462-2920.13527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Lai
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Zeling Xu
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| |
Collapse
|
234
|
Willett JW, Crosson S. Atypical modes of bacterial histidine kinase signaling. Mol Microbiol 2016; 103:197-202. [PMID: 27618209 DOI: 10.1111/mmi.13525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 11/28/2022]
Abstract
The environment of a cell has a profound influence on its physiology, development and evolution. Accordingly, the capacity to sense and respond to physical and chemical signals in the environment is an important feature of cellular biology. In bacteria, environmental sensory perception is often regulated by two-component signal transduction systems (TCSTs). Canonical TCST entails signal-induced autophosphorylation of a sensor histidine kinase (HK) followed by phosphoryl transfer to a cognate response regulator (RR) protein, which may affect gene expression at multiple levels. Recent studies provide evidence for systems that do not adhere to this archetypal TCST signaling model. We present selected examples of atypical modes of signal transduction including inactivation of HK activity via homo- and hetero oligomerization, and cross-phosphorylation between HKs. These examples highlight mechanisms bacteria use to integrate environmental signals to control complex adaptive processes.
Collapse
Affiliation(s)
- Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
235
|
Abstract
Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multiprotein complexes and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners, causing their sequences to be correlated. Here we exploit these correlations to accurately identify, from sequence data alone, which proteins are specific interaction partners. Our general approach, which employs a pairwise maximum entropy model to infer couplings between residues, has been successfully used to predict the 3D structures of proteins from sequences. Thus inspired, we introduce an iterative algorithm to predict specific interaction partners from two protein families whose members are known to interact. We first assess the algorithm's performance on histidine kinases and response regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive fraction on our complete dataset without any a priori knowledge of interaction partners, and we uncover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette (ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally, we present two metrics that accurately distinguish interacting protein families from noninteracting ones, using only sequence data.
Collapse
|
236
|
Lee K, Ha GS, Veeranagouda Y, Seo YS, Hwang I. A CHASE3/GAF sensor hybrid histidine kinase BmsA modulates biofilm formation and motility in Pseudomonas alkylphenolica. MICROBIOLOGY-SGM 2016; 162:1945-1954. [PMID: 27655385 DOI: 10.1099/mic.0.000373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudomonas alkylphenolica is an important strain in the biodegradation of toxic alkylphenols and mass production of bioactive polymannuronate polymers. This strain forms a diverse, 3D biofilm architecture, including mushroom-like aerial structures, circular pellicles and surface spreading, depending on culture conditions. A mutagenesis and complementation study showed that a predicted transmembrane kinase, PSAKL28_21690 (1164 aa), harbouring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic GAF, histidine kinase and three CheY-like response regulator domains, plays a positive role in the formation of the special biofilm architecture and a negative role in swimming activity. In addition, the gene, named here as bmsA, is co-transcribed with three genes encoding proteins with CheR (PSAKL28_21700) and CheB (PSAKL28_21710) domains and response regulator and histidine kinase domains (PSAKL28_21720). This gene cluster is thus named bmsABCD and is found widely distributed in pseudomonads and other bacteria. Deletion of the genes in the cluster, except forbmsA, did not result in changes in biofilm-related phenotypes. The RNA-seq analysis showed that the expression of genes coding for flagellar synthesis was increased when bmsA was mutated. In addition, the expression of rsmZ, which is one of final targets of the Gac regulon, was not significantly altered in the bmsA mutant, and overexpression of bmsA in the gacA mutant did not produce the WT phenotype. These results indicate that the sensory Bms regulon does not affect the upper cascade of the Gac signal transduction pathway for the biofilm-related phenotypes in P. alkylphenolica.
Collapse
Affiliation(s)
- Kyoung Lee
- Department of Bio Health Science, Changwon National University, Changwon-si, Kyongnam 51140, Republic of Korea
| | - Gwang Su Ha
- Department of Bio Health Science, Changwon National University, Changwon-si, Kyongnam 51140, Republic of Korea
| | - Yaligara Veeranagouda
- Department of Bio Health Science, Changwon National University, Changwon-si, Kyongnam 51140, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
237
|
The Histidine Kinase BinK Is a Negative Regulator of Biofilm Formation and Squid Colonization. J Bacteriol 2016; 198:2596-607. [PMID: 26977108 PMCID: PMC5019070 DOI: 10.1128/jb.00037-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Bacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization of Euprymna scolopes bobtail squid by Vibrio fischeri bacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene, binK (biofilm inhibitor kinase; VF_A0360), which encodes an orphan hybrid histidine kinase that negatively regulates the V. fischeri symbiotic biofilm (Syp) in vivo and in vitro. We identified binK mutants as exhibiting a colonization advantage in a global genetic screen, a phenotype that we confirmed in controlled competition experiments. Bacterial biofilm aggregates in the host are larger in strains lacking BinK, whereas overexpression of BinK suppresses biofilm formation and squid colonization. Signaling through BinK is required for temperature modulation of biofilm formation at 28°C. Furthermore, we present evidence that BinK acts upstream of SypG, the σ54-dependent transcriptional regulator of the syp biofilm locus. The BinK effects are dependent on intact signaling in the RscS-Syp biofilm pathway. Therefore, we propose that BinK antagonizes the signal from RscS and serves as an integral component in V. fischeri biofilm regulation. IMPORTANCE Bacterial lifestyle transitions underlie the colonization of animal hosts from environmental reservoirs. Formation of matrix-enclosed, surface-associated aggregates (biofilms) is common in beneficial and pathogenic associations, but investigating the genetic basis of biofilm development in live animal hosts remains a significant challenge. Using the bobtail squid light organ as a model, we analyzed putative colonization factors and identified a histidine kinase that negatively regulates biofilm formation at the host interface. This work reveals a novel in vivo biofilm regulator that influences the transition of bacteria from their planktonic state in seawater to tight aggregates of cells in the host. The study enriches our understanding of biofilm regulation and beneficial colonization by an animal's microbiome.
Collapse
|
238
|
Borland S, Prigent-Combaret C, Wisniewski-Dyé F. Bacterial hybrid histidine kinases in plant-bacteria interactions. MICROBIOLOGY-SGM 2016; 162:1715-1734. [PMID: 27609064 DOI: 10.1099/mic.0.000370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.
Collapse
Affiliation(s)
- Stéphanie Borland
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| |
Collapse
|
239
|
Cheng RR, Nordesjö O, Hayes RL, Levine H, Flores SC, Onuchic JN, Morcos F. Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes. Mol Biol Evol 2016; 33:3054-3064. [PMID: 27604223 PMCID: PMC5100047 DOI: 10.1093/molbev/msw188] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two-component signaling (TCS) is the primary means by which bacteria sense and respond to the environment. TCS involves two partner proteins working in tandem, which interact to perform cellular functions whereas limiting interactions with non-partners (i.e., cross-talk). We construct a Potts model for TCS that can quantitatively predict how mutating amino acid identities affect the interaction between TCS partners and non-partners. The parameters of this model are inferred directly from protein sequence data. This approach drastically reduces the computational complexity of exploring the sequence-space of TCS proteins. As a stringent test, we compare its predictions to a recent comprehensive mutational study, which characterized the functionality of 204 mutational variants of the PhoQ kinase in Escherichia coli We find that our best predictions accurately reproduce the amino acid combinations found in experiment, which enable functional signaling with its partner PhoP. These predictions demonstrate the evolutionary pressure to preserve the interaction between TCS partners as well as prevent unwanted cross-talk. Further, we calculate the mutational change in the binding affinity between PhoQ and PhoP, providing an estimate to the amount of destabilization needed to disrupt TCS.
Collapse
Affiliation(s)
- R R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, TX
| | - O Nordesjö
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - R L Hayes
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - H Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX.,Department of Bioengineering, Rice University, Houston, TX
| | - S C Flores
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - J N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX .,Department of Physics and Astronomy, Rice University, Houston, TX.,Department of Chemistry, and Biosciences, Rice University, Houston, TX
| | - F Morcos
- Department of Biological Sciences and Center for Systems Biology, University of Texas at Dallas, Dallas, TX
| |
Collapse
|
240
|
The ChrSA and HrrSA Two-Component Systems Are Required for Transcriptional Regulation of the hemA Promoter in Corynebacterium diphtheriae. J Bacteriol 2016; 198:2419-30. [PMID: 27381918 DOI: 10.1128/jb.00339-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/20/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Corynebacterium diphtheriae utilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. In C. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters for hmuO, hrtAB, and hemA ChrSA and HrrSA activate transcription at the hmuO promoter and repress transcription at hemA in an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor at hemA and that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression of hemA by ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to the hemA promoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylated in vitro by the sensor kinase ChrS, whereas no kinase activity was observed with HrrS in vitro Phosphorylated ChrA was not observed in vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observed in vivo regardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrA in vivo Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at the hemA promoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes. IMPORTANCE Understanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogen C. diphtheriae The findings here underscore the complex interactions between the ChrSA and HrrSA systems in the regulation of the hemA promoter and demonstrate how the two systems complement one another to refine and control transcription in the presence and absence of Hb.
Collapse
|
241
|
Zschiedrich CP, Keidel V, Szurmant H. Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol 2016; 428:3752-75. [PMID: 27519796 DOI: 10.1016/j.jmb.2016.08.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.
Collapse
Affiliation(s)
- Christopher P Zschiedrich
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victoria Keidel
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
242
|
Abstract
As we become increasingly dependent on electronic information-processing systems at home and work, it’s easy to lose sight of the fact that our very survival depends on highly complex biological information-processing systems. Each of the trillions of cells that form the human body has the ability to detect and respond to a wide range of stimuli and inputs, using an extraordinary set of signaling proteins to process this information and make decisions accordingly. Indeed, cells in all organisms rely on these signaling proteins to survive and proliferate in unpredictable and sometimes rapidly changing environments. But how exactly do these proteins relay information within cells, and how do they keep a multitude of incoming signals straight? Here, I describe recent efforts to understand the fidelity of information flow inside cells. This work is providing fundamental insight into how cells function. Additionally, it may lead to the design of novel antibiotics that disrupt the signaling of pathogenic bacteria or it could help to guide the treatment of cancer, which often involves information-processing gone awry inside human cells. PLOS Biology's first ever Research Matters explains the importance of understanding the transmission and interpretation of complex biological signals by our own cells and by the bacterial cells that live in or on us.
Collapse
Affiliation(s)
- Michael T Laub
- Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
243
|
Kilian R, Frasch HJ, Kulik A, Wohlleben W, Stegmann E. The VanRS Homologous Two-Component System VnlRSAb of the Glycopeptide Producer Amycolatopsis balhimycina Activates Transcription of the vanHAXSc Genes in Streptomyces coelicolor, but not in A. balhimycina. Microb Drug Resist 2016; 22:499-509. [PMID: 27420548 PMCID: PMC5036315 DOI: 10.1089/mdr.2016.0128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In enterococci and in Streptomyces coelicolor, a glycopeptide nonproducer, the glycopeptide resistance genes vanHAX are colocalized with vanRS. The two-component system (TCS) VanRS activates vanHAX transcription upon sensing the presence of glycopeptides. Amycolatopsis balhimycina, the producer of the vancomycin-like glycopeptide balhimycin, also possesses vanHAXAb genes. The genes for the VanRS-like TCS VnlRSAb, together with the carboxypeptidase gene vanYAb, are part of the balhimycin biosynthetic gene cluster, which is located 2 Mb separate from the vanHAXAb. The deletion of vnlRSAb did not affect glycopeptide resistance or balhimycin production. In the A. balhimycina vnlRAb deletion mutant, the vanHAXAb genes were expressed at the same level as in the wild type, and peptidoglycan (PG) analyses proved the synthesis of resistant PG precursors. Whereas vanHAXAb expression in A. balhimycina does not depend on VnlRAb, a VnlRAb-depending regulation of vanYAb was demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR) and RNA-seq analyses. Although VnlRAb does not regulate the vanHAXAb genes in A. balhimycina, its heterologous expression in the glycopeptide-sensitive S. coelicolor ΔvanRSSc deletion mutant restored glycopeptide resistance. VnlRAb activates the vanHAXSc genes even in the absence of VanS. In addition, expression of vnlRAb increases actinorhodin production and influences morphological differentiation in S. coelicolor.
Collapse
Affiliation(s)
- Regina Kilian
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Hans-Joerg Frasch
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
244
|
Gopalani M, Dhiman A, Rahi A, Kandari D, Bhatnagar R. Identification, Functional Characterization and Regulon Prediction of a Novel Two Component System Comprising BAS0540-BAS0541 of Bacillus anthracis. PLoS One 2016; 11:e0158895. [PMID: 27392063 PMCID: PMC4938410 DOI: 10.1371/journal.pone.0158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
Two component systems (TCSs) can be envisaged as complex molecular devices that help the bacteria to sense its environment and respond aptly. 41 TCSs are predicted in Bacillus anthracis, a potential bioterrorism agent, of which only four have been studied so far. Thus, the intricate signaling network contributed by TCSs remains largely unmapped in B. anthracis and needs comprehensive exploration. In this study, we functionally characterized one such system composed of BAS0540 (Response regulator) and BAS0541 (Histidine kinase). BAS0540-BAS0541, the closest homolog of CiaRH of Streptococcus in B. anthracis, forms a functional TCS with BAS0541 displaying autophosphorylation and subsequent phosphotransfer to BAS0540. BAS0540 was also found to accept phosphate from physiologically relevant small molecule phosphodonors like acetyl phosphate and carbamoyl phosphate. Results of qRT-PCR and immunoblotting demonstrated that BAS0540 exhibits a constitutive expression throughout the growth of B. anthracis. Regulon prediction for BAS0540 in B. anthracis was done in silico using the consensus DNA binding sequence of CiaR of Streptococcus. The predicted regulon of BAS0540 comprised of 23 genes, which could be classified into 8 functionally diverse categories. None of the proven virulence factors were a part of the predicted regulon, an observation contrasting with the regulon of CiaRH in Streptococci. Electrophoretic mobility shift assay was used to show direct binding of purified BAS0540 to the upstream regions of 5 putative regulon candidates- BAS0540 gene itself; a gene predicted to encode cell division protein FtsA; a self–immunity gene; a RND family transporter gene and a gene encoding stress (heat) responsive protein. A significant enhancement in the DNA binding ability of BAS0540 was observed upon phosphorylation. Overexpression of response regulator BAS0540 in B. anthracis led to a prodigious increase of ~6 folds in the cell length, thereby conferring it a filamentous phenotype. Furthermore, the sporulation titer of the pathogen also decreased markedly by ~16 folds. Thus, this study characterizes a novel TCS of B. anthracis and elucidates its role in two of the most important physiological processes of the pathogen: cell division and sporulation.
Collapse
Affiliation(s)
- Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
- * E-mail:
| |
Collapse
|
245
|
Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 2016; 18:3210-3226. [DOI: 10.1111/1462-2920.13397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Carlos Barba-Ostria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Hortencia Silva-Jiménez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| |
Collapse
|
246
|
Abstract
The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the integral gain parameter increases. On further analysis, they find that the underlying dynamics are composed of slow and fast modes and the speed-up of the transient response is because of the speed-up of the slow-mode dynamics. Finally, they note how an increase in the integral gain parameter also leads to a decrease in the amplitude of the transient response, consistent with the overall improvement in the transient response. These results should be useful in understanding the overall effect of integral action on system dynamics, particularly for biomolecular systems.
Collapse
Affiliation(s)
- Shaunak Sen
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
247
|
Narula J, Kuchina A, Zhang F, Fujita M, Süel GM, Igoshin OA. Slowdown of growth controls cellular differentiation. Mol Syst Biol 2016; 12:871. [PMID: 27216630 PMCID: PMC5289222 DOI: 10.15252/msb.20156691] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anna Kuchina
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Fang Zhang
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Gürol M Süel
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
248
|
The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis. Arch Microbiol 2016; 198:773-84. [DOI: 10.1007/s00203-016-1239-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 02/01/2023]
|
249
|
The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii. mSphere 2016; 1:mSphere00082-16. [PMID: 27303741 PMCID: PMC4888885 DOI: 10.1128/msphere.00082-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health care costs. In fact, some strains of bacteria are resistant to all available antibiotics, such as Acinetobacter baumannii, which is the focus of this report. Therefore, the development of new antibiotics active against these resistant strains is urgently needed. In this study, BfmR is further validated as an intriguing target for a novel class of antibiotics. Successful inactivation of BfmR would confer the multiple benefits of a decreased ability of A. baumannii to survive in human body fluids, increased sensitivity to complement-mediated bactericidal activity and, importantly, increased sensitivity to other antibiotics. Structural studies support the potential for this “druggable” target, as they identify the potential for small-molecule binding at functionally relevant sites. Next-phase high-throughput screening studies utilizing BfmR are warranted. Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health care costs. In fact, some strains of bacteria are resistant to all available antibiotics, such as Acinetobacter baumannii, which is the focus of this report. Therefore, the development of new antibiotics active against these resistant strains is urgently needed. In this study, BfmR is further validated as an intriguing target for a novel class of antibiotics. Successful inactivation of BfmR would confer the multiple benefits of a decreased ability of A. baumannii to survive in human body fluids, increased sensitivity to complement-mediated bactericidal activity and, importantly, increased sensitivity to other antibiotics. Structural studies support the potential for this “druggable” target, as they identify the potential for small-molecule binding at functionally relevant sites. Next-phase high-throughput screening studies utilizing BfmR are warranted.
Collapse
|
250
|
Mao MY, Yang YM, Li KZ, Lei L, Li M, Yang Y, Tao X, Yin JX, Zhang R, Ma XR, Hu T. The rnc Gene Promotes Exopolysaccharide Synthesis and Represses the vicRKX Gene Expressions via MicroRNA-Size Small RNAs in Streptococcus mutans. Front Microbiol 2016; 7:687. [PMID: 27242713 PMCID: PMC4861726 DOI: 10.3389/fmicb.2016.00687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
Dental caries is a biofilm-dependent disease that largely relies on the ability of Streptococcus mutans to synthesize exopolysaccharides. Although the rnc gene is suggested to be involved in virulence mechanisms in many other bacteria, the information regarding it in S. mutans is very limited. Here, using deletion or overexpression mutant assay, we demonstrated that rnc in S. mutans significantly positively regulated exopolysaccharide synthesis and further altered biofilm formation. Meanwhile, the cariogenecity of S. mutans was decreased by deletion of rnc in a specific pathogen-free (SPF) rat model. Interestingly, analyzing the expression at mRNA level, we found the downstream vic locus was repressed by rnc in S. mutans. Using deep sequencing and bioinformatics analysis, for the first time, three putative microRNA-size small RNAs (msRNAs) targeting vicRKX were predicted in S. mutans. The expression levels of these msRNAs were negatively correlated with vicRKX but positively correlated with rnc, indicating rnc probably repressed vicRKX expression through msRNAs at the post-transcriptional level. In all, the results present that rnc has a potential role in the regulation of exopolysaccharide synthesis and can affect vicRKX expressions via post-transcriptional repression in S. mutans. This study provides an alternative avenue for further research aimed at preventing caries.
Collapse
Affiliation(s)
- Meng-Ying Mao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Ying-Ming Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Ke-Zeng Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China; Department of Dentistry, Yan'an Hospital Affiliated to Kunming Medical UniversityKunming, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Yan Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Jia-Xin Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Ru Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China; Department of Endodontics and Operative Dentistry School of Stomatology, Capital Medical UniversityBeijing, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| |
Collapse
|