201
|
Humphreys GF, Lambon Ralph MA. Mapping Domain-Selective and Counterpointed Domain-General Higher Cognitive Functions in the Lateral Parietal Cortex: Evidence from fMRI Comparisons of Difficulty-Varying Semantic Versus Visuo-Spatial Tasks, and Functional Connectivity Analyses. Cereb Cortex 2018; 27:4199-4212. [PMID: 28472382 DOI: 10.1093/cercor/bhx107] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Numerous cognitive domains have been associated with the lateral parietal cortex, yet how these disparate functions are packed into this region remains unclear. Whilst areas within the dorsal and the ventral parietal cortex (DPC and VPC) show differential function, there is considerable disagreement as to what these functions might be. Studies focussed on individual domains have plotted out variations of function across the region. Direct cross-domain comparisons are rare yet, when they have been undertaken, at least some regions (particularly the intraparietal sulcus [IPS] and core angular gyrus [AG]) appear to have contrastive domain-general qualities. In order to pursue this parietal puzzle, this study utilized both functional and resting-state magnetic resonance imaging to investigate a potential unifying neurocomputational framework-in which both domain general as well as domain-selective regions arise from differential patterns of connectivity into subregions of the lateral parietal cortex. Specifically we found that, consistent with their contrastive patterns of functional connectivity, subregions of DPC (anterior IPS) and VPC (AG) exhibit counterpointed functions sensitive to task/item-difficulty irrespective of cognitive domain. We propose that these regions serve as top-down executively penetrated and automatic bottom-up domain-general buffers of active information, respectively. In contrast, other parietal and nonparietal regions are tuned toward specific domains.
Collapse
Affiliation(s)
- Gina F Humphreys
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
202
|
Murphy C, Jefferies E, Rueschemeyer SA, Sormaz M, Wang HT, Margulies DS, Smallwood J. Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage 2018; 171:393-401. [PMID: 29339310 PMCID: PMC5883322 DOI: 10.1016/j.neuroimage.2018.01.017] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
The default mode network supports a variety of mental operations such as semantic processing, episodic memory retrieval, mental time travel and mind-wandering, yet the commonalities between these functions remains unclear. One possibility is that this system supports cognition that is independent of the immediate environment; alternatively or additionally, it might support higher-order conceptual representations that draw together multiple features. We tested these accounts using a novel paradigm that separately manipulated the availability of perceptual information to guide decision-making and the representational complexity of this information. Using task based imaging we established regions that respond when cognition combines both stimulus independence with multi-modal information. These included left and right angular gyri and the left middle temporal gyrus. Although these sites were within the default mode network, they showed a stronger response to demanding memory judgements than to an easier perceptual task, contrary to the view that they support automatic aspects of cognition. In a subsequent analysis, we showed that these regions were located at the extreme end of a macroscale gradient, which describes gradual transitions from sensorimotor to transmodal cortex. This shift in the focus of neural activity towards transmodal, default mode, regions might reflect a process of where the functional distance from specific sensory enables conceptually rich and detailed cognitive states to be generated in the absence of input.
Collapse
Affiliation(s)
- Charlotte Murphy
- Department of Psychology / York Neuroimaging Centre, University of York, UK.
| | | | | | - Mladen Sormaz
- Department of Psychology / York Neuroimaging Centre, University of York, UK
| | - Hao-Ting Wang
- Department of Psychology / York Neuroimaging Centre, University of York, UK
| | - Daniel S Margulies
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonathan Smallwood
- Department of Psychology / York Neuroimaging Centre, University of York, UK
| |
Collapse
|
203
|
Katzorke A, Zeller JBM, Müller LD, Lauer M, Polak T, Deckert J, Herrmann MJ. Decreased hemodynamic response in inferior frontotemporal regions in elderly with mild cognitive impairment. Psychiatry Res Neuroimaging 2018; 274:11-18. [PMID: 29472145 DOI: 10.1016/j.pscychresns.2018.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The verbal fluency task (VFT) is a well-established cognitive marker for mild cognitive impairment (MCI) in the prodromal stage of Alzheimer´s dementia (AD). The behavioral VFT performance of patients allows the prediction of dementia two years later. But effective compensatory mechanism might cover or reduce the predictive value of the VFT. Therefore the aim of this study is to measure the hemodynamic response during VFT in patients with mild cognitive impairment (MCI) to establish the hemodynamic response during the VFT as a screening instrument for the prediction of dementia. One method which allows measuring the hemodynamic response during speech production without severe problems with moving artifacts like in functional magnetic resonance imaging (fMRI) is the functional near-infrared spectroscopy (fNIRS). It is optimal as a screening instrument, as it is easy to apply and without any contraindications. In this study we assessed the hemodynamic response in prefrontal and temporal regions in patients with MCI as well as matched healthy controls with fNIRS. We found a decreased hemodynamic response in the inferior frontotemporal cortex for the MCI group. Our results indicate that a frontotemporal decreased hemodynamic response could serve as a diagnostic biomarker for dementia.
Collapse
Affiliation(s)
- Andrea Katzorke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany.
| | - Julia B M Zeller
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| | - Laura D Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| | - Martin Lauer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080 Würzburg, Germany
| |
Collapse
|
204
|
Teige C, Mollo G, Millman R, Savill N, Smallwood J, Cornelissen PL, Jefferies E. Dynamic semantic cognition: Characterising coherent and controlled conceptual retrieval through time using magnetoencephalography and chronometric transcranial magnetic stimulation. Cortex 2018; 103:329-349. [PMID: 29684752 PMCID: PMC6002612 DOI: 10.1016/j.cortex.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/24/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Distinct neural processes are thought to support the retrieval of semantic information that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet relevant for the current task or context. While the brain regions that support readily coherent and more controlled patterns of semantic retrieval are relatively well-characterised, the temporal dynamics of these processes are not well-understood. This study used magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation (cTMS) in two separate experiments to examine temporal dynamics during the retrieval of strong and weak associations. MEG results revealed a dissociation within left temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at ∼150 msec disrupted the efficient retrieval of strong associations, indicating a necessary role for ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word disrupted the retrieval of weak associations, suggesting this site may maintain information about semantic context from the first word, allowing efficient engagement of semantic control. Together these studies provide converging evidence for a functional dissociation within the temporal lobe, across both tasks and time.
Collapse
Affiliation(s)
- Catarina Teige
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | - Giovanna Mollo
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | - Rebecca Millman
- Manchester Centre for Audiology and Deafness, Division of Human Communication, Development and Hearing, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Nicola Savill
- Department of Psychology and York Neuroimaging Centre, University of York, UK; School of Psychology and Social Science, York St John University, York, UK
| | - Jonathan Smallwood
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | | | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, UK.
| |
Collapse
|
205
|
Gainotti G. Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes? Rev Neurosci 2018; 29:303-320. [DOI: 10.1515/revneuro-2017-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/09/2017] [Indexed: 11/15/2022]
Abstract
AbstractA very challenging problem in the domain of the cognitive neurosciences is to explain why herpes simplex encephalitis and semantic dementia show, respectively, a category-specific semantic disorder for biological entities and an across-categories semantic disruption, despite highly overlapping areas of anterior temporal lobe damage. The aim of the present review consisted in trying to make a separate survey of anatomo-clinical investigations (single-case studies and group studies) and of activation studies, in order to analyse the factors that could explain these different patterns of semantic disruption. Factors taken into account in this review were laterality of lesions, disease aetiology, kind of brain pathology and locus of damage within the temporal lobes. Locus of damage within the temporal lobes and kind of brain pathology seemed to play the most important role, because in patients with herpes simplex encephalitis and category-specific semantic disorder for biological entities the lesions prevailed in the anteromedial temporal lobes. Furthermore, the neuropathology concerned both the anterior temporal cortices and the white matter pathways connecting these areas with the posterior visual areas, whereas in semantic dementia the inferior longitudinal fasciculus involvement was restricted to the rostral temporal lobe and did not extend into the cortically uninvolved occipital lobe.
Collapse
|
206
|
Abstract
Body shape cues inferences regarding personality and health, but the neural processes underpinning such inferences remain poorly understood. Across two fMRI experiments, we test the extent to which neural networks associated with body perception and theory-of-mind (ToM) support social inferences based on body shape. Participants observed obese, muscular, and slim bodies that cued distinct social inferences as revealed in behavioural pilot experiments. To investigate judgment intentionality, the first fMRI experiment required participants to detect repeat presentations of bodies, whereas in fMRI Experiment 2 participants intentionally formed an impression. Body and ToM networks were localized using independent functional localisers. Experiment 1 revealed no differential network engagement for muscular or obese compared to slim bodies. By contrast, in Experiment 2, compared to slim bodies, forming impressions of muscular bodies engaged the body-network more, whereas the ToM-network was engaged more when forming impressions of obese bodies. These results demonstrate that social judgments based on body shape do not rely on a single neural mechanism, but rather on multiple mechanisms that are separately sensitive to body fat and muscularity. Moreover, dissociable responses are only apparent when intentionally forming an impression. Thus, these experiments show how segregated networks operate to extract socially-relevant information cued by body shape.
Collapse
Affiliation(s)
- Inez M Greven
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| | - Paul E Downing
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| | - Richard Ramsey
- a Wales Institute for Cognitive Neuroscience, School of Psychology , Bangor University , Bangor , Gwynedd , Wales, UK
| |
Collapse
|
207
|
Moseley RL, Pulvermüller F. What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing. Cortex 2018; 100:149-190. [DOI: 10.1016/j.cortex.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/17/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
|
208
|
Playfoot D, Billington J, Tree JJ. Reading and visual word recognition ability in semantic dementia is not predicted by semantic performance. Neuropsychologia 2018; 111:292-306. [PMID: 29432768 DOI: 10.1016/j.neuropsychologia.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
This paper describes longitudinal testing of two Semantic Dementia (SD) cases. It is common for patients with SD to present with deficits in reading aloud irregular words (i.e. surface dyslexia), and in lexical decision. Theorists from the connectionist tradition (e.g. Woollams et al., 2007) argue that in SD cases with concurrent surface dyslexia, the deterioration of irregular word reading and recognition performance is related to the extent of the deterioration of the semantic system. The Dual Route Cascaded model (DRC; Coltheart et al., 2001) makes no such prediction. We examined this issue using a battery of cognitive tests and two structural scans undertaken at different points in each cases time course. Across both cases, our behavioural testing found little evidence of a key putative link between semantic impairment and the decline of irregular word reading or lexical decision. In addition, our neuroimaging analyses suggested that it may be the emergence of atrophy to key neural regions both inside and outside the anterior temporal lobes that may best capture the emergence of impairments of irregular word reading, and implicated inferior temporal cortex in surface dyslexia.
Collapse
Affiliation(s)
- David Playfoot
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Collegiate Crescent, Sheffield S10 2BQ, United Kingdom.
| | - Jac Billington
- School of Psychology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Jeremy J Tree
- Department of Psychology, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.
| |
Collapse
|
209
|
Garcin B, Urbanski M, Thiebaut de Schotten M, Levy R, Volle E. Anterior Temporal Lobe Morphometry Predicts Categorization Ability. Front Hum Neurosci 2018; 12:36. [PMID: 29467637 PMCID: PMC5808329 DOI: 10.3389/fnhum.2018.00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.
Collapse
Affiliation(s)
- Béatrice Garcin
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Department of Neurology, Salpêtrière Hospital AP-HP, Paris, France
| | - Marika Urbanski
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Service de Médecine et Réadaptation, Hôpitaux de Saint-Maurice, Saint-Maurice, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Michel Thiebaut de Schotten
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France.,Centre de NeuroImagerie de Recherche, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Richard Levy
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Department of Neurology, Salpêtrière Hospital AP-HP, Paris, France
| | - Emmanuelle Volle
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
210
|
Hallam GP, Thompson HE, Hymers M, Millman RE, Rodd JM, Lambon Ralph MA, Smallwood J, Jefferies E. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus. Cortex 2018; 99:150-165. [DOI: 10.1016/j.cortex.2017.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
211
|
Villena-Gonzalez M, Wang HT, Sormaz M, Mollo G, Margulies DS, Jefferies EA, Smallwood J. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex. Cortex 2018; 99:224-234. [DOI: 10.1016/j.cortex.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/28/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
|
212
|
Jouen A, Ellmore T, Madden-Lombardi C, Pallier C, Dominey P, Ventre-Dominey J. Beyond the word and image: II- Structural and functional connectivity of a common semantic system. Neuroimage 2018; 166:185-197. [DOI: 10.1016/j.neuroimage.2017.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
|
213
|
Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition. Cereb Cortex 2018; 27:777-792. [PMID: 26604273 DOI: 10.1093/cercor/bhv226] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The temporal pole (TP) has been associated with diverse functions of social cognition and emotion processing. Although the underlying mechanism remains elusive, one possibility is that TP acts as domain-general hub integrating socioemotional information. To test this, 26 participants were presented with 60 empathy-evoking film clips during fMRI scanning. The film clips were preceded by a linguistic sad or neutral context and half of the clips were accompanied by sad music. In line with its hypothesized role, TP was involved in the processing of sad context and furthermore tracked participants' empathic concern. To examine the neuromodulatory impact of TP, we applied nonlinear dynamic causal modeling to a multisensory integration network from previous work consisting of superior temporal gyrus (STG), fusiform gyrus (FG), and amygdala, which was extended by an additional node in the TP. Bayesian model comparison revealed a gating of STG and TP on fusiform-amygdalar coupling and an increase of TP to FG connectivity during the integration of contextual information. Moreover, these backward projections were strengthened by emotional music. The findings indicate that during social cognition, TP integrates information from different modalities and top-down modulates lower-level perceptual areas in the ventral visual stream as a function of integration demands.
Collapse
Affiliation(s)
- Corinna Pehrs
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Jamil Zaki
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Lorna H Schlochtermeier
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Arthur M Jacobs
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany
| | - Lars Kuchinke
- Cluster of Excellence "Languages of Emotion", 14195 Berlin, Germany.,Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.,Dahlem Institute for Neuroimaging of Emotion, 14195 Berlin, Germany.,Department of Psychology, Experimental Psychology and Methods, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
214
|
Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration. J Neurosci 2018; 38:1891-1900. [PMID: 29358361 DOI: 10.1523/jneurosci.1748-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 01/15/2023] Open
Abstract
Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas.SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being separate entities, gesture and speech are part of an integrated multimodal language system, with inferior frontal gyrus and posterior middle temporal gyrus serving as critical nodes of the cortical network underpinning this system.
Collapse
|
215
|
Chai LR, Mattar MG, Blank IA, Fedorenko E, Bassett DS. Functional Network Dynamics of the Language System. Cereb Cortex 2018; 26:4148-4159. [PMID: 27550868 PMCID: PMC5066829 DOI: 10.1093/cercor/bhw238] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration.
Collapse
Affiliation(s)
- Lucy R Chai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,USA
| | - Marcelo G Mattar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
216
|
Hoffman P, Morcom AM. Age-related changes in the neural networks supporting semantic cognition: A meta-analysis of 47 functional neuroimaging studies. Neurosci Biobehav Rev 2018; 84:134-150. [DOI: 10.1016/j.neubiorev.2017.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
217
|
Only time will tell - why temporal information is essential for our neuroscientific understanding of semantics. Psychon Bull Rev 2017; 23:1072-9. [PMID: 27294424 PMCID: PMC4974259 DOI: 10.3758/s13423-015-0873-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.
Collapse
|
218
|
Brooks JA, Shablack H, Gendron M, Satpute AB, Parrish MH, Lindquist KA. The role of language in the experience and perception of emotion: a neuroimaging meta-analysis. Soc Cogn Affect Neurosci 2017; 12:169-183. [PMID: 27539864 PMCID: PMC5390741 DOI: 10.1093/scan/nsw121] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Recent behavioral and neuroimaging studies demonstrate that labeling one's emotional experiences and perceptions alters those states. Here, we used a comprehensive meta-analysis of the neuroimaging literature to systematically explore whether the presence of emotion words in experimental tasks has an impact on the neural representation of emotional experiences and perceptions across studies. Using a database of 386 studies, we assessed brain activity when emotion words (e.g. 'anger', 'disgust') and more general affect words (e.g. 'pleasant', 'unpleasant') were present in experimental tasks vs not present. As predicted, when emotion words were present, we observed more frequent activations in regions related to semantic processing. When emotion words were not present, we observed more frequent activations in the amygdala and parahippocampal gyrus, bilaterally. The presence of affect words did not have the same effect on the neural representation of emotional experiences and perceptions, suggesting that our observed effects are specific to emotion words. These findings are consistent with the psychological constructionist prediction that in the absence of accessible emotion concepts, the meaning of affective experiences and perceptions are ambiguous. Findings are also consistent with the regulatory role of 'affect labeling'. Implications of the role of language in emotion construction and regulation are discussed.
Collapse
Affiliation(s)
| | - Holly Shablack
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill
| | | | | | | | - Kristen A Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
| |
Collapse
|
219
|
Triangulation of language-cognitive impairments, naming errors and their neural bases post-stroke. NEUROIMAGE-CLINICAL 2017; 17:465-473. [PMID: 29159059 PMCID: PMC5683039 DOI: 10.1016/j.nicl.2017.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022]
Abstract
In order to gain a better understanding of aphasia one must consider the complex combinations of language impairments along with the pattern of paraphasias. Despite the fact that both deficits and paraphasias feature in diagnostic criteria, most research has focused only on the lesion correlates of language deficits, with minimal attention on the pattern of patients' paraphasias. In this study, we used a data-driven approach (principal component analysis - PCA) to fuse patient impairments and their pattern of errors into one unified model of chronic post-stroke aphasia. This model was subsequently mapped onto the patients' lesion profiles to generate the triangulation of language-cognitive impairments, naming errors and their neural correlates. Specifically, we established the pattern of co-occurrence between fifteen error types, which avoids focussing on a subset of errors or the use of experimenter-derived methods to combine across error types. We obtained five principal components underlying the patients' errors: omission errors; semantically-related responses; phonologically-related responses; dysfluent responses; and a combination of circumlocutions with mixed errors. In the second step, we aligned these paraphasia-related principal components with the patients' performance on a detailed language and cognitive assessment battery, utilising an additional PCA. This omnibus PCA revealed seven unique fused impairment-paraphasia factors: output phonology; semantics; phonological working memory; speech quanta; executive-cognitive skill; phonological (input) discrimination; and the production of circumlocution errors. In doing so we were able to resolve the complex relationships between error types and impairments. Some are relatively straightforward: circumlocution errors formed their own independent factor; there was a one-to-one mapping for phonological errors with expressive phonological abilities and for dysfluent errors with speech fluency. In contrast, omission-type errors loaded across both semantic and phonological working memory factors, whilst semantically-related errors had the most complex relationship by loading across four factors (phonological ability, speech quanta, executive-cognitive skills and circumlocution-type errors). Three components had unique lesion correlates: phonological working memory with the primary auditory region; semantics with the anterior temporal region; and fluency with the pre-central gyrus, converging with existing literature. In conclusion, the data-driven approach allowed derivation of the triangulation of deficits, error types and lesion correlates in post-stroke aphasia. Using principal component analysis to identify structure in naming errors. Determining the relationship between language impairments and naming errors. Identifying neural correlates of behavioural deficits in performance and errors. Seven independent factors identified to describe performance and error pattern. Phonological working memory, semantic skill and speech quanta had lesion correlates.
Collapse
|
220
|
Differential cortical contribution of syntax and semantics: An fMRI study on two-word phrasal processing. Cortex 2017; 96:105-120. [DOI: 10.1016/j.cortex.2017.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/17/2017] [Accepted: 09/05/2017] [Indexed: 11/17/2022]
|
221
|
Freud E, Culham JC, Plaut DC, Behrmann M. The large-scale organization of shape processing in the ventral and dorsal pathways. eLife 2017; 6:27576. [PMID: 28980938 PMCID: PMC5659821 DOI: 10.7554/elife.27576] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022] Open
Abstract
Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing. We rely on our sense of vision to perceive the world around us and the objects within it. We also use vision to guide our interactions with objects. One of the most influential theories in cognitive neuroscience is the idea that separate pathways within the brain support these two processes. The ventral pathway is in charge of vision-for-perception. It analyses the features that help us recognize objects, such as their color, size or shape, enabling us to identify the hammer in a toolbox, for example. The dorsal pathway is responsible for vision-for-action. It processes features that help us interact with objects, such as their movement and location, enabling us to use the hammer to strike a nail. However, recent studies have suggested that the ventral and dorsal pathways may not be as independent as originally thought. Freud et al. now test this idea by examining if the dorsal vision-for-action pathway can also perceive and process objects. Healthy volunteers viewed pictures of objects while lying inside a brain scanner. Some of the objects in the pictures were intact, whereas others had been distorted. If a brain region shows greater activation when viewing intact objects than distorted ones, it implies that that region is sensitive to the normal shapes of objects. Freud et al. found that both the ventral and dorsal pathways were sensitive to shape, with some areas in the two pathways showing highly similar responses. Furthermore, the shape sensitivity of certain regions within the dorsal pathway correlated with the volunteers’ ability to recognize the objects. This suggests that regions distributed across both pathways – and not just the ventral one – may contribute to object recognition. The two-pathways hypothesis has governed our understanding of vision and of other sensory systems including hearing for several decades. By challenging the binary distinction between the two pathways, the results of Freud et al. suggest that models of sensory processing may require updating. This improved understanding may ultimately improve diagnosis and treatment of perceptual disorders such as agnosia, in which patients struggle to recognize objects.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, United States
| | - Jody C Culham
- The Brain and Mind Institute, University of Western Ontario, London, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada.,Department of Psychology, University of Western Ontario, London, Canada
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, United States
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
222
|
Lindquist KA. The role of language in emotion: existing evidence and future directions. Curr Opin Psychol 2017; 17:135-139. [DOI: 10.1016/j.copsyc.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/26/2017] [Accepted: 07/08/2017] [Indexed: 02/01/2023]
|
223
|
Quandt LC, Lee YS, Chatterjee A. Neural bases of action abstraction. Biol Psychol 2017; 129:314-323. [PMID: 28964789 DOI: 10.1016/j.biopsycho.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/28/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023]
Abstract
There has been recent debate over whether actions are processed primarily by means of motor simulation or cognitive semantics. The current study investigated how abstract action concepts are processed in the brain, independent of the format in which they are presented. Eighteen healthy adult participants viewed different actions (e.g., diving, boxing) in the form of verbs and schematic action pictograms while functional magnetic resonance imaging (fMRI) was collected. We predicted that sensorimotor and semantic brain regions would show similar patterns of neural activity for different instances of the same action (e.g., diving pictogram and the word 'diving'). A representational similarity analysis revealed posterior temporal and sensorimotor regions where specific action concepts were encoded, independent of the format of presentation. These results reveal the neural instantiations of abstract action concepts, and demonstrate that both sensorimotor and semantic systems are involved in processing actions.
Collapse
Affiliation(s)
- Lorna C Quandt
- Ph.D. in Educational Neuroscience Program, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002, United States.
| | - Yune-Sang Lee
- Department of Speech and Hearing Science, Center for Brain Injury, The Ohio State University, 1070 Carmack Rd., Columbus, OH 43210, United States
| | - Anjan Chatterjee
- Center for Cognitive Neuroscience, Department of Neurology, University of Pennsylvania, 3701 Hamilton Walk, Philadelphia, PA 19104, United States
| |
Collapse
|
224
|
Xu Y, He Y, Bi Y. A Tri-network Model of Human Semantic Processing. Front Psychol 2017; 8:1538. [PMID: 28955266 PMCID: PMC5600905 DOI: 10.3389/fpsyg.2017.01538] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/24/2017] [Indexed: 12/03/2022] Open
Abstract
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes.
Collapse
Affiliation(s)
- Yangwen Xu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Yanchao Bi
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| |
Collapse
|
225
|
Zaccarella E, Schell M, Friederici AD. Reviewing the functional basis of the syntactic Merge mechanism for language: A coordinate-based activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2017; 80:646-656. [DOI: 10.1016/j.neubiorev.2017.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
|
226
|
The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe. Cortex 2017. [DOI: 10.1016/j.cortex.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
227
|
Laterality of anterior temporal lobe repetitive transcranial magnetic stimulation determines the degree of disruption in picture naming. Brain Struct Funct 2017; 222:3749-3759. [PMID: 28756485 PMCID: PMC5676810 DOI: 10.1007/s00429-017-1430-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/19/2017] [Indexed: 10/27/2022]
Abstract
The bilateral anterior temporal lobes play a key role in semantic representation. This is clearly demonstrated by the performance of patients with semantic dementia, a disorder characterised by a progressive and selective decline in semantic memory over all modalities as a result of anterior temporal atrophy. Although all patients exhibit a progressive decline in both single-word production and comprehension, those with greater atrophy to the left anterior temporal lobe show a stronger decline in word production than comprehension. This asymmetry has been attributed to the greater connectivity of the left anterior temporal lobe with left-lateralised speech production mechanisms. Virtual lesioning of the left ATL using offline repetitive transcranial magnetic stimulation (rTMS) has been shown to disrupt picture naming, but, the impact of right ATL rTMS is yet to be explored. We tested the prediction that disruption of picture naming in normal participants by rTMS should be greater for the left than the right ATL. We found a significant increase in picture naming latencies specifically for stimulation of the left ATL only. Neither left nor right ATL TMS slowed performance in a number naming control task. These results support the hypothesis that although both temporal lobes are part of a widespread semantic network in the human brain, the left anterior temporal lobe possesses a stronger connection to left-lateralised speech production areas than the right temporal lobe.
Collapse
|
228
|
Left Anterior Temporal Lobe and Bilateral Anterior Cingulate Cortex Are Semantic Hub Regions: Evidence from Behavior-Nodal Degree Mapping in Brain-Damaged Patients. J Neurosci 2017; 37:141-151. [PMID: 28053037 DOI: 10.1523/jneurosci.1946-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022] Open
Abstract
The organizational principles of semantic memory in the human brain are still controversial. Although studies have shown that the semantic system contains hub regions that bind information from different sensorimotoric modalities to form concepts, it is unknown whether there are hub regions other than the anterior temporal lobe (ATL). Meanwhile, previous studies have rarely used network measurements to explore the hubs or correlated network indexes with semantic performance, although the most direct supportive evidence of hubs should come from the network perspective. To fill this gap, we correlated the brain-network index with semantic performance in 86 brain-damaged patients. We especially selected the nodal degree measure that reflects how well a node is connected in the network. The measure was calculated as the total number of connections of a given node with other nodes in the resting-state functional MRI network. Semantic ability was measured using the performance of both general and modality-specific (object form, color, motion, sound, manipulation, and function) semantic tasks. We found that the left ATL and the bilateral anterior cingulate cortex could be semantic hubs because the reduced nodal degree values of these regions could effectively predict the deficits in both general and modality-specific semantic performance. Moreover, the effects remained when the analyses were performed only in the patients who did not have lesions in these regions. The two hub regions might support semantic representations and executive control processes, respectively. These data provide empirical evidence for the distributed-plus-hub theory of semantic memory from the network perspective. SIGNIFICANCE STATEMENT Although the distributed-plus-hub organization of semantic memory has been proposed for several years, it remains unclear which hubs other than the anterior temporal lobe are included in the semantic system. Here, we identified such hubs from an innovative network perspective. The voxelwise nodal degree values were correlated with the performance of general and modality-specific semantic tasks in 86 patients with brain damage. We observed that the left anterior temporal lobe and bilateral anterior cingulate cortex could be semantic hubs because their decreased nodal degree values were significantly correlated with the severity of the deficit in semantic performance. The two hub regions might contribute to semantic representational and control processes, respectively. These findings offer new evidence for the distributed-plus-hub theory.
Collapse
|
229
|
Roswandowitz C, Schelinski S, von Kriegstein K. Developmental phonagnosia: Linking neural mechanisms with the behavioural phenotype. Neuroimage 2017; 155:97-112. [DOI: 10.1016/j.neuroimage.2017.02.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
|
230
|
The Hierarchical Cortical Organization of Human Speech Processing. J Neurosci 2017; 37:6539-6557. [PMID: 28588065 DOI: 10.1523/jneurosci.3267-16.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
Speech comprehension requires that the brain extract semantic meaning from the spectral features represented at the cochlea. To investigate this process, we performed an fMRI experiment in which five men and two women passively listened to several hours of natural narrative speech. We then used voxelwise modeling to predict BOLD responses based on three different feature spaces that represent the spectral, articulatory, and semantic properties of speech. The amount of variance explained by each feature space was then assessed using a separate validation dataset. Because some responses might be explained equally well by more than one feature space, we used a variance partitioning analysis to determine the fraction of the variance that was uniquely explained by each feature space. Consistent with previous studies, we found that speech comprehension involves hierarchical representations starting in primary auditory areas and moving laterally on the temporal lobe: spectral features are found in the core of A1, mixtures of spectral and articulatory in STG, mixtures of articulatory and semantic in STS, and semantic in STS and beyond. Our data also show that both hemispheres are equally and actively involved in speech perception and interpretation. Further, responses as early in the auditory hierarchy as in STS are more correlated with semantic than spectral representations. These results illustrate the importance of using natural speech in neurolinguistic research. Our methodology also provides an efficient way to simultaneously test multiple specific hypotheses about the representations of speech without using block designs and segmented or synthetic speech.SIGNIFICANCE STATEMENT To investigate the processing steps performed by the human brain to transform natural speech sound into meaningful language, we used models based on a hierarchical set of speech features to predict BOLD responses of individual voxels recorded in an fMRI experiment while subjects listened to natural speech. Both cerebral hemispheres were actively involved in speech processing in large and equal amounts. Also, the transformation from spectral features to semantic elements occurs early in the cortical speech-processing stream. Our experimental and analytical approaches are important alternatives and complements to standard approaches that use segmented speech and block designs, which report more laterality in speech processing and associated semantic processing to higher levels of cortex than reported here.
Collapse
|
231
|
Sanders JG, Wang HT, Schooler J, Smallwood J. Can I Get me out of my Head? Exploring Strategies for Controlling the Self-Referential Aspects of the Mind-Wandering State during Reading. Q J Exp Psychol (Hove) 2017; 70:1053-1062. [DOI: 10.1080/17470218.2016.1216573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Trying to focus on a piece of text and keep unrelated thoughts at bay can be a surprisingly futile experience. The current study explored the effects of different instructions on participants’ capacity to control their mind-wandering and maximize reading comprehension, while reading. Participants were instructed to (a) enhance focus on what was read (external) or (b) enhance meta-awareness of mind-wandering (internal). To understand when these strategies were important, we induced a state of self-focus in half of our participants at the beginning of the experiment. Results replicated the negative association between mind-wandering and comprehension and demonstrated that both internal and external instructions impacted on the efficiency of reading following a period of induced self-focus. Techniques that foster meta-awareness improved task focus but did so at the detriment of reading comprehension, while promoting a deeper engagement while reading improved comprehension with no changes in reported mind-wandering. These data provide insight into how we can control mind-wandering and improve comprehension, and they underline that a state of self-focus is a condition under which they should be employed. Furthermore, these data support component process models that propose that the self-referent mental contents that arise during mind-wandering are distinguishable from those processes that interfere with comprehension.
Collapse
Affiliation(s)
- Jet G. Sanders
- The Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, UK
| | - Hao-Ting Wang
- The Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, UK
| | - Jonathan Schooler
- Department of Psychological Brain Sciences, University of California, Santa Barbara, California, USA
| | - Jonathan Smallwood
- The Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, UK
| |
Collapse
|
232
|
Lee H, Stirnberg R, Stöcker T, Axmacher N. Audiovisual integration supports face-name associative memory formation. Cogn Neurosci 2017; 8:177-192. [PMID: 28494223 DOI: 10.1080/17588928.2017.1327426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.
Collapse
Affiliation(s)
- Hweeling Lee
- a German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Rüdiger Stirnberg
- a German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Tony Stöcker
- a German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Nikolai Axmacher
- a German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany.,b Department of Neuropsychology, Institute of Cognitive Neuroscience , Ruhr University Bochum , Bochum , Germany
| |
Collapse
|
233
|
Kalm K, Norris D. A shared representation of order between encoding and recognition in visual short-term memory. Neuroimage 2017; 155:138-146. [PMID: 28450141 PMCID: PMC5518770 DOI: 10.1016/j.neuroimage.2017.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/27/2022] Open
Abstract
Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds.
Collapse
Affiliation(s)
- Kristjan Kalm
- Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK.
| | - Dennis Norris
- Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
234
|
Taylor JSH, Davis MH, Rastle K. Comparing and validating methods of reading instruction using behavioural and neural findings in an artificial orthography. J Exp Psychol Gen 2017; 146:826-858. [PMID: 28425742 PMCID: PMC5458780 DOI: 10.1037/xge0000301] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is strong scientific consensus that emphasizing print-to-sound relationships is critical when learning to read alphabetic languages. Nevertheless, reading instruction varies across English-speaking countries, from intensive phonic training to multicuing environments that teach sound- and meaning-based strategies. We sought to understand the behavioral and neural consequences of these differences in relative emphasis. We taught 24 English-speaking adults to read 2 sets of 24 novel words (e.g., /buv/, /sig/), written in 2 different unfamiliar orthographies. Following pretraining on oral vocabulary, participants learned to read the novel words over 8 days. Training in 1 language was biased toward print-to-sound mappings while training in the other language was biased toward print-to-meaning mappings. Results showed striking benefits of print–sound training on reading aloud, generalization, and comprehension of single words. Univariate analyses of fMRI data collected at the end of training showed that print–meaning relative to print–sound relative training increased neural effort in dorsal pathway regions involved in reading aloud. Conversely, activity in ventral pathway brain regions involved in reading comprehension was no different following print–meaning versus print–sound training. Multivariate analyses validated our artificial language approach, showing high similarity between the spatial distribution of fMRI activity during artificial and English word reading. Our results suggest that early literacy education should focus on the systematicities present in print-to-sound relationships in alphabetic languages, rather than teaching meaning-based strategies, in order to enhance both reading aloud and comprehension of written words.
Collapse
Affiliation(s)
- J S H Taylor
- Department of Psychology, Royal Holloway, University of London
| | | | - Kathleen Rastle
- Department of Psychology, Royal Holloway, University of London
| |
Collapse
|
235
|
Changing views of emotion regulation and neurobiological models of the mechanism of action of psychotherapy. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 16:571-87. [PMID: 27351671 DOI: 10.3758/s13415-016-0440-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Influential neurobiological models of the mechanism of action of psychotherapy attribute its success to increases of activity in prefrontal areas and decreases in limbic areas, interpreted as the successful and adaptive recruitment of controlled processes to achieve emotion regulation. In this article, we review the behavioral and neuroscientific evidence in support of this model and its applicability to explain the mechanism of action of psychotherapy. Neuroimaging studies of explicit emotion regulation, evidence on the neurobiological substrates of implicit emotion regulation, and meta-analyses of neuroimaging studies of the effect of psychotherapy consistently suggest that areas implicated in coding semantic representations play an important role in emotion regulation not covered by existing models based on controlled processes. We discuss the findings that implicate these same areas in supporting working memory, in encoding preferences and the prospective outcome of actions taken in rewarding or aversive contingencies, and show how these functions may be integrated into process models of emotion regulation that depend on elaborate semantic representations for their effectiveness. These alternative models also appear to be more consistent with internal accounts in the psychotherapeutic literature of how psychotherapy works.
Collapse
|
236
|
A graded tractographic parcellation of the temporal lobe. Neuroimage 2017; 155:503-512. [PMID: 28411156 PMCID: PMC5518769 DOI: 10.1016/j.neuroimage.2017.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
The temporal lobe has been implicated in multiple cognitive domains through lesion studies as well as cognitive neuroimaging research. There has been a recent increased interest in the structural and connective architecture that underlies these functions. However there has not yet been a comprehensive exploration of the patterns of connectivity that appear across the temporal lobe. This article uses a data driven, spectral reordering approach in order to understand the general axes of structural connectivity within the temporal lobe. Two important findings emerge from the study. Firstly, the temporal lobe's overarching patterns of connectivity are organised along two key structural axes: medial to lateral and anteroventral to posterodorsal, mirroring findings in the functional literature. Secondly, the connective organisation of the temporal lobe is graded and transitional; this is reminiscent of the original work of 19th Century neuroanatomists, who posited the existence of some regions which transitioned between one another in a graded fashion. While regions with unique connectivity exist, the boundaries between these are not always sharp. Instead there are zones of graded connectivity reflecting the influence and overlap of shared connectivity. A graded parcellation identified changes in connectivity across the temporal lobe Connective organisation of the temporal lobe was graded and transitional Two axes of organisation were found: medial-lateral and anterovental-posterodorsal While regions of distinct connectivity exist, their boundaries are not always sharp Zones of graded connectivity exist reflecting influence of shared connectivity
Collapse
|
237
|
Joyal M, Brambati SM, Laforce RJ, Montembeault M, Boukadi M, Rouleau I, Macoir J, Joubert S, Fecteau S, Wilson MA. The Role of the Left Anterior Temporal Lobe for Unpredictable and Complex Mappings in Word Reading. Front Psychol 2017; 8:517. [PMID: 28424650 PMCID: PMC5380751 DOI: 10.3389/fpsyg.2017.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
The anterior temporal lobes (ATLs) have been consistently associated with semantic processing which, in turn, has a key role in reading aloud single words. This study aimed to investigate (1) the reading abilities in patients with the semantic variant of primary progressive aphasia (svPPA), and (2) the relationship between gray matter (GM) volume of the left ATL and word reading performance using voxel-based morphometry (VBM). Three groups of participants (svPPA, Alzheimer’s Disease, AD and healthy elderly adults) performed a reading task with exception words, regular words and pseudowords, along with a structural magnetic resonance imaging scan. For exception words, the svPPA group had a lower accuracy and a greater number of regularization errors as compared to the control groups of healthy participants and AD patients. Similarly, for regular words, svPPA patients had a lower accuracy in comparison with AD patients, and a greater number of errors related to complex orthography-to-phonology mappings (OPM) in comparison to both control groups. VBM analyses revealed that GM volume of the left ATL was associated with the number of regularization errors. Also, GM volume of the left lateral ATL was associated with the number of errors with complex OPM during regular word reading. Our results suggest that the left ATL might play a role in the reading of exception words, in accordance with its role in semantic processing. Results further support the involvement of the left lateral ATL in combinatorial processes, including the integration of semantic and phonological information, for both exception and regular words.
Collapse
Affiliation(s)
- Marilyne Joyal
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec and Département de Réadaptation, Université Laval, Québec CityQC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale and Département de Réadaptation, Université Laval, Québec CityQC, Canada
| | - Simona M Brambati
- Centre de Recherche de l'Institut Universitaire de Gériatrie and Département de Psychologie, Université de Montréal, MontréalQC, Canada
| | - Robert J Laforce
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec and Département des Sciences Neurologiques, Université Laval, Québec CityQC, Canada
| | - Maxime Montembeault
- Centre de Recherche de l'Institut Universitaire de Gériatrie and Département de Psychologie, Université de Montréal, MontréalQC, Canada
| | - Mariem Boukadi
- Centre de Recherche de l'Institut Universitaire de Gériatrie and Département de Psychologie, Université de Montréal, MontréalQC, Canada
| | - Isabelle Rouleau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Neurosciences et Département de Psychologie, Université du Québec à Montréal, MontréalQC, Canada
| | - Joël Macoir
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec and Département de Réadaptation, Université Laval, Québec CityQC, Canada
| | - Sven Joubert
- Centre de Recherche de l'Institut Universitaire de Gériatrie and Département de Psychologie, Université de Montréal, MontréalQC, Canada
| | - Shirley Fecteau
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec and Département de Réadaptation, Université Laval, Québec CityQC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale and Département de Réadaptation, Université Laval, Québec CityQC, Canada
| | - Maximiliano A Wilson
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec and Département de Réadaptation, Université Laval, Québec CityQC, Canada
| |
Collapse
|
238
|
Anterior temporal lobe and the representation of knowledge about people. Proc Natl Acad Sci U S A 2017; 114:4042-4044. [PMID: 28377512 DOI: 10.1073/pnas.1703438114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
239
|
Anzellotti S, Caramazza A. Multimodal representations of person identity individuated with fMRI. Cortex 2017; 89:85-97. [DOI: 10.1016/j.cortex.2017.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
|
240
|
Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes. Neuroimage 2017; 155:422-436. [PMID: 28343000 DOI: 10.1016/j.neuroimage.2017.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 11/21/2022] Open
Abstract
A long-standing core question in cognitive science is whether different modalities and representation types (pictures, words, sounds, etc.) access a common store of semantic information. Although different input types have been shown to activate a shared network of brain regions, this does not necessitate that there is a common representation, as the neurons in these regions could still differentially process the different modalities. However, multi-voxel pattern analysis can be used to assess whether, e.g., pictures and words evoke a similar pattern of activity, such that the patterns that separate categories in one modality transfer to the other. Prior work using this method has found support for a common code, but has two limitations: they have either only examined disparate categories (e.g. animals vs. tools) that are known to activate different brain regions, raising the possibility that the pattern separation and inferred similarity reflects only large scale differences between the categories or they have been limited to individual object representations. By using natural scene categories, we not only extend the current literature on cross-modal representations beyond objects, but also, because natural scene categories activate a common set of brain regions, we identify a more fine-grained (i.e. higher spatial resolution) common representation. Specifically, we studied picture- and word-based representations of natural scene stimuli from four different categories: beaches, cities, highways, and mountains. Participants passively viewed blocks of either phrases (e.g. "sandy beach") describing scenes or photographs from those same scene categories. To determine whether the phrases and pictures evoke a common code, we asked whether a classifier trained on one stimulus type (e.g. phrase stimuli) would transfer (i.e. cross-decode) to the other stimulus type (e.g. picture stimuli). The analysis revealed cross-decoding in the occipitotemporal, posterior parietal and frontal cortices. This similarity of neural activity patterns across the two input types, for categories that co-activate local brain regions, provides strong evidence of a common semantic code for pictures and words in the brain.
Collapse
|
241
|
Abstract
Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge.
Collapse
|
242
|
Abstract
How is knowledge about the meanings of words and objects represented in the human brain? Current theories embrace two radically different proposals: either distinct cortical systems have evolved to represent different kinds of things, or knowledge for all kinds is encoded within a single domain-general network. Neither view explains the full scope of relevant evidence from neuroimaging and neuropsychology. Here we propose that graded category-specificity emerges in some components of the semantic network through joint effects of learning and network connectivity. We test the proposal by measuring connectivity amongst cortical regions implicated in semantic representation, then simulating healthy and disordered semantic processing in a deep neural network whose architecture mirrors this structure. The resulting neuro-computational model explains the full complement of neuroimaging and patient evidence adduced in support of both domain-specific and domain-general approaches, reconciling long-standing disputes about the nature and origins of this uniquely human cognitive faculty.
Collapse
|
243
|
Babajani-Feremi A. Neural Mechanism Underling Comprehension of Narrative Speech and Its Heritability: Study in a Large Population. Brain Topogr 2017; 30:592-609. [PMID: 28214981 DOI: 10.1007/s10548-017-0550-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022]
Abstract
Comprehension of narratives constitutes a fundamental part of our everyday life experience. Although the neural mechanism of auditory narrative comprehension has been investigated in some studies, the neural correlates underlying this mechanism and its heritability remain poorly understood. We investigated comprehension of naturalistic speech in a large, healthy adult population (n = 429; 176/253 M/F; 22-36 years of age) consisting of 192 twin pairs (49 monozygotic and 47 dizygotic pairs) and 237 of their siblings. We used high quality functional MRI datasets from the Human Connectome Project (HCP) in which a story-based paradigm was utilized for the auditory narrative comprehension. Our results revealed that narrative comprehension was associated with activations of the classical language regions including superior temporal gyrus (STG), middle temporal gyrus (MTG), and inferior frontal gyrus (IFG) in both hemispheres, though STG and MTG were activated symmetrically and activation in IFG were left-lateralized. Our results further showed that the narrative comprehension was associated with activations in areas beyond the classical language regions, e.g. medial superior frontal gyrus (SFGmed), middle frontal gyrus (MFG), and supplementary motor area (SMA). Of subcortical structures, only the hippocampus was involved. The results of heritability analysis revealed that the oral reading recognition and picture vocabulary comprehension were significantly heritable (h 2 > 0.56, p < 10- 13). In addition, the extent of activation of five areas in the left hemisphere, i.e. STG, IFG pars opercularis, SFGmed, SMA, and precuneus, and one area in the right hemisphere, i.e. MFG, were significantly heritable (h 2 > 0.33, p < 0.0004). The current study, to the best of our knowledge, is the first to investigate auditory narrative comprehension and its heritability in a large healthy population. Referring to the excellent quality of the HCP data, our results can clarify the functional contributions of linguistic and extra-linguistic cortices during narrative comprehension.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA. .,Neuroscience Institute and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
244
|
Musz E, Thompson-Schill SL. Tracking competition and cognitive control during language comprehension with multi-voxel pattern analysis. BRAIN AND LANGUAGE 2017; 165:21-32. [PMID: 27898341 PMCID: PMC5359984 DOI: 10.1016/j.bandl.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
To successfully comprehend a sentence that contains a homonym, readers must select the ambiguous word's context-appropriate meaning. The outcome of this process is influenced both by top-down contextual support and bottom-up, word-specific characteristics. We examined how these factors jointly affect the neural signatures of lexical ambiguity resolution. We measured the similarity between multi-voxel patterns evoked by the same homonym in two distinct linguistic contexts: once after subjects read sentences that biased interpretation toward each homonym's most frequent, dominant meaning, and again after interpretation was biased toward a weaker, subordinate meaning. We predicted that, following a subordinate-biasing context, the dominant yet inappropriate meaning would nevertheless compete for activation, manifesting in increased similarity between the neural patterns evoked by the two word meanings. In left anterior temporal lobe (ATL), degree of within-word pattern similarity was positively predicted by the association strength of each homonym's dominant meaning. Further, within-word pattern similarity in left ATL was negatively predicted by item-specific responses in a region of left ventrolateral prefrontal cortex (VLPFC) sensitive to semantic conflict. These findings have implications for psycholinguistic models of lexical ambiguity resolution, and for the role of left VLPFC function during this process. Moreover, these findings demonstrate the utility of item-level, similarity-based analyses of fMRI data for our understanding of competition between co-activated word meanings during language comprehension.
Collapse
Affiliation(s)
- Elizabeth Musz
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, United States.
| | - Sharon L Thompson-Schill
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, United States
| |
Collapse
|
245
|
Collins JA, Montal V, Hochberg D, Quimby M, Mandelli ML, Makris N, Seeley WW, Gorno-Tempini ML, Dickerson BC. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain 2017; 140:457-471. [PMID: 28040670 PMCID: PMC5278308 DOI: 10.1093/brain/aww313] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/10/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region's strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Victor Montal
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daisy Hochberg
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Megan Quimby
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - William W Seeley
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
246
|
Yamao Y, Suzuki K, Kunieda T, Matsumoto R, Arakawa Y, Nakae T, Nishida S, Inano R, Shibata S, Shimotake A, Kikuchi T, Sawamoto N, Mikuni N, Ikeda A, Fukuyama H, Miyamoto S. Clinical impact of intraoperative CCEP monitoring in evaluating the dorsal language white matter pathway. Hum Brain Mapp 2017; 38:1977-1991. [PMID: 28112455 DOI: 10.1002/hbm.23498] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
In order to preserve postoperative language function, we recently proposed a new intraoperative method to monitor the integrity of the dorsal language pathway (arcuate fasciculus; AF) using cortico-cortical evoked potentials (CCEPs). Based on further investigations (20 patients, 21 CCEP investigations), including patients who were not suitable for awake surgery (five CCEP investigations) or those without preoperative neuroimaging data (eight CCEP investigations including four with untraceable tractography due to brain edema), we attempted to clarify the clinical impact of this new intraoperative method. We monitored the integrity of AF by stimulating the anterior perisylvian language area (AL) by recording CCEPs from the posterior perisylvian language area (PL) consecutively during both general anesthesia and awake condition. After tumor resection, single-pulse electrical stimuli were also applied to the floor of the removal cavity to record subcortico-cortical evoked potentials (SCEPs) at AL and PL in 12 patients (12 SCEP investigations). We demonstrated that (1) intraoperative dorsal language network monitoring was feasible even when patients were not suitable for awake surgery or without preoperative neuroimaging studies, (2) CCEP is a dynamic marker of functional connectivity or integrity of AF, and CCEP N1 amplitude could even become larger after reduction of brain edema, (3) a 50% CCEP N1 amplitude decline might be a cut-off value to prevent permanent language dysfunction due to impairment of AF, (4) a correspondence (<2.0 ms difference) of N1 onset latencies between CCEP and the sum of SCEPs indicates close proximity of the subcortical stimulus site to AF (<3.0 mm). Hum Brain Mapp 38:1977-1991, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kengo Suzuki
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Nishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rika Inano
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiya Shibata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
247
|
Ralph MAL, Jefferies E, Patterson K, Rogers TT. The neural and computational bases of semantic cognition. Nat Rev Neurosci 2017; 18:42-55. [PMID: 27881854 DOI: 10.1038/nrn.2016.150] [Citation(s) in RCA: 944] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Semantic cognition refers to our ability to use, manipulate and generalize knowledge that is acquired over the lifespan to support innumerable verbal and non-verbal behaviours. This Review summarizes key findings and issues arising from a decade of research into the neurocognitive and neurocomputational underpinnings of this ability, leading to a new framework that we term controlled semantic cognition (CSC). CSC offers solutions to long-standing queries in philosophy and cognitive science, and yields a convergent framework for understanding the neural and computational bases of healthy semantic cognition and its dysfunction in brain disorders.
Collapse
Affiliation(s)
- Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, Heslington, University of York, York, YO10 5DD, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, Chaucer Road, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge, CB2 0QQ, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson Street, Madison, Wisconsin 53706, USA
| |
Collapse
|
248
|
Popp M, Trumpp NM, Kiefer M. Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition. Front Hum Neurosci 2016; 10:637. [PMID: 28018201 PMCID: PMC5156699 DOI: 10.3389/fnhum.2016.00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022] Open
Abstract
Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance.
Collapse
Affiliation(s)
- Margot Popp
- Department of Psychiatry, Ulm University Ulm, Germany
| | | | - Markus Kiefer
- Department of Psychiatry, Ulm University Ulm, Germany
| |
Collapse
|
249
|
Brain oscillations track the formation of episodic memories in the real world. Neuroimage 2016; 143:256-266. [DOI: 10.1016/j.neuroimage.2016.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
|
250
|
Distinct Contributions of Dorsal and Ventral Streams to Imitation of Tool-Use and Communicative Gestures. Cereb Cortex 2016; 28:474-492. [DOI: 10.1093/cercor/bhw383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
|