201
|
Doucette W, Gire DH, Whitesell J, Carmean V, Lucero MT, Restrepo D. Associative cortex features in the first olfactory brain relay station. Neuron 2011; 69:1176-87. [PMID: 21435561 PMCID: PMC3064824 DOI: 10.1016/j.neuron.2011.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 11/23/2022]
Abstract
Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron.
Collapse
Affiliation(s)
- Wilder Doucette
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
202
|
Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron 2011; 69:258-72. [PMID: 21262465 DOI: 10.1016/j.neuron.2011.01.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 11/30/2022]
Abstract
The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.
Collapse
Affiliation(s)
- Linnea A Weiss
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
203
|
Brain-state-independent neural representation of peripheral stimulation in rat olfactory bulb. Proc Natl Acad Sci U S A 2011; 108:5087-92. [PMID: 21321196 DOI: 10.1073/pnas.1013814108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is critical for normal brains to perceive the external world precisely and accurately under ever-changing operational conditions, yet the mechanisms underlying this fundamental brain function in the sensory systems are poorly understood. To address this issue in the olfactory system, we investigated the responses of olfactory bulbs to odor stimulations under different brain states manipulated by anesthesia levels. Our results revealed that in two brain states, where the spontaneous baseline activities differed about twofold based on the local field potential (LFP) signals, the levels of neural activities reached after the same odor stimulation had no significant difference. This phenomenon was independent of anesthetics (pentobarbital or chloral hydrate), stimulating odorants (ethyl propionate, ethyl butyrate, ethyl valerate, amyl acetate, n-heptanal, or 2-heptanone), odor concentrations, and recording sites (the mitral or granular cell layers) for LFPs in three frequency bands (12-32 Hz, 33-64 Hz, and 65-90 Hz) and for multiunit activities. Furthermore, the activity patterns of the same stimulation under these two brain states were highly similar at both LFP and multiunit levels. These converging results argue the existence of mechanisms in the olfactory bulbs that ensure the delivery of peripheral olfactory information to higher olfactory centers with high fidelity under different brain states.
Collapse
|
204
|
Khan AG, Parthasarathy K, Bhalla US. Odor representations in the mammalian olfactory bulb. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:603-611. [PMID: 20836051 DOI: 10.1002/wsbm.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A first key step in studying a sensory modality is to define how the brain represents the features of the sensory stimulus. This has proven to be a challenge in olfaction, where even the stimulus features have been a matter of considerable debate. In this review, we focus on olfactory representations in the first stage of the olfactory pathway, the olfactory bulb (OB). We examine the diverging viewpoints on spatially organized versus distributed representations. We then consider how odor sampling through respiration is a key part of the odorant code. Finally, we ask how the bulb handles the challenging task of representing mixtures. We suggest that current evidence points toward a representation that is spatially organized at the inputs but later distributed, with the spatial organization not being used for much computation. Nevertheless, this is a simple representation that effectively represents multiple individual odorants, as well as odor mixtures.
Collapse
Affiliation(s)
- Adil Ghani Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - K Parthasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| |
Collapse
|
205
|
Lazarini F, Lledo PM. Is adult neurogenesis essential for olfaction? Trends Neurosci 2011; 34:20-30. [DOI: 10.1016/j.tins.2010.09.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/14/2010] [Accepted: 09/23/2010] [Indexed: 12/31/2022]
|
206
|
Newquist G. Brain organization and the roots of anticipation in Drosophila olfactory conditioning. Neurosci Biobehav Rev 2010; 35:1166-74. [PMID: 21168436 DOI: 10.1016/j.neubiorev.2010.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/16/2022]
Abstract
Defining learning at the molecular and physiological level has been one of the greatest challenges in biology. Recent research suggests that by studying fruit fly (Drosophila melanogaster) brain organization we can now begin to unravel some of these mysteries. The fruit fly brain is organized into executive centers that regulate anatomically separate behavioral systems. The mushroom body is an example of an executive center which is modified by olfactory conditioning. During this simple form of learning, an odor is paired with either food or shock. Either experience alters distinguishable specific circuitry within the mushroom body. Results suggest that after conditioning an odor to food, the mushroom body will activate a feeding system via a subset of its circuitry. After conditioning an odor to shock, the mushroom body will instead activate an avoidance system with other subsets of mushroom body neurons. The results of these experiments demonstrate a mechanism for flies to display anticipation of their environment after olfactory conditioning has occurred. However, these results fail to provide evidence for reinforcement, a consequence of action, as part of this mechanism. Instead, specific subsets of dopaminergic and octopaminergic neurons provide a simple pairing signal, in contrast to a reinforcement signal, which allows for prediction of the environment after experience. This view has implications for models of conditioning.
Collapse
Affiliation(s)
- Gunnar Newquist
- Cell and Molecular Biology Program, Department of Biology, University of Nevada, Reno, NV 89557, United States.
| |
Collapse
|
207
|
Cury KM, Uchida N. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 2010; 68:570-85. [PMID: 21040855 DOI: 10.1016/j.neuron.2010.09.040] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2010] [Indexed: 11/16/2022]
Abstract
It has been proposed that a single sniff generates a "snapshot" of the olfactory world. However, odor coding on this timescale is poorly understood, and it is not known whether coding is invariant to changes in respiration frequency. We investigated this by recording spike trains from the olfactory bulb in awake, behaving rats. During rapid sniffing, odor inhalation triggered rapid and reliable cell- and odor-specific temporal spike patterns. These fine temporal responses conveyed substantial odor information within the first ∼100 ms, and correlated with behavioral discrimination time on a trial-by-trial basis. Surprisingly, the initial transient portions of responses were highly conserved between rapid sniffing and slow breathing. Firing rates over the entire respiration cycle carried less odor information, did not correlate with behavior, and were poorly conserved across respiration frequency. These results suggest that inhalation-coupled transient activity forms a robust neural code that is invariant to changes in respiration behavior.
Collapse
Affiliation(s)
- Kevin M Cury
- Department of Molecular and Cellular Biology, Harvard University, Center for Brain Science, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
208
|
Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 2010; 518:3907-30. [PMID: 20737592 DOI: 10.1002/cne.22452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.
Collapse
|
209
|
Time-resolved and time-scale adaptive measures of spike train synchrony. J Neurosci Methods 2010; 195:92-106. [PMID: 21129402 DOI: 10.1016/j.jneumeth.2010.11.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/04/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data.
Collapse
|
210
|
Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J Neurosci 2010; 30:14255-60. [PMID: 20962246 DOI: 10.1523/jneurosci.2747-10.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pyramidal cells in piriform cortex integrate sensory information from multiple olfactory bulb mitral and tufted (M/T) cells. However, whether M/T cells belonging to different olfactory bulb glomeruli converge onto individual cortical cells is unclear. Here we use calcium imaging in an olfactory bulb-cortex slice preparation to provide direct evidence that neurons in piriform cortex receive convergent synaptic input from different glomeruli. We show that the combined activity of distinct glomerular pathways recruits ensembles of pyramidal cells that are not activated by the individual pathways alone. This cooperative recruitment of cortical neurons only occurs over a narrow time window and is a feature intrinsic to the olfactory cortex that can be explained by the integration of converging, subthreshold synaptic input. Cooperative recruitment enhances the differences between cortical representations of partially overlapping input patterns and may contribute to the initial steps of olfactory discrimination.
Collapse
|
211
|
Kremer MC, Christiansen F, Leiss F, Paehler M, Knapek S, Andlauer TFM, Förstner F, Kloppenburg P, Sigrist SJ, Tavosanis G. Structural long-term changes at mushroom body input synapses. Curr Biol 2010; 20:1938-44. [PMID: 20951043 DOI: 10.1016/j.cub.2010.09.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/31/2010] [Accepted: 09/24/2010] [Indexed: 11/28/2022]
Abstract
How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.
Collapse
Affiliation(s)
- Malte C Kremer
- Department of Molecular Neurobiology, Dendrite Differentiation Group, Max Planck Institute (MPI) of Neurobiology, Munich-Martinsried 82152, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Martin JP, Hildebrand JG. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe? Front Behav Neurosci 2010; 4. [PMID: 20953251 PMCID: PMC2955495 DOI: 10.3389/fnbeh.2010.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/09/2010] [Indexed: 11/13/2022] Open
Abstract
The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL), that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection) neurons (PNs) in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
213
|
Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 2010; 35:655-68. [PMID: 20800615 DOI: 10.1016/j.neubiorev.2010.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/28/2022]
Abstract
Since its designation in 1896 as a putative olfactory structure, the olfactory tubercle has received little attention in terms of elucidating its role in the processing and perception of odors. Instead, research on the olfactory tubercle has mostly focused on its relationship with the reward system. Here we provide a comprehensive review of research on the olfactory tubercle-with an emphasis on the likely role of this region in olfactory processing and its contributions to perception. Further, we propose several testable hypotheses regarding the likely involvement of the olfactory tubercle in both basic (odor detection, discrimination, parallel processing of olfactory information) and higher-order (social odor processing, hedonics, multi-modal integration) functions. Together, the information within this review highlights an understudied yet potentially critical component in central odor processing.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
214
|
Evolving olfactory systems on the fly. Trends Genet 2010; 26:307-16. [PMID: 20537755 DOI: 10.1016/j.tig.2010.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/20/2022]
|
215
|
Imai T, Sakano H, Vosshall LB. Topographic mapping--the olfactory system. Cold Spring Harb Perspect Biol 2010; 2:a001776. [PMID: 20554703 DOI: 10.1101/cshperspect.a001776] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
Collapse
Affiliation(s)
- Takeshi Imai
- The University of Tokyo, Graduate School of Science, Department of Biophysics and Biochemistry, Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
216
|
Marshall B, Warr CG, de Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses 2010; 35:613-25. [PMID: 20530374 PMCID: PMC2924425 DOI: 10.1093/chemse/bjq050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatiles with applications in law enforcement, emergency response, and security. We first characterized responses of the majority of olfactory neuron types to a set of diagnostic odorants. Being thus able to correctly identify neurons, we then screened for responses from 38 different types of neurons to 35 agents. We identified 13 neuron types with responses to 13 agents. As individual Drosophila receptor genes have been mapped to neuron types, we can infer which genes confer responsiveness to the neurons. The responses were confirmed for one receptor by expressing it in a nonresponsive neuron. The fly olfactory system is mainly adapted to detect volatiles from fermenting fruits. However, our findings establish that volatiles associated with illicit substances, many of which are of nonnatural origin, are also detected by Drosophila receptors.
Collapse
|
217
|
Freund JA, Nikitin A, Stocks NG. Phase locking below rate threshold in noisy model neurons. Neural Comput 2010; 22:599-620. [PMID: 19922293 DOI: 10.1162/neco.2009.01-09-934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The property of a neuron to phase-lock to an oscillatory stimulus before adapting its spike rate to the stimulus frequency plays an important role for the auditory system. We investigate under which conditions neurons exhibit this phase locking below rate threshold. To this end, we simulate neurons employing the widely used leaky integrate-and-fire (LIF) model. Tuning parameters, we can arrange either an irregular spontaneous or a tonic spiking mode. When the neuron is stimulated in both modes, a significant rise of vector strength prior to a noticeable change of the spike rate can be observed. Combining analytic reasoning with numerical simulations, we trace this observation back to a modulation of interspike intervals, which itself requires spikes to be only loosely coupled. We test the limits of this conception by simulating an LIF model with threshold fatigue, which generates pronounced anticorrelations between subsequent interspike intervals. In addition we evaluate the LIF response for harmonic stimuli of various frequencies and discuss the extension to more complex stimuli. It seems that phase locking below rate threshold occurs generically for all zero mean stimuli. Finally, we discuss our findings in the context of stimulus detection.
Collapse
Affiliation(s)
- Jan A Freund
- ICBM, University of Oldenburg, Oldenburg, Germany.
| | | | | |
Collapse
|
218
|
Ahn S, Smith BH, Borisyuk A, Terman D. Analyzing Neuronal Networks Using Discrete-Time Dynamics. PHYSICA D. NONLINEAR PHENOMENA 2010; 239:515-528. [PMID: 20454529 PMCID: PMC2864597 DOI: 10.1016/j.physd.2009.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both mathematically and computationally, and parameters in the discrete model correspond directly to parameters in the original system of differential equations. While these networks arise in many important applications, a primary focus of this paper is to better understand mechanisms that underlie temporally dynamic responses in early processing of olfactory sensory information. The models presented here exhibit several properties that have been described for olfactory codes in an insect's Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory inputs. By reducing the model to a discrete system, we are able to systematically study how properties of the dynamics, including the complex structure of the transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic properties of cells within the network.
Collapse
Affiliation(s)
- Sungwoo Ahn
- Department of Mathematics, Ohio State University, Columbus, Ohio 43210
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
219
|
Tan J, Savigner A, Ma M, Luo M. Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 2010; 65:912-26. [PMID: 20346765 DOI: 10.1016/j.neuron.2010.02.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
In mammals, olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene project with precise stereotypy onto mitral/tufted (M/T) cells in the main olfactory bulb (MOB). It remains challenging to understand how incoming olfactory signals are transformed into outputs of M/T cells. By recording from OSNs expressing mouse I7 receptor and their postsynaptic neurons in the bulb, we found that I7 OSNs and their corresponding M/T cells exhibit similarly selective tuning profiles at low concentrations. Increasing the concentration significantly reduces response selectivity for both OSNs and M/T cells, although the tuning curve of M/T cells remains comparatively narrow. By contrast, interneurons in the MOB are broadly tuned, and blocking GABAergic neurotransmission reduces selectivity of M/T cells at high odorant concentrations. Our results indicate that olfactory information carried by an OR is channeled to its corresponding M/T cells and support the role of lateral inhibition via interneurons in sharpening the tuning of M/T cells.
Collapse
Affiliation(s)
- Jie Tan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
220
|
Gomez-Marin A, Duistermars BJ, Frye MA, Louis M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 2010; 4:6. [PMID: 20407585 PMCID: PMC2854573 DOI: 10.3389/fncel.2010.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022] Open
Abstract
Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg's vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Universitat Pompeu Fabra Barcelona, Spain
| | | | | | | |
Collapse
|
221
|
Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci U S A 2010; 107:6052-7. [PMID: 20231443 DOI: 10.1073/pnas.0909032107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian olfactory system detects an unlimited variety of odorants with a limited set of odorant receptors. To cope with the complexity of the odor world, each odorant receptor must detect many different odorants. The demand for low odor selectivity creates problems for the transduction process: the initial transduction step, the synthesis of the second messenger cAMP, operates with low efficiency, mainly because odorants bind only briefly to their receptors. Sensory cilia of olfactory receptor neurons have developed an unusual solution to this problem. They accumulate chloride ions at rest and discharge a chloride current upon odor detection. This chloride current amplifies the receptor potential and promotes electrical excitation. We have studied this amplification process by examining identity, subcellular localization, and regulation of its molecular components. We found that the Na(+)/K(+)/2Cl(-) cotransporter NKCC1 is expressed in the ciliary membrane, where it mediates chloride accumulation into the ciliary lumen. Gene silencing experiments revealed that the activity of this transporter depends on the kinases SPAK and OSR1, which are enriched in the cilia together with their own activating kinases, WNK1 and WNK4. A second Cl(-) transporter, the Cl(-)/HCO(3)(-) exchanger SLC4A1, is expressed in the cilia and may support Cl(-) accumulation. The calcium-dependent chloride channel TMEM16B (ANO2) provides a ciliary pathway for the excitatory chloride current. These findings describe a specific set of ciliary proteins involved in anion-based signal amplification. They provide a molecular concept for the unique strategy that allows olfactory sensory neurons to operate as efficient transducers of weak sensory stimuli.
Collapse
|
222
|
Abstract
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not just the size of brain regions, which underlie these feats. Neural network analyses show that cognitive features found in insects, such as numerosity, attention and categorisation-like processes, may require only very limited neuron numbers. Thus, brain size may have less of a relationship with behavioural repertoire and cognitive capacity than generally assumed, prompting the question of what large brains are for. Larger brains are, at least partly, a consequence of larger neurons that are necessary in large animals due to basic biophysical constraints. They also contain greater replication of neuronal circuits, adding precision to sensory processes, detail to perception, more parallel processing and enlarged storage capacity. Yet, these advantages are unlikely to produce the qualitative shifts in behaviour that are often assumed to accompany increased brain size. Instead, modularity and interconnectivity may be more important.
Collapse
|
223
|
Isaacson JS. Odor representations in mammalian cortical circuits. Curr Opin Neurobiol 2010; 20:328-31. [PMID: 20207132 DOI: 10.1016/j.conb.2010.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
Abstract
Spatial and temporal activity patterns of olfactory bulb projection neurons underlie the initial representations of odors in the brain. However, olfactory perception ultimately requires the integration of olfactory bulb output in higher cortical brain regions. Recent studies reveal that odor representations are sparse and highly distributed in the rodent primary olfactory (piriform) cortex. Furthermore, odor-evoked inhibition is far more widespread and broadly tuned than excitation in piriform cortex pyramidal cells. Other recent studies highlight how olfactory sensory inputs are integrated within pyramidal cell dendrites and that feedback projections from piriform cortex to olfactory bulb interneurons are a source of synaptic plasticity.
Collapse
Affiliation(s)
- Jeffry S Isaacson
- Center for Neural Circuits and Behavior, Dept. of Neuroscience, University of California, San Diego, La Jolla, 92093, USA.
| |
Collapse
|
224
|
Løfaldli BB, Kvello P, Mustaparta H. Integration of the antennal lobe glomeruli and three projection neurons in the standard brain atlas of the moth heliothis virescens. Front Syst Neurosci 2010; 4:5. [PMID: 20179785 PMCID: PMC2826183 DOI: 10.3389/neuro.06.005.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 01/26/2010] [Indexed: 11/13/2022] Open
Abstract
Digital three dimensional standard brain atlases (SBAs) are valuable tools for integrating neuroimaging data of different preparations. In insects, SBAs of five species are available, including the atlas of the female Heliothis virescens moth brain. Like for the other species, the antennal lobes (ALs) of the moth brain atlas were integrated as one material identity without internal structures. Different from the others, the H. virescens SBA exclusively included the glomerular layer of the AL. This was an advantage in the present study for performing a direct registration of the glomerular layer of individual preparations into the standard brain. We here present the H. virescens female SBA with a new model of the AL glomeruli integrated into the atlas, i.e. with each of the 66 glomeruli identified and labelled with a specific number. The new model differs from the previous H. virescens AL model both in respect to the number of glomeruli and the numbering system; the latter according to the system used for the AL atlases of two other heliothine species. For identifying female specific glomeruli comparison with the male AL was necessary. This required a new male AL atlas, included in this paper. As demonstrated by the integration of three AL projection neurons of different preparations, the new SBA with the integrated glomruli is a helpful tool for determining the glomeruli innervated as well as the relative position of the axonal projections in the protocerebrum.
Collapse
Affiliation(s)
- Bjarte Bye Løfaldli
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology Trondheim, Norway
| | | | | |
Collapse
|
225
|
Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 2010; 464:66-71. [PMID: 20130575 PMCID: PMC2833235 DOI: 10.1038/nature08834] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/15/2010] [Indexed: 12/02/2022]
Abstract
The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae Odourant Receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odourants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behavior. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odourant receptor repertoire. We find that odourants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.
Collapse
Affiliation(s)
- Allison F Carey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
226
|
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci 2010; 30:505-14. [PMID: 20071513 DOI: 10.1523/jneurosci.4622-09.2010] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta.
Collapse
|
227
|
Galizia CG, Rössler W. Parallel olfactory systems in insects: anatomy and function. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:399-420. [PMID: 19737085 DOI: 10.1146/annurev-ento-112408-085442] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A striking commonality across insects and vertebrates is the recurring presence of parallel olfactory subsystems, suggesting that such an organization has a highly adaptive value. Conceptually, two different categories of parallel systems must be distinguished. In one, specific sensory organs or processing streams analyze different chemical stimuli (segregate parallel systems). In the other, similar odor stimuli are processed but analyzed with respect to different features (dual parallel systems). Insects offer many examples for both categories. For example, segregate parallel systems for different chemical stimuli are realized in specialized neuronal streams for processing sex pheromones and CO(2). Dual parallel streams related to similar or overlapping odor stimuli are prominent in Hymenoptera. Here, a clear separation of sensory tracts to higher-order brain centers is present despite no apparent differences regarding the classes or categories of olfactory stimuli being processed. In this paper, we review the situation across insect species and offer hypotheses for the function and evolution of parallel olfactory systems.
Collapse
|
228
|
Abstract
In both insect and vertebrate olfactory systems only two synapses separate the sensory periphery from brain areas required for memory formation and the organisation of behaviour. In the Drosophila olfactory system, which is anatomically very similar to its vertebrate counterpart, there has been substantial recent progress in understanding the flow of information from experiments using molecular genetic, electrophysiological and optical imaging techniques. In this review, we shall focus on how olfactory information is processed and transformed in order to extract behaviourally relevant information. We follow the progress from olfactory receptor neurons, through the first processing area, the antennal lobe, to higher olfactory centres. We address both the underlying anatomy and mechanisms that govern the transformation of neural activity. We emphasise our emerging understanding of how different elementary computations, including signal averaging, gain control, decorrelation and integration, may be mapped onto different circuit elements.
Collapse
Affiliation(s)
- Nicolas Y Masse
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
229
|
Husch A, Paehler M, Fusca D, Paeger L, Kloppenburg P. Distinct Electrophysiological Properties in Subtypes of Nonspiking Olfactory Local Interneurons Correlate With Their Cell Type–Specific Ca2+ Current Profiles. J Neurophysiol 2009; 102:2834-45. [DOI: 10.1152/jn.00627.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A diverse population of local interneurons (LNs) helps to process, structure, and spatially represent olfactory information in the insect antennal lobe. In Periplaneta americana, we identified two subtypes of nonspiking local interneurons (type II LNs) by their distinct morphological and intrinsic electrophysiological properties. As an important step toward a better understanding of the cellular mechanisms that mediate odor information processing, we present a detailed analysis of their distinct voltage-activated Ca2+ currents, which clearly correlated with their distinct intrinsic electrophysiological properties. Both type II LNs did not posses voltage-activated Na+ currents and apparently innervated all glomeruli including the macroglomerulus. Type IIa LNs had significant longer and thicker low-order neurites and innervated each glomerulus entirely and homogeneously, whereas type IIb LNs innervated only parts of each glomerulus. All type II LNs were broadly tuned and responded to odorants of many chemical classes with graded changes in the membrane potential. Type IIa LNs responded with odor-specific elaborate patterns of excitation that could also include “spikelets” riding on the depolarizations and periods of inhibition. In contrast, type IIb LNs responded mostly with sustained, relatively smooth depolarizations. Consistent with the strong active membrane properties of type IIa LNs versus type IIb LNs, the voltage-activated Ca2+ current of type IIa LNs activated at more hyperpolarized membrane potentials and had a larger transient component.
Collapse
Affiliation(s)
- Andreas Husch
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Moritz Paehler
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Debora Fusca
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lars Paeger
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
230
|
Abstract
Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.
Collapse
Affiliation(s)
| | | | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven 06520, USA
| |
Collapse
|
231
|
Abstract
Decades of work in vivo and in vitro have provided a wealth of data on the properties of the reciprocal dendrodendritic synapses that connect olfactory bulb mitral and granule cells. However, hypotheses about the function of these connections have changed relatively little. These synapses are believed to mediate recurrent and lateral inhibition and thus, by analogy with lateral inhibition in other systems, have been proposed to play a role in sharpening mitral cell receptive fields and in generating oscillatory spiking in mitral cells. This description is likely to be partially accurate, but is likely to be a rather simplified and incomplete account of the function of these connections. In particular, current hypotheses about the function of dendrodendritic circuits do not account for some of the unusual features of reciprocal synapses that may allow olfactory bulb circuits to perform special functions. Here we review recent work on the physiology and function of olfactory bulb circuits and try to link the physiological properties of reciprocal synapses particular computations that the olfactory bulb may perform.
Collapse
Affiliation(s)
- Nathaniel N Urban
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
232
|
Abstract
The neural basis of olfactory information processing and olfactory percept formation is a topic of intense investigation as new genetic, optical, and psychophysical tools are brought to bear to identify the sites and interaction modes of cortical areas involved in the central processing of olfactory information. New methods for recording cellular interactions and network events in the awake, behaving brain during olfactory processing and odor-based decision making have shown remarkable new properties of neuromodulation and synaptic interactions distinct from those observed in anesthetized brains. Psychophysical, imaging, and computational studies point to the orbitofrontal cortex as the likely locus of odor percept formation in mammals, but further work is needed to identify a causal link between perceptual and neural events in this area.
Collapse
Affiliation(s)
- Alan Gelperin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
233
|
Restrepo D, Whitesell J, Doucette W. Need for related multipronged approaches to understand olfactory bulb signal processing. Ann N Y Acad Sci 2009; 1170:298-305. [PMID: 19686151 DOI: 10.1111/j.1749-6632.2009.04375.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent work from our laboratory in awake behaving animals shows that olfactory bulb processing changes depending profoundly on behavioral context. Thus, we find that when recording from the olfactory bulb in a mouse during a go-no go association learning task, it is not unusual to find a mitral cell that initially does not respond to the rewarded or unrewarded odors but develops a differential response to the stimuli during the learning session. This places a challenge on how to approach understanding of olfactory bulb processing, because neural interactions differ depending on the status of the animal. Here we address the question of how the different approaches to study olfactory bulb neuron responses, including studies in anesthetized and unanesthetized animals in vivo and recordings in slices, complement each other. We conclude that more critical understanding of the relationship between the measurements in the different preparations is necessary for future advances in the understanding of olfactory bulb processing of odor information.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
234
|
Egger V, Stroh O. Calcium buffering in rodent olfactory bulb granule cells and mitral cells. J Physiol 2009; 587:4467-79. [PMID: 19635818 DOI: 10.1113/jphysiol.2009.174540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the mammalian olfactory bulb, axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between mitral cells (MCs) via reciprocal dendrodendritic synapses. Calcium signals in the GC dendrites and reciprocal spines appear to decay unusually slowly, hence GC calcium handling might contribute to the known asynchronous release at this synapse. By recording fluorescence transients of different Ca(2+)-sensitive dyes at variable concentrations evoked by backpropagating action potentials (APs) and saturating AP trains we extrapolated Ca(2+) dynamics to conditions of zero added buffer for juvenile rat GC apical dendrites and spines and MC lateral dendrites. Resting [Ca(2+)] was at approximately 50 nM in both GC dendrites and spines. The average endogenous GC buffer capacities (kappa(E)) were within a range of 80-90 in the dendrites and 110-140 in the spines. The extrusion rate (gamma) was estimated as 570 s(-1) for dendrites and 870 s(-1) for spines and the decay time constant as approximately 200 ms for both. Single-current-evoked APs resulted in a [Ca(2+)] elevation of approximately 250 nM. Calcium handling in juvenile and adult mouse GCs appeared mostly similar. In MC lateral dendrites, we found AP-mediated [Ca(2+)] elevations of approximately 130 nM with a similar decay to that in GC dendrites, while kappa(E) and gamma were roughly 4-fold higher. In conclusion, the slow GC Ca(2+) dynamics are due mostly to sluggish Ca(2+) extrusion. Under physiological conditions this slow removal may well contribute to delayed release and also feed into other Ca(2+)-dependent mechanisms that foster asynchronous output from the reciprocal spine.
Collapse
Affiliation(s)
- Veronica Egger
- Institut für Physiologie der Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | |
Collapse
|
235
|
Pippow A, Husch A, Pouzat C, Kloppenburg P. Differences of Ca2+ handling properties in identified central olfactory neurons of the antennal lobe. Cell Calcium 2009; 46:87-98. [PMID: 19545897 DOI: 10.1016/j.ceca.2009.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Information processing in neurons depends on highly localized Ca2+ signals. The spatial and temporal dynamics of these signals are determined by a variety of cellular parameters including the calcium influx, calcium buffering and calcium extrusion. Our long-term goal is to better understand how intracellular Ca2+ dynamics are controlled and contribute to information processing in defined interneurons of the insect olfactory system. The latter has served as an excellent model to study general mechanisms of olfaction. Using patch-clamp recordings and fast optical imaging in combination with the 'added buffer approach', we analyzed the Ca2+ handling properties of different identified neuron types in Periplaneta americana's olfactory system. Our focus was on two types of local interneurons (LNs) with significant differences in intrinsic electrophysiological properties: (1) spiking LNs that generate 'normal' Na+ driven action potentials and (2) non-spiking LNs that do not express voltage-activated Na+ channels. We found that the distinct electrophysiological properties from different types of central olfactory interneurons are strongly correlated with their cell specific calcium handling properties: non-spiking LNs, in which Ca2+ is the only cation that enters the cell to contribute to membrane depolarization, had the highest endogenous Ca2+ binding ratio and Ca2+ extrusion rate.
Collapse
Affiliation(s)
- Andreas Pippow
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne and Cologne Excellence Cluster in Aging Associated Diseases, University of Cologne, Weyertal 119, Cologne 50931, Germany
| | | | | | | |
Collapse
|
236
|
Patel M, Rangan AV, Cai D. A large-scale model of the locust antennal lobe. J Comput Neurosci 2009; 27:553-67. [PMID: 19548077 DOI: 10.1007/s10827-009-0169-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/11/2009] [Accepted: 06/02/2009] [Indexed: 11/27/2022]
Abstract
The antennal lobe (AL) is the primary structure within the locust's brain that receives information from olfactory receptor neurons (ORNs) within the antennae. Different odors activate distinct subsets of ORNs, implying that neuronal signals at the level of the antennae encode odors combinatorially. Within the AL, however, different odors produce signals with long-lasting dynamic transients carried by overlapping neural ensembles, suggesting a more complex coding scheme. In this work we use a large-scale point neuron model of the locust AL to investigate this shift in stimulus encoding and potential consequences for odor discrimination. Consistent with experiment, our model produces stimulus-sensitive, dynamically evolving populations of active AL neurons. Our model relies critically on the persistence time-scale associated with ORN input to the AL, sparse connectivity among projection neurons, and a synaptic slow inhibitory mechanism. Collectively, these architectural features can generate network odor representations of considerably higher dimension than would be generated by a direct feed-forward representation of stimulus space.
Collapse
Affiliation(s)
- Mainak Patel
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
237
|
Gollo LL, Kinouchi O, Copelli M. Active dendrites enhance neuronal dynamic range. PLoS Comput Biol 2009; 5:e1000402. [PMID: 19521531 PMCID: PMC2690843 DOI: 10.1371/journal.pcbi.1000402] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 05/04/2009] [Indexed: 11/18/2022] Open
Abstract
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. Most neurons present cellular tree-like extensions known as dendrites, which receive input signals from synapses with other cells. Some neurons have very large and impressive dendritic arbors. What is the function of such elaborate and costly structures? The functional role of dendrites is not obvious because, if dendrites were an electrical passive medium, then signals from their periphery could not influence the neuron output activity. Dendrites, however, are not passive, but rather active media that amplify and support pulses (dendritic spikes). These voltage pulses do not simply add but can also annihilate each other when they collide. To understand the net effect of the complex interactions among dendritic spikes under massive synaptic input, here we examine a computational model of excitable dendritic trees. We show that, in contrast to passive trees, they have a very large dynamic range, which implies a greater capacity of the neuron to distinguish among the widely different intensities of input which it receives. Our results provide an explanation to the concentration invariance property observed in olfactory processing, due to the very similar response to different inputs. In addition, our modeling approach also suggests a microscopic neural basis for the century old psychophysical laws.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | | |
Collapse
|
238
|
Abstract
Odors synchronize the activity of olfactory bulb mitral cells that project to the same glomerulus. In vitro, a slow rhythmic excitation intrinsic to the glomerular network persists, even in the absence of afferent input. We show here that a subpopulation of juxtaglomerular cells, external tufted (ET) cells, may trigger this rhythmic activity. We used paired whole-cell recording and Ca(2+) imaging in bulb slices from wild-type and transgenic mice expressing the fluorescent Ca(2+) indicator protein GCaMP-2. Slow, periodic population bursts in mitral cells were synchronized with spontaneous discharges in ET cells. Moreover, activation of a single ET cell was sufficient to evoke population bursts in mitral cells within the same glomerulus. Stimulation of the olfactory nerve induced similar population bursts and activated ET cells at a lower threshold than mitral cells, suggesting that ET cells mediate feedforward excitation of mitral cells. We propose that ET cells act as essential drivers of glomerular output to the olfactory cortex.
Collapse
|
239
|
Calcium current diversity in physiologically different local interneuron types of the antennal lobe. J Neurosci 2009; 29:716-26. [PMID: 19158298 DOI: 10.1523/jneurosci.3677-08.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Behavioral and physiological studies show that neuronal interactions among the glomeruli in the insect antennal lobe (AL) take place during the processing of odor information. These interactions are mediated by a complex network of inhibitory and excitatory local interneurons (LNs) that restructure the olfactory representation in the AL, thereby regulating the tuning profile of projection neurons. In Periplaneta americana, we characterized two LN types with distinctive physiological properties: (1) type I LNs that generated Na(+)-driven action potentials on odor stimulation and exhibited GABA-like immunoreactivity (GLIR) and (2) type II LNs, in which odor stimulation evoked depolarizations, but no Na(+)-driven action potentials (APs). Type II LNs did not express voltage-dependent transient Na(+) currents and accordingly would not trigger transmitter release by Na(+)-driven APs. Ninety percent of type II LNs did not exhibit GLIR. The distinct intrinsic firing properties were reflected in functional parameters of their voltage-activated Ca(2+) currents (I(Ca)). Consistent with graded synaptic release, we found a shift in the voltage for half-maximal activation of I(Ca) to more hyperpolarized membrane potentials in the type II LNs. These marked physiological differences between the two LN types imply consequences for their computational capacity, synaptic output kinetics, and thus their function in the olfactory circuit.
Collapse
|
240
|
Ghatpande AS, Gelperin A. Presynaptic Muscarinic Receptors Enhance Glutamate Release at the Mitral/Tufted to Granule Cell Dendrodendritic Synapse in the Rat Main Olfactory Bulb. J Neurophysiol 2009; 101:2052-61. [DOI: 10.1152/jn.90734.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that results in γ-aminobutyric acid (GABA) release onto mitral/tufted cells. We demonstrate that the broad-spectrum cholinergic agonist carbachol triggers glutamate release from mitral/tufted cells that activates both AMPA and NMDA receptors on granule cells. Activation of the granule cell glutamate receptors leads to calcium influx through voltage-gated calcium channels, resulting in spike-independent, asynchronous GABA release at reciprocal dendrodendritic synapses that granule cells form with mitral/tufted cells. This cholinergic modulation of glutamate release persists through much of postnatal bulbar development, suggesting a functional role for cholinergic inputs from the basal forebrain in bulbar processing of olfactory inputs and possibly in postnatal development of the olfactory bulb.
Collapse
|
241
|
Neural encoding of rapidly fluctuating odors. Neuron 2009; 61:570-86. [PMID: 19249277 DOI: 10.1016/j.neuron.2009.01.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 11/12/2008] [Accepted: 01/21/2009] [Indexed: 11/20/2022]
Abstract
Olfactory processing in the insect antennal lobe is a highly dynamic process, yet it has been studied primarily with static step stimuli. To approximate the rapid odor fluctuations encountered in nature, we presented flickering "white-noise" odor stimuli to the antenna of the locust and recorded spike trains from antennal lobe projection neurons (PNs). The responses varied greatly across PNs and across odors for the same PN. Surprisingly, this diversity across the population was highly constrained, and most responses were captured by a quantitative model with just 3 parameters. Individual PNs were found to communicate odor information at rates up to approximately 4 bits/s. A small group of PNs was sufficient to provide an accurate representation of the dynamic odor time course, whose quality was maximal for fluctuations of frequency approximately 0.8 Hz. We develop a simple model for the encoding of dynamic odor stimuli that accounts for many prior observations on the population response.
Collapse
|
242
|
Bozza T, Vassalli A, Fuss S, Zhang JJ, Weiland B, Pacifico R, Feinstein P, Mombaerts P. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 2009; 61:220-33. [PMID: 19186165 DOI: 10.1016/j.neuron.2008.11.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/10/2008] [Accepted: 11/10/2008] [Indexed: 11/29/2022]
Abstract
The repertoire of approximately 1200 odorant receptors (ORs) is mapped onto the array of approximately 1800 glomeruli in the mouse olfactory bulb (OB). The spatial organization of this array is influenced by the ORs. Here we show that glomerular mapping to broad domains in the dorsal OB is determined by two types of olfactory sensory neurons (OSNs), which reside in the dorsal olfactory epithelium. The OSN types express either class I or class II OR genes. Axons from the two OSN types segregate already within the olfactory nerve and form distinct domains of glomeruli in the OB. These class-specific anatomical domains correlate with known functional odorant response domains. However, axonal segregation and domain formation are not determined by the class of the expressed OR protein. Thus, the two OSN types are determinants of axonal wiring, operate at a higher level than ORs, and contribute to the functional organization of the glomerular array.
Collapse
Affiliation(s)
- Thomas Bozza
- The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Asahina K, Louis M, Piccinotti S, Vosshall LB. A circuit supporting concentration-invariant odor perception in Drosophila. J Biol 2009; 8:9. [PMID: 19171076 PMCID: PMC2656214 DOI: 10.1186/jbiol108] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/14/2008] [Accepted: 12/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most odors are perceived to have the same quality over a large concentration range, but the neural mechanisms that permit concentration-invariant olfactory perception are unknown. In larvae of the vinegar fly Drosophila melanogaster, odors are sensed by an array of 25 odorant receptors expressed in 21 olfactory sensory neurons (OSNs). We investigated how subsets of larval OSNs with overlapping but distinct response properties cooperate to mediate perception of a given odorant across a range of concentrations. RESULTS Using calcium imaging, we found that ethyl butyrate, an ester perceived by humans as fruity, activated three OSNs with response thresholds that varied across three orders of magnitude. Whereas wild-type larvae were strongly attracted by this odor across a 500-fold range of concentration, individuals with only a single functional OSN showed attraction across a narrower concentration range corresponding to the sensitivity of each ethyl butyrate-tuned OSN. To clarify how the information carried by different OSNs is integrated by the olfactory system, we characterized the response properties of local inhibitory interneurons and projection neurons in the antennal lobe. Local interneurons only responded to high ethyl butyrate concentrations upon summed activation of at least two OSNs. Projection neurons showed a reduced response to odors when summed input from two OSNs impinged on the circuit compared to when there was only a single functional OSN. CONCLUSIONS Our results show that increasing odor concentrations induce progressive activation of concentration-tuned olfactory sensory neurons and concomitant recruitment of inhibitory local interneurons. We propose that the interplay of combinatorial OSN input and local interneuron activation allows animals to remain sensitive to odors across a large range of stimulus intensities.
Collapse
Affiliation(s)
- Kenta Asahina
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Current address: Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthieu Louis
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Current address: EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, UPF, Barcelona 08003, Spain
| | - Silvia Piccinotti
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Current address: Program of Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
244
|
Abstract
When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons--insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the role of local neurons in odor information processing we have used the calcium sensor G-CaMP to perform in vivo recordings of odor-evoked spatiotemporal activity patterns in five genetically defined neuron populations of the antennal lobe of Drosophila melanogaster: three distinct populations of local neurons (two GABAergic and one cholinergic), as well as sensory neurons and projection neurons. Odor-specific and concentration dependent spatiotemporal response patterns varied among neuron populations. Activity transfer differed along the olfactory pathway for different glomerulus-odor combinations: we found cases of profile broadening and of linear and complex transfer. Moreover, the discriminability between the odors also varied across neuron populations and was maximal in projection neurons. Discriminatory power increased with higher odor concentrations over a wide dynamic range, but decreased at the highest concentration. These results show the complexity and diversity of odor information processing mechanisms across olfactory glomeruli in the fly antennal lobe.
Collapse
|
245
|
The olfactory sensory map in Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 628:102-14. [PMID: 18683641 DOI: 10.1007/978-0-387-78261-4_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fruit fly (Drosophila melanogaster) exhibits robust odor-evoked behaviors in response to cues from diverse host plants and pheromonal cues from other flies. Understanding how the adult olfactory system supports the perception of these odorous chemicals and translates them into appropriate attraction or avoidance behaviors is an important goal in contemporary sensory neuroscience. Recent advances in genomics and molecular neurobiology have provided an unprecedented level of detail into how the adult Drosophila olfactory system is organized. Volatile odorants are sensed by two bilaterally symmetric olfactory sensory appendages, the third segment of the antenna and the maxillary palps, which respectively contain approximately 1200 and 120 olfactory sensory neurons (OSNs) each. These OSNs express a divergent family of seven transmembrane domain odorant receptors (ORs) with no homology to vertebrate ORs, which determine the odor specificity of a given OSN. Drosophila was the first animal for which all OR genes were cloned, their patterns of gene expression determined and axonal projections of most OSNs elucidated. In vivo electrophysiology has been used to decode the ligand response profiles of most of the ORs, providing insight into the initial logic of olfactory coding in the fly. This chapter will review the molecular biology, neuroanatomy and function of the peripheral olfactory system of Drosophila.
Collapse
|
246
|
Abstract
Decisions about whom to mate with can sometimes be difficult, but making the right choice is critical for an animal's reproductive success. The ubiquitous fruit fly, Drosophila, is clearly very good at making these decisions. Upon encountering another fly, a male may or may not choose to court. He estimates his chances of success primarily on the basis of pheromone signals and previous courtship experience. The female decides whether to accept or reject the male, depending on her perception of his pheromone and acoustic signals, as well as her own readiness to mate. This simple and genetically tractable system provides an excellent model to explore the neurobiology of decision making.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology, Doktor Bohr-gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
247
|
Abstract
The exact nature of the olfactory signals that arrive in the brain from the periphery, and their reproducibility, remain essentially unknown. In most organisms, the sheer number of olfactory sensory neurons (OSNs) makes it impossible to measure the individual responses of the entire population. We measured the individual in situ electrophysiological activity of OSNs in Drosophila larvae, in response to stimulation with 10 aliphatic odors (alcohols and esters). We studied control larvae (a total of 296 OSNs) and larvae with a single functional OSN, created using the Gal4-upstream activator sequence system. Most OSNs showed consistent, precise responses (either excitation or inhibition) in response to a given odor. Some OSNs also showed qualitatively variable responses ("fuzzy coding"). This robust variability was an intrinsic property of these neurons: it was not attributable to odor type, concentration, stimulus duration, genotype, or interindividual differences, and was seen in control larvae and in larvae with one and two functional OSNs. We conclude that in Drosophila larvae the peripheral code combines precise coding with fuzzy, stochastic responses in which neurons show qualitative variability in their responses to a given odor. We hypothesize that fuzzy coding occurs in other organisms, is translated into differing degrees of activation of the glomeruli, and forms a key component of response variability in the first stages of olfactory processing.
Collapse
|
248
|
Abstract
The computational role of the olfactory bulb remains a mystery after 60 yr of physiological research. Recently, Fantana and colleagues proposed a new model of bulb function based on sparse inhibitory connections between glomeruli, the functional units of the bulb, rather than the existing lateral inhibition model. I present a summary of their model here and its implications along with comparison to recent work in the very similar Drosophila olfactory system.
Collapse
|
249
|
Shlens J, Rieke F, Chichilnisky E. Synchronized firing in the retina. Curr Opin Neurobiol 2008; 18:396-402. [PMID: 18832034 PMCID: PMC2711873 DOI: 10.1016/j.conb.2008.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/26/2022]
Abstract
Synchronized firing in neural populations has been proposed to constitute an elementary aspect of the neural code, but a complete understanding of its origins and significance has been elusive. Synchronized firing has been extensively documented in retinal ganglion cells, the output neurons of the retina. However, differences in synchronized firing across species and cell types have led to varied conclusions about its mechanisms and role in visual signaling. Recent work on two identified cell populations in the primate retina, the ON-parasol and OFF-parasol cells, permits a more unified understanding. Intracellular recordings reveal that synchronized firing in these cell types arises primarily from common synaptic input to adjacent pairs of cells. Statistical analysis indicates that local pairwise interactions can explain the pattern of synchronized firing in the entire parasol cell population. Computational analysis reveals that the aggregate impact of synchronized firing on the visual signal is substantial. Thus, in the parasol cells, the origin and impact of synchronized firing on the neural code may be understood as locally shared input which influences the visual signals transmitted from eye to brain.
Collapse
|
250
|
Kreher SA, Mathew D, Kim J, Carlson JR. Translation of sensory input into behavioral output via an olfactory system. Neuron 2008; 59:110-24. [PMID: 18614033 PMCID: PMC2496968 DOI: 10.1016/j.neuron.2008.06.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/21/2008] [Accepted: 06/11/2008] [Indexed: 11/24/2022]
Abstract
We investigate the logic by which sensory input is translated into behavioral output. First we provide a functional analysis of the entire odor receptor repertoire of an olfactory system. We construct tuning curves for the 21 functional odor receptors of the Drosophila larva and show that they sharpen at lower odor doses. We construct a 21-dimensional odor space from the responses of the receptors and find that the distance between two odors correlates with the extent to which one odor masks the other. Mutational analysis shows that different receptors mediate the responses to different concentrations of an odorant. The summed response of the entire receptor repertoire correlates with the strength of the behavioral response. The activity of a small number of receptors is a surprisingly powerful predictor of behavior. Odors that inhibit more receptors are more likely to be repellents. Odor space is largely conserved between two dissimilar olfactory systems.
Collapse
Affiliation(s)
- Scott A. Kreher
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven CT 06520
| | - Dennis Mathew
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven CT 06520
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - John R. Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven CT 06520
| |
Collapse
|